Now showing 1 - 2 of 2
  • Publication
    Tremor-rich shallow dyke formation followed by silent magma flow at Bárðarbunga in Iceland
    The Bárðarbunga eruption in Iceland in 2014 and 2015 produced about 1.6 km3 of lava. Magma propagated away from Bárðarbunga to a distance of 48 km in the subsurface beneath Vatnajökull glacier, emerging a few kilometres beyond the glacier's northern rim. A puzzling observation is the lack of shallow (<3 km deep), high-frequency earthquakes associated Q.1 with shallow dyke formation near the subaerial and subglacial eruptive sites, suggesting that near-surface dyke formation is seismically quiet. However, seismic array observations and seismic full wavefield simulations reveal the presence and nature of shallow, pre-eruptive, long-duration seismic tremor activity. Here we use analyses of seismic data to constrain therelationships between seismicity, tremor, dyke propagation and magma flow during the Bárðarbunga eruption. We show that although tremor is usually associated with magma flow in volcanic settings, pre-eruptive tremor at Bárðarbunga was probably caused by swarms of microseismic events during dyke formation, and hence is directly associated with fracturing of the upper 2-3 km of the crust. Subsequent magma flow in the newly formed shallow dyke was seismically silent, with almost a complete absence of seismicity or tremor. Hence, we suggest that the transition from temporarily isolated, large, deep earthquakes to many smaller, shallower, temporally overlapping earthquakes (< magnitude 2) that appear as continuous tremor announces the arrival of a dyke opening in the shallow crust, forming a pathway for silent magma flow to the Earth's surface. 
      847Scopus© Citations 38
  • Publication
    Propagation of microseisms from the deep ocean to land
    Ocean-generated microseisms are faint Earth vibrations that result from pressure fluctuations at the sea floor generated by the interaction between ocean surface gravity waves, and are continuously recorded as low frequency seismic noise. Here we investigate microseism propagation away from deep-ocean source regions using the spectral element method for an oceanic model that contains realistic northeast Atlantic Ocean irregular-layered structure composed of water, sediment, and upper crust. It also includes structural heterogeneities and continental slope and shelf bathymetry. Numerical simulations of coupled acoustic and elastic wave propagation in both simplified models and the full realistic model show that most microseism energy is confined to sediment and water column waveguides. We also show that a significant portion of microseism energy is reflected back to the deep ocean by the continental slope, while only a small fraction of deep-ocean-generated microseism energy reaches land. We conclude that terrestrially observed microseisms are largely generated in shallow water on continental shelves.
      424Scopus© Citations 27