Now showing 1 - 3 of 3
  • Publication
    Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix
    Nanoparticles (NPs) are considered a promising tool in the context of biofilm control. Many studies have shown that different types of NPs can interfere with the bacterial metabolism and cellular membranes, thus making them potential antibacterial agents; however, fundamental understanding is still lacking on the exact mechanisms involved in these actions. The development of NP-based approaches for effective biofilm control also requires a thorough understanding of how the chosen nanoparticles will interact with the biofilm itself, and in particular with the biofilm self-produced extracellular polymeric matrix (EPS). This work aims to provide advances in the understanding of the interaction between engineered fluorescent pluronic silica (PluS) nanoparticles and bacterial biofilms, with a main focus on the role of the EPS matrix in the accumulation and diffusion of the particles in the biofilm. It is demonstrated that particle surface chemistry has a key role in the different lateral distribution and specific affinity to the biofilm matrix components. The results presented in this study contribute to our understanding of biofilm-NP interactions and promote the principle of the rational design of smart nanoparticles as an important tool for antibiofilm technology.
      126Scopus© Citations 7
  • Publication
    Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against Staphylococcus aureus
    Background: Considering the timeline required for the development of novel antimicrobial drugs, increased attention should be given to repurposing old drugs and improving anti-microbial efficacy, particularly for chronic infections associated with biofilms. Methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are common causes of biofilm-associated infections but produce different biofilm matrices.MSSA biofilm cells are typically embedded in an extracellular polysaccharide matrix, whereas MRSA biofilms comprise predominantly of surface proteins and extracellular DNA (eDNA). Nanoparticles (NPs) have the potential to enhance the delivery of antimicro-bial agents into biofilms. However, the mechanisms which influence the interactions between NPs and the biofilm matrix are not yet fully understood. Methods:To investigate the influence of NPs surface chemistry on vancomycin (VAN) encapsulation and NP entrapment in MRSA and MSSA biofilms, mesoporous silica nano-particles (MSNs) with different surface functionalization (bare-B, amine-D, carboxyl-C,aromatic-A) were synthesised using an adapted Stöber method. The antibacterial efficacy of VAN-loaded MSNs was assessed against MRSA and MSSA biofilms. Results: The two negatively charged MSNs (MSN-B and MSN-C) showed a higher VAN loading in comparison to the positively charged MSNs (MSN-D and MSN-A). Cellular binding with MSN suspensions (0.25 mg mL−1) correlated with the reduced viability of both MSSA andMRSA biofilm cells. This allowed the administration of low MSNs concentrations while maintaining a high local concentration of the antibiotic surrounding the bacterial cells. Conclusion: Our data suggest that by tailoring the surface functionalization of MSNs,enhanced bacterial cell targeting can be achieved, leading to a novel treatment strategy for biofilm infections.
      221Scopus© Citations 35
  • Publication
    Enhancing curcumin's solubility and antibiofilm activity via silica surface modification
    Bacterial biofilms are microbial communities in which bacterial cells in sessile state are mechanically andchemically protected against foreign agents, thus enhancing antibiotic resistance. The delivery of activecompounds to the inside of biofilms is often hindered due to the existence of the biofilm extracellularpolymeric substances (EPS) and to the poor solubility of drugs and antibiotics. A possible strategy toovercome the EPS barrier is the incorporation of antimicrobial agents into a nanocarrier, able topenetrate the matrix and deliver the active substance to the cells. Here, we report the synthesis ofantimicrobial curcumin-conjugated silica nanoparticles (curc-NPs) as a possibility for dealing with theseissues. Curcumin is a known antimicrobial agent and to overcome its low solubility in water it wasgrafted onto the surface of silica nanoparticles, the latter functioning as nanocarrier for curcumin intothe biofilm. Curc-NPs were able to impede the formation of modelP. putidabiofilms up to 50% anddisrupt mature biofilms up to 54% at 2.5 mg mL 1. Cell viability of sessile cells in both cases was alsoconsiderably affected, which is not observed for curcumin delivered as a free compound at the sameconcentration. Furthermore, proteomics of extracted EPS matrix of biofilms grown in the presence offree curcumin and curc-NPs revealed differences in the expression of key proteins related to celldetoxification and energy production. Therefore, curc-NPs are presented here as an alternative forcurcumin delivery that can be exploited not only to other bacterial strains but also to further biologicalapplications.
      318Scopus© Citations 25