Now showing 1 - 5 of 5
  • Publication
    SCLpred-EMS: Subcellular localization prediction of endomembrane system and secretory pathway proteins by Deep N-to-1 Convolutional Neural Networks
    Motivation: The subcellular location of a protein can provide useful information for protein function prediction and drug design. Experimentally determining the subcellular location of a protein is an expensive and time-consuming task. Therefore, various computer-based tools have been developed, mostly using machine learning algorithms, to predict the subcellular location of proteins. Results: Here, we present a neural network-based algorithm for protein subcellular location prediction. We introduce SCLpred-EMS a subcellular localization predictor powered by an ensemble of Deep N-to-1 Convolutional Neural Networks. SCLpred-EMS predicts the subcellular location of a protein into two classes, the endomembrane system and secretory pathway versus all others, with a Matthews correlation coefficient of 0.75-0.86 outperforming the other state-of-the-art web servers we tested. Contact:
      256Scopus© Citations 14
  • Publication
    HGF induces epithelial-to-mesenchymal transition by modulating the mammalian Hippo/MST2 and ISG15 pathways
    Epithelial to mesenchymal transition (EMT) is a fundamental cell differentiation/dedifferentiation process which is associated with dramatic morphological changes. Formerly polarized and immobile epithelial cells which form cell junctions and cobblestone-like cell sheets undergo a transition into highly motile, elongated, mesenchymal cells lacking cell-to-cell adhesions. To explore how the proteome is affected during EMT we profiled protein expression and tracked cell biological markers in Madin-Darby kidney epithelial cells undergoing hepatocyte growth factor (HGF) induced EMT. We were able to identify and quantify over 4000 proteins by mass spectrometry. Enrichment analysis of this revealed that expression of proteins associated with the ubiquitination machinery was induced, whereas expression of proteins regulating apoptotic pathways was suppressed. We show that both the mammalian Hippo/MST2 and the ISG15 pathways are regulated at the protein level by ubiquitin ligases. Inhibition of the Hippo pathway by overexpression of either ITCH or A-Raf promotes HGF-induced EMT. Conversely, ISG15 overexpression is sufficient to induce cell scattering and an elongated morphology without external stimuli. Thus, we demonstrate for the first time that the Hippo/MST2 and ISG15 pathways are regulated during growth-factor induced EMT.
      823Scopus© Citations 59
  • Publication
    Characterization of carboxylate nanoparticle adhesion with the fungal pathogen Candida albicans
    Candida albicans is the lead fungal pathogen of nosocomial bloodstream infections worldwide and has mortality rates of 43%. Nanoparticles have been identified as a means to improve medical outcomes for Candida infections, enabling sample concentration, serving as contrast agents for in vivo imaging, and delivering therapeutics. However, little is known about how nanoparticles interact with the fungal cell wall. In this report we used laser scanning confocal microscopy to examine the interaction of fluorescent polystyrene nanoparticles of specific surface chemistry and diameter with C. albicans and mutant strains deficient in various C. albicans surface proteins. Carboxylate-functionalized nanoparticles adsorbed mainly to the hyphae of wild-type C. albicans. The dissociative binding constant of the nanoparticles was ∼150, ∼30 and ∼2.5 pM for 40, 100 nm and 200 nm diameter particles, respectively. A significant reduction in particle binding was observed with a Δals3 strain compared to wild-type strains, identifying the Als3 adhesin as the main mediator of this nanoparticle adhesion. In the absence of Als3, nanoparticles bound to germ tubes and yeast cells in a pattern resembling the localization of Als1, indicating Als1 also plays a role. Nanoparticle surface charge was shown to influence binding – positively charged amine-functionalized nanoparticles failed to bind to the hyphal cell wall. Binding of carboxylate-functionalized nanoparticles was observed in the presence of serum, though interactions were reduced. These observations show that Als3 and Als1 are important targets for nanoparticle-mediated diagnostics and therapeutics, and provide direction for optimal diameter and surface characteristics of nanoparticles that bind to the fungal cell wall.
      378Scopus© Citations 14
  • Publication
    High-content analysis for drug delivery and nanoparticle applications
    High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
      1207Scopus© Citations 32
  • Publication
    Anti-prion drug mPPIg5 inhibits PrPC conversion to PrPSc
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrPSc, an abnormal isoform of the cellular protein PrPC, is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrPSc in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrPC to PrPSc conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future.
      333Scopus© Citations 23