Now showing 1 - 4 of 4
  • Publication
    Research gap analysis on African swine fever
    The most significant knowledge gaps in the prevention and control of African swine fever (ASF) were identified by the EU Veterinary services and other stakeholders involved in pig production and wild boar management through an online survey. The respondents were asked to identify the major research needs in order to improve short‐term ASF risk management. Four major gaps were identified: ‘wild boar’, ‘African swine fever virus (ASFV) survival and transmission’, ‘biosecurity’ and ‘surveillance’. In particular, the respondents stressed the need for better knowledge on wild boar management and surveillance, and improved knowledge on the possible mechanism for spread and persistence of ASF in wild boar populations. They indicated the need for research on ASFV survival and transmission from the environment, different products such as feed and feed materials, and potential arthropod vector transmission. In addition, several research topics on biosecurity were identified as significant knowledge gaps and the need to identify risk factors for ASFV entry into domestic pig holdings, to develop protocols to implement specific and appropriate biosecurity measures, and to improve the knowledge about the domestic pig–wild boar interface. Potential sources of ASFV introduction into unaffected countries need to be better understood by an in‐depth analysis of the possible pathways of introduction of ASFV with the focus on food, feed, transport of live wild boars and human movements. Finally, research on communication methods to increase awareness among all players involved in the epidemiology of ASF (including truck drivers, hunters and tourists) and to increase compliance with existing control measures was also a topic mentioned by all stakeholders.
      353Scopus© Citations 27
  • Publication
    Risk assessment of African swine fever in the south‐eastern countries of Europe
    The European Commission requested EFSA to estimate the risk of spread of African swine fever (ASF) and to identify potential risk factors (indicators) for the spread of ASF, given introduction in the south‐eastern countries of Europe (region of concern, ROC), namely Albania, Bosnia and Herzegovina, Croatia, Greece, Kosovo, Montenegro, North Macedonia, Serbia and Slovenia. Three EU Member States (MS) – Croatia, Greece and Slovenia – were included in the ROC due to their geographical location and ASF‐free status. Based on collected information on potential risk factors (indicators) for each country and the relevant EU regulations in force, the estimated probability of spread of ASF within the ROC within one year after introduction into the ROC was assessed to be very high (from 66% to 100%). This estimate was determined after considering the high number of indicators present in most of the countries in the ROC and the known effect that these indicators can have on ASF spread, especially those related to the structure of the domestic pig sector, the presence of wild boar and social factors. The presence of indicators varies between countries in the ROC. Each country is at risk of ASF spread following introduction; however, some countries may have a higher probability of ASF spread following introduction. In addition, the probability of ASF spread from the ROC to EU MSs outside the ROC within one year after introduction of ASF in the ROC was estimated to be very low to low (from 0% to 15%). This estimate was based on the comparison of the indicators present in the ROC and the already affected countries in south‐eastern Europe, such as Bulgaria and Romania, where there was no evidence of ASF spread to other EU MS within one year.
      182Scopus© Citations 31
  • Publication
    Risk factors for African swine fever incursion in Romanian domestic farms during 2019
    African swine fever (ASF) entered Georgia in 2007 and the EU in 2014. In the EU, the virus primarily spread in wild boar (Sus scrofa) in the period from 2014–2018. However, from the summer 2018, numerous domestic pig farms in Romania were affected by ASF. In contrast to the existing knowledge on ASF transmission routes, the understanding of risk factors and the importance of different transmission routes is still limited. In the period from May to September 2019, 655 Romanian pig farms were included in a matched case-control study investigating possible risk factors for ASF incursion in commercial and backyard pig farms. The results showed that close proximity to outbreaks in domestic farms was a risk factor in commercial as well as backyard farms. Furthermore, in backyard farms, herd size, wild boar abundance around the farm, number of domestic outbreaks within 2 km around farms, short distance to wild boar cases and visits of professionals working on farms were statistically significant risk factors. Additionally, growing crops around the farm, which could potentially attract wild boar, and feeding forage from ASF affected areas to the pigs were risk factors for ASF incursion in backyard farms.
      212Scopus© Citations 68
  • Publication
    Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018)
    This update on the African swine fever (ASF) outbreaks in the EU demonstrated that out of all tested wild boar found dead, the proportion of positive samples peaked in winter and summer. For domestic pigs only, a summer peak was evident. Despite the existence of several plausible factors that could result in the observed seasonality, there is no evidence to prove causality. Wild boar density was the most influential risk factor for the occurrence of ASF in wild boar. In the vast majority of introductions in domestic pig holdings, direct contact with infected domestic pigs or wild boar was excluded as the route of introduction. The implementation of emergency measures in the wild boar management zones following a focal ASF introduction was evaluated. As a sole control strategy, intensive hunting around the buffer area might not always be sufficient to eradicate ASF. However, the probability of eradication success is increased after adding quick and safe carcass removal. A wider buffer area leads to a higher success probability; however it implies a larger intensive hunting area and the need for more animals to be hunted. If carcass removal and intensive hunting are effectively implemented, fencing is more useful for delineating zones, rather than adding substantially to control efficacy. However, segments of fencing will be particularly useful in those areas where carcass removal or intensive hunting is difficult to implement. It was not possible to demonstrate an effect of natural barriers on ASF spread. Human-mediated translocation may override any effect of natural barriers. Recommendations for ASF control in four different epidemiological scenarios are presented.
      376Scopus© Citations 122