Options
Banisoleiman, Kian
Preferred name
Banisoleiman, Kian
Official Name
Banisoleiman, Kian
Research Output
Now showing 1 - 10 of 26
- PublicationTRUSS, a European innovative training network dealing with the challenges of an aging infrastructure network(2018-11-12)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Inspections and maintenance of infrastructure are expensive. In some cases, overdue or insufficient maintenance/monitoring can lead to an unacceptable risk of collapse and to a tragic failure as the Morandi bridge in Genoa, Italy, on 14th August 2018. An accurate assessment of the safety of a structure is a difficult task due to uncertainties associated with the aging and response of the structure, with the operational and environmental loads, and with their interaction. During the period from 2015 to 2019, the project TRUSS (Training in Reducing Uncertainty in Structural Safety) ITN (Innovative Training Network), funded by the EU H2020 Marie Curie-Skłodowska Action (MSCA) programme, has worked towards improving the structural assessment of buildings, energy, marine, and transport infrastructure. Fourteen Early Stage Researchers (ESRs) have been recruited to carry out related research on new materials, testing methods, improved and more efficient modelling methods and management strategies, and sensor and algorithm development for Structural Health Monitoring (SHM) purposes. This research has been enhanced by an advanced program of scientific and professional training delivered via a collaboration between 6 Universities, 1 research institute and 11 companies from 5 European countries. The high proportion of companies participating in TRUSS ITN has ensured significant industry expertise and has introduced a diverse range of perspectives to the consortium on the activities necessary to do business in the structural safety sector.170 - PublicationA probabilistic approach for joint optimization of fatigue design, inspection and maintenance(International Society of Offshore and Polar Engineers, 2018-06-10)
; ; ; This paper addresses challenges in fatigue management of marine structural assets with a holistically approach, by jointly considering fatigue design, inspection and maintenance decisions, whilst taking into account sources of uncertainties affecting life cycle performance. A risk-informed and holistic approach is proposed for jointly optimizing fatigue design, inspection and maintenance based on the same fatigue deterioration model. The optimization parameters are fatigue design factor (FDF) and inspection intervals, while the objective is to minimize expected life cycle costs (LCC). The framework is to guide design process as well as to formulate optimal maintenance strategies. The proposed approach is exemplified for the marine industry through a fatigue-prone detail in a ship structure to obtain the life cycle optimal management solution that achieves a best compromise between structural safety and life cycle costs.129 - PublicationMethodologies for Crack Initiation in Welded Joints Applied to Inspection Planning(World Academy of Science, Engineering and Technology, 2016-11)
; ; Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.317 - PublicationDevelopment of probabilistic fracture mechanics method for fatigue life prediction based on EIFS conceptA problem with fracture mechanics (FM) based fatigue analysis is that reliable information on initial crack/flaw size is often unavailable. Also, FM method cannot be applied directly to welded joints with relatively small initial flaws and long crack initiation life. This paper proposes a novel probabilistic FM method based on the equivalent initial flaw size (EIFS) concept. The initial crack size is substituted with EIFS to take both the crack initiation and propagation life into account. Three methods are tested to obtain mean value of EIFS: calibrating to S-N curve, Kitagawa-Takahashi (KT) diagram and fitting to test data. The obtained EIFSs are evaluated by comparing the predicted fatigue lives and crack evolutions with S-N curve and test crack evolution data. The suggested procedure is to derive the mean value of EIFS from S-N curve and the coefficient of variation from KT diagram.
138 - PublicationUncertainty quantification and calibration of a modified fracture mechanics model for reliability-based inspection planningEfficient inspection and maintenance are important means to enhance fatigue reliability of engineering structures, but they can only be achieved efficiently with the aid of accurate pre-diction of fatigue crack initiation and growth until fracture. The influence of crack initiation on fatigue life has received a significant amount of attention in the literature, although its im-pact on the inspection plan is not generally addressed. Current practice in the prediction of fatigue life is the use of S-N models at the design stage and Fracture Mechanics (FM) models in service. On the one hand, S-N models are relatively easy to apply given that they directly relate fatigue stress amplitude to number of cycles of failure, however, they are difficult to extrapolate outside the test conditions employed to define the S-N curves. On the other hand, FM models like the Paris propagation law give measurable fatigue damage accumulation in terms of crack growth and have some ability to extrapolate results outside the test conditions, but they can only be a total fatigue life model if the initial crack size was known given that they do not address the crack initiation period. Furthermore, FM models generally introduce large uncertainties in parameters that are often difficult to measure such as initial crack size, crack growth rate, threshold value for stress intensity factor range, etc. This paper proposes a modified FM model that predicts the time to failure allowing for crack initiation period. The main novelty of the modified FM model is the calibration using S-N data (i.e., inclusive of crack initiation period) for an established criterion in fatigue life and reliability level. Sources of uncertainty associated to the model are quantified in probabilistic terms. The modified FM model can then be applied to reliability-based inspection planning. An illustrative example is performed on a typical detail of ship structure, where the optimum inspection plan derived from the proposed model is compared to recommendations by existing FM models. Results demonstrate to what extent is the optimum inspection plan influenced by the crack initiation period. The modified model is shown to be a reliable tool for both fatigue design and fatigue management of inspection and maintenance intervals.
302 - PublicationSources of structural failure in ship unloaders(2016-09-29)
; ; This paper reviews the most common causes of failure in ship unloaders. The structural forms employed in the design of ship unloaders and the characteristics of the loads acting on these structures are introduced first. Then, typical failures including overloading, joint failure, cable breaking, corrosion and fatigue failure amongst others, are described. Fatigue failure is discussed in further detail. When assessing a ship unloader for fatigue, it is necessary to define the fatigue demand and the fatigue strength capacity of those structural details under investigation. The latter experiences stress cycles that accumulate over time until reaching a limit that leads to cracking. Loads and stresses need to be monitored to describe those cycles, and critical locations must be checked to prevent a catastrophic failure.1217 - PublicationImpact of a moving trolley on the dynamic response of a ship unloader boom(University of Western Australia, 2018-02-02)
; ; Container cranes represent an important link in the maritime transport system. Assessment of residual life for such cranes is important both in terms of safety and cost of repair and maintenance. These cranes usually have a hoisting trolley system which can move along the boom for lifting, carrying and lowering the payload, loading/unloading vessels in the harbour. This paper investigates the dynamic response of the lifting boom using a non-linear finite element analysis. A number of such moving trolley systems, with different degrees of complexity, are modelled to assess the impact of their influence on the boom dynamic response parameters. Results from the finite element analysis are compared to a pseudo-static analysis and are presented in terms of a Dynamic Response Factor (DRF).227 - PublicationA risk-informed decision support tool for holistic management of fatigue design, inspection and maintenance(Royal Institution of Naval Architects, 2018-01-24)
; ; Fatigue cracks threaten integrity of marine and offshore assets and need to be managed properly during the life cycles. However, the decision making process for fatigue design and maintenance are often disconnected and probably not be optimal with respect to life cycle total costs. This paper proposes a holistic decision support tool for jointly optimizing fatigue design, inspection and maintenance decision based on risk quantification and life cycle cost analysis, taking into account the uncertainties associated with fatigue deterioration, inspection performance and repair effect. The tool can be used to support risk-informed fatigue design; inspection and maintenance decision making, so that fracture risk associated with design and operation of marine assets are controlled with the minimum life cycle total costs.144 - PublicationValue of inspection in fatigue management of steel structuresFatigue cracking is a common problem that needs to be managed in the life cycles of steel structures. Operational inspections and repairs are important means of fatigue crack management. Driven by high relevance in safety control and budget saving, inspection and maintenance planning has been widely studied. However, the value of inspection and repairs has typically not been fully appreciated and quantified rationally before they are implemented. The basic idea of this paper is to address the planning problem with focus on repair other than on inspection. A maintenance strategy without inspection is studied and serves as comparison of a maintenance strategy with inspection. Then the value of repair and the value of inspection relative to repair can be evaluated respectively. An illustrative example is performed on a typical fatigue-prone detail in steel structures.
97 - PublicationFatigue Life Assessment Methods: the Case of Ship Unloaders(2016-06-30)
; ; This paper reviews methodologies for fatigue analysis with emphasis on ship unloaders. Maintaining the performance of ship unloaders at a satisfactory level is essential for any port's operation in order to comply with the global demand of shipping and trading. Ship unloaders are subject to alternating operational loadings and to adverse environmental conditions, and as a result, they show a rapid rate of deterioration that makes them susceptible to failure by cumulative damage processes such as corrosion and fatigue. The purpose of this paper is to review key features of the most common methodologies for fatigue analysis and to underline the limitations and uncertainties involved. Finally, developments in reliability-based approaches are suggested for a more accurate fatigue assessment of ship unloaders.1288