Options
Porambage, Pawani
Preferred name
Porambage, Pawani
Official Name
Porambage, Pawani
Research Output
Now showing 1 - 9 of 9
- PublicationMicro-Operator driven Local 5G Network Architecture for Industrial InternetIn addition to the high degree of flexibility and customization required by different vertical sectors, 5G calls for a network architecture that ensures ultra-responsive and ultra-reliable communication links. The novel concept called micro-operator (uO) enables a versatile set of stakeholders to operate local 5G networks within their premises with a guaranteed quality and reliability to complement mobile network operators' (MNOs) offerings. In this paper, we propose a descriptive architecture for emerging 5G uOs which provides user specific and location specific services in a spatially confined environment. The architecture is discussed in terms of network functions and the operational units which entail the core and radio access networks in a smart factory environment which supports industry 4.0 standards. Moreover, in order to realize the conceptual design, we provide simulation results for the latency measurements of the proposed uO architecture with respect to an augmented reality use case in industrial internet. Thereby we discuss the benefits of having uO driven local 5G networks for specialized user requirements, rather than continuing with the conventional approach where only MNOs can deploy cellular networks.
214Scopus© Citations 27 - PublicationThe Roadmap to 6G Security and Privacy(IEEE, 2021-05-10)
; ; ; ; ; Although the fifth generation (5G) wireless networks are yet to be fully investigated, the visionaries of the 6th generation (6G) echo systems have already come into the discussion. Therefore, in order to consolidate and solidify the security and privacy in 6G networks, we survey how security may impact the envisioned 6G wireless systems, possible challenges with different 6G technologies, and the potential solutions. We provide our vision on 6G security and security key performance indicators (KPIs) with the tentative threat landscape based on the foreseen 6G network architecture. Moreover, we discuss the security and privacy challenges that may encounter with the available 6G requirements and potential 6G applications. We also give the reader some insights into the standardization efforts and research-level projects relevant to 6G security. In particular, we discuss the security considerations with 6G enabling technologies such as distributed ledger technology (DLT), physical layer security, distributed AI/ML, visible light communication (VLC), THz, and quantum computing. All in all, this work intends to provide enlightening guidance for the subsequent research of 6G security and privacy at this initial phase of vision towards reality.234Scopus© Citations 70 - PublicationRobust and Resilient Federated Learning for Securing Future Networks(IEEE, 2022-06-10)
; ; ; Machine Learning (ML) and Artificial Intelligence (AI) techniques are widely adopted in the telecommunication industry, especially to automate beyond 5G networks. Federated Learning (FL) recently emerged as a distributed ML approach that enables localized model training to keep data decentralized to ensure data privacy. In this paper, we identify the applicabil- ity of FL for securing future networks and its limitations due to the vulnerability to poisoning attacks. First, we investigate the shortcomings of state-of-the-art security algorithms for FL and perform an attack to circumvent FoolsGold algorithm, which is known as one of the most promising defense techniques currently available. The attack is launched with the addition of intelligent noise at the poisonous model updates. Then we propose a more sophisticated defense strategy, a threshold-based clustering mechanism to complement FoolsGold. Moreover, we provide a comprehensive analysis of the impact of the attack scenario and the performance of the defense mechanism.56 - PublicationFederated Learning based Anomaly Detection as an Enabler for Securing Network and Service Management Automation in Beyond 5G Networks(IEEE, 2022-06-10)
; ; ; ; Network automation is a necessity in order to meet the unprecedented demand in the future networks and zero touch network architecture is proposed to cater such requirements. Closed-loop and artificial intelligence are key enablers in this proposed architecture in critical elements such as security. Apart from the arising privacy concerns, machine learning models can also face resource limitations. Federated learning is a machine learning-based technique that addresses both privacy and com- munication efficiency issues. Therefore, we propose a federated learning-based model incorporating the ZSM architecture for network automation. The paper also contains the simulations and results of the proposed multi-stage federated learning model that uses the UNSW-NB15 dataset.64Scopus© Citations 1 - PublicationESSMAR: Edge Supportive Secure Mobile Augmented Reality Architecture for HealthcareThe recent advances in mobile devices and wireless communication sector transformed Mobile Augmented Reality (MAR) from science fiction to reality. Among the other MAR use cases, the incorporation of this MAR technology in the healthcare sector can elevate the quality of diagnosis and treatment for the patients. However, due to the highly sensitive nature of the data available in this process, it is also highly vulnerable to all types of security threats. In this paper, an edge-based secure architecture is presented for a MAR healthcare application. Based on the ESSMAR architecture, a secure key management scheme is proposed for both the registration and authentication phases. Then the security of the proposed scheme is validated using formal and informal verification methods.
185Scopus© Citations 2 - PublicationBlockchain-based Network Slice Broker to Facilitate Factory-as-a-Service(IEEE, 2022-05-16)
; ; ; ; The novel concept of Factory-as-a-Service~(FaaS) allows the agility of adapting the manufacturing process by identifying the industry's supply chain and user requirements. To cater to FaaS, flexibility in networking and cloud services is a must. 5G network slice broker is a third-party mediator that caters to networking resource demand from clients to the service providers. Thus, this paper introduces a secure blockchain-based network slice broker to facilitate FaaS. The proposed secure network slice broker (SNSB) provides secure, cognitive, and distributed network services for resource allocation and security service level agreement (SSLA) formation with coordination of slice managers and SSLA managers. In SNSB we introduce a federated slice selection algorithm with Stackelberg game model and Reinforcement Learning~(RL) algorithm to compute the real-time and the optimal unit price and demand level. Moreover, we provide an extensive implementation and performance evaluation of SNSB using the Katana slice manager and a custom SSLA manager.24Scopus© Citations 1 - PublicationA Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications and Technical Aspects(IEEE, 2021-02-25)
; ; ; The Augmented Reality (AR) technology enhances the human perception of the world by combining the real environment with the virtual space. With the explosive growth of powerful, less expensive mobile devices, and the emergence of sophisticated communication infrastructure, Mobile Augmented Reality (MAR) applications are gaining increased popularity. MAR allows users to run AR applications on mobile devices with greater mobility and at a lower cost. The emerging 5G communication technologies act as critical enablers for future MAR applications to achieve ultra-low latency and extremely high data rates while Multi-access Edge Computing (MEC) brings enhanced computational power closer to the users to complement MAR. This paper extensively discusses the landscape of MAR through the past and its future prospects with respect to the 5G systems and complementary technology MEC. The paper especially provides an informative analysis of the network formation of current and future MAR systems in terms of cloud, edge, localized, and hybrid architectural options. The paper discusses key application areas for MAR and their future with the advent of 5G technologies. The paper also discusses the requirements and limitations of MAR technical aspects such as communication, mobility management, energy management, service offloading and migration, security, and privacy and analyzes the role of 5G technologies.375Scopus© Citations 134 - PublicationPerformance Analysis of Local 5G Operator Architectures for Industrial Internet5G calls for a network architecture that ensures ultra-responsive and ultra-reliable communication links, in addition to the high degree of flexibility and customization required by different vertical sectors. The novel concept called local 5G networks enables a versatile set of stakeholders to operate 5G networks within their premises with guaranteed quality and reliability to complement Mobile Network Operators’ (MNOs) offerings. In this paper, we propose a descriptive architecture for a local 5G operator which provides user specific and location specific services in a spatially confined environment i.e. industrial internet environment. In addition to that, we propose hybrid architecture options where both the local 5G operator and MNO collaboratively contribute to establishing the core network to cater to such communications. The architecture is discussed in terms of network functions and the operational units which entail the core and radio access networks in a smart factory environment which supports Industry 4.0 standards. Moreover, to realize the conceptual design, we provide simulation results for the latency measurements of the proposed architecture options with respect to an Augmented Reality (AR), massive wireless sensor networks and mobile robots use cases. Thereby we discuss the benefits of deploying core network functions locally to cater to specialized user requirements, rather than continuing with the conventional approach where only MNOs can deploy cellular networks.
313Scopus© Citations 24 - PublicationEnabling End-to-End Secure Connectivity for Low-Power IoT Devices with UAVsThe proliferation of the Internet of Things (IoT) technologies have strengthen the self-monitoring and autonomous characteristics of the sensor networks deployed in numerous application areas. The recent developments of the edge computing paradigms have also enabled on-site processing and managing the capabilities of sensor networks. In this paper, we introduce a system model that enables end-to-end secure connectivity between low-power IoT devices and UAVs, that helps to manage the data processing tasks of heterogeneous wireless sensor networks. The performance of proposed solution is analyzed by using simulation results. Moreover, in order to demonstrate the practical usability of the proposed solution, the prototype implementation is presented using commercial off-the-shelf devices.
212Scopus© Citations 9