Now showing 1 - 3 of 3
  • Publication
    On Design for Additive Manufacturing: Review of Challenges and Opportunities utilising Visualisation Technologies
    Design for additive manufacturing poses new challenges and opportunities for manufacturers to produce highly customised parts while reducing cost, production time and improving quality. Manufacturing constraints of conventional manufacturing methods, such as geometric complexity limitations and workpiece handling, have shaped the landscape of computer-aided design tools, which are therefore not suitably adapted to design for additive manufacturing. Furthermore, computer-aided design tools require a high level of training to produce appropriate models. Augmented reality and feedback technologies pose an interesting opportunity for design for additive manufacturing, whereby the interaction with 3D models in an augmented or virtual design space can provide intuitive feedback to engineers and designers, providing fast validation of designs, parametric modelling and opportunities for training and use in both professional and amateur designer communities. This paper will explore and review the opportunities this exciting new technology provides.
      331Scopus© Citations 7
  • Publication
    Product Lifecycle Management Strategies Focusing on Additive Manufacturing Workflow
    Product lifecycle management (PLM) is a strategy enabling the efficient exchange of information between relevant stakeholders in a manufacturing network. Various approaches utilising PLM platforms have been developed and used by a range of companies and organisations in a number of manufacturing domains. Additive manufacturing (AM) will force companies to rethink their strategies to account for its implications across the entire product lifecycle. Current PLM approaches were designed for conventional manufacturing (CM) methods, such as machining and forming and are therefore not adapted to cope with AM. Despite its advantages regarding increased design freedom, customisability, lightweighting, consolidation of parts and faster deployment, AM also introduces challenges due to issues regarding repeatability and quality, build rate, cost of materials, process monitoring and control, as well as standardisation. This paper will review the implications of AM on current PLM approaches across the entire product lifecycle, as well as problems and opportunities for further progress.
  • Publication
    Intellectual Property Protection and Security in Additive Manufacturing
    Product data management along a product lifecycle is complicated due to a wide range of resources, stakeholders and technologies being involved. During the product development phase, complex information is exchanged among several engineering teams and legal entities. Product lifecycle management (PLM) systems streamline and control the product data shared with other engineering and manufacturing parties. In additive manufacturing (AM), however, as opposed to the conventional manufacturing (CM) data supply chain, the ease with which intellectual property (IP) can be compromised by theft or malicious attacks, creates a significant challenge. These attacks can lead to loss of revenue due to illegal counterfeiting, or even failure of mission-critical parts where design could be modified to a functionally impaired configuration. This paper outlines and reviews the current strategies and new approaches possible to secure IP in AM systems, comparing the advantages and disadvantages of these technologies.
      151Scopus© Citations 1