Now showing 1 - 9 of 9
  • Publication
    Safety and efficacy of sodium caprate in promoting oral drug absorption : from in vitro to the clinic
    A major challenge in oral drug delivery is the development of novel dosage forms to promote absorption of poorly permeable Class III drugs across the intestinal epithelium. To date, no absorption promoter has been approved in a formulation specifically designed for oral delivery of Class III molecules. Promoters that are designated safe for human consumption have been licensed for use in a recently approved buccal insulin spray delivery system and also for many years as part of an ampicillin rectal suppository. Unlike buccal and rectal delivery, oral formulations containing absorption promoters have the additional technical hurdle whereby the promoter and payload must be co-released in high concentrations at the small intestinal epithelium in order to generate significant but rapidly reversible increases in permeability. The most advanced promoter in the clinic is the medium chain fatty acid (MCFA), sodium caprate (C10) , a compound already approved as a direct food additive. We discuss how it has evolved to a matrix tablet format suitable for administration to humans under the headings of mechanism of action at the cellular and tissue level and in vitro and in vivo efficacy and safety studies. In specific clinical examples, we review how C10-based formulations are being tested for oral delivery of bisphosphonates using Gastro Intestinal Permeation Enhancement Technology, GIPET (Merrion Pharmaceuticals, Ireland) and in a related solid dose format for anti-sense oligonucleotides (ISIS Pharmaceuticals, USA).
      4598Scopus© Citations 187
  • Publication
    Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae
    Surfactant-based intestinal permeation enhancers (PEs) are constituents of several oral macromolecule formulations in clinical trials. This study examined the interaction of a test panel of surfactant-based-PEs with isolated rat colonic mucosae mounted in Ussing chambers in an attempt to determine if increases in transepithelial permeability can be separated from induction of mucosal perturbation. The aim was to establish assess if increases in permeability (i) intestinal permeability (the apparent permeability coefficient (Papp) of [14C]-mannitol), (ii) epithelial histology, and (iii) short-circuit current (ΔIsc) responses to a cholinomimetic (carbachol, CCh). Enhancement ratio increases for Papp values followed the order: C10 > C9 = C11:1 > a bile salt blend > sodium choleate > sucrose laurate > Labrasol® >C12E8 > C12 > Cremophor® A25 > C7 > sucrose stearate > Kolliphor® HS15 > Kolliphor® TPGS. Exposures that increased the Papp by ≥2-fold over 120 min were accompanied by histological damage in 94% of tissues, and by a decreased ΔIsc response to CCh of 83%. A degree of separation between the increased Papp of [14C]-mannitol, histological damage, and diminution of the ΔIsc response to CCh was observed at selected PE concentrations (e.g. Labrasol® at 2 mg/mL). Overall, this surfactant-based PE selection caused transcellular perturbation at similar concentrations to those that enhanced permeability.
      832Scopus© Citations 34
  • Publication
    Formulation strategies to improve oral peptide delivery
    Delivery of peptides by the oral route greatly appeals due to commercial, patient convenience and scientific arguments. While there are over 60 injectable peptides marketed worldwide, and many more in development, most delivery strategies do not yet adequately overcome the barriers to oral delivery. Peptides are sensitive to chemical and enzymatic degradation in the intestine, and are poorly permeable across the intestinal epithelium due to sub-optimal physicochemical properties. A successful oral peptide delivery technology should protect potent peptides from presystemic degradation and improve epithelial permeation to achieve a target oral bioavailability with acceptable intra-subject variability. This review provides a comprehensive up-to-date overview of the current status of oral peptide delivery with an emphasis on patented formulations that are yielding promising clinical data.
      3282Scopus© Citations 56
  • Publication
    High content analysis to determine cytotoxicity of the antimicrobial peptide, melittin and selected structural analogs
    Antimicrobial peptides (AMPs) are naturally occurring entities with potential as pharmaceutical candidates and/or food additives. They are present in many organisms including bacteria, insects, fish and mammals. While their antimicrobial activity is equipotent with many commercial antibiotics, current limitations are poor pharmacokinetics, stability and potential toxicology issues. Most elicit antimicrobial action via perturbation of bacterial membranes. Consequently, associated cytotoxicity in human cells is reflected by their capacity to lyse erythrocytes. However, more rigorous toxicological assessment of AMPs is required in order to predict potential failure at a later stage of development.Wedescribe a high-content analysis (HCA) screening protocol recently established for determination and prediction of safety in pharmaceutical drug discovery. HCA is a powerful, multi-parameter bioanalytical tool that amalgamates the actions of fluorescence microscopy with automated cell analysis software in order to understand multiple changes in cellular health. We describe the application of HCA in assessing cytotoxicity of the cytolytic-helical peptide, melittin, and selected structural analogs. The data shows that structural modification of melittin reduces its cytotoxic action and that HCA is suitable for rapidly identifying cytotoxicity.
      1664Scopus© Citations 24
  • Publication
    Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update
    The application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
      380Scopus© Citations 114
  • Publication
    Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol
    Epithelial damage caused by intestinal permeation enhancers is a source of debate over their safety. The medium chain fatty acid, sodium caprate (C10), causes reversible membrane perturbation at high dose levels required for efficacy in vivo, so the aim was to model it in vitro. Exposure of Caco-2 monolayers to 8.5mM C10 for 60min followed by incubation in fresh buffer led to (i) recovery in epithelial permeability (i.e. transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [(14)C]-mannitol), (ii) recovery of cell viability parameters (monolayer morphology, plasma membrane potential, mitochondrial membrane potential, and intracellular calcium) and (iii) reduction in mRNA expression associated with inflammation (IL-8). Pre-incubation of monolayers with a mucosal prostaglandin cytoprotectant was attempted in order to further decipher the mechanism of C10. Misoprostol (100nM), inhibited C10-induced changes in monolayer parameters, an effect that was partially attenuated by the EP1 receptor antagonist, SC51322. In rat isolated intestinal tissue mucosae and in situ loop instillations, C10-induced respective increases in the [(14)C]-mannitol Papp and the AUC of FITC-dextran 4000 (FD-4) were similarly inhibited by misoprostol, with accompanying morphological damage spared. These data support a temporary membrane perturbation effect of C10, which is linked to its capacity to mainly increase paracellular flux, but which can be prevented by pre-exposure to misoprostol.
      730Scopus© Citations 38
  • Publication
    Labrasol® and Salts of Medium-chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae
    In addition to their solubilizing properties, excipients used in lipid-based formulations can improve intestinal permeability of macromolecules. We determined whether admixing of medium-chain fatty acid (MCFA) permeation enhancers with a lipoidal excipient (Labrasol®) could potentiate transepithelial flux of a poorly permeable macromolecule (fluorescein isothiocyanate dextran 4 kDa [FD4]) across rat intestinal mucosae mounted in Ussing chambers. Low concentrations of sodium caprate (C10), sodium undecylenate (C11:1), or sodium laurate (C12) combined with Labrasol® increased the apparent permeability coefficient (Papp) of FD4 to values typically seen with higher concentrations of MCFAs or Labrasol® alone. For example, combination of C11:1 (0.5 mg/mL) with Labrasol® (1 mg/mL) increased the Papp of FD4 by 10- and 11-fold over the respective individual agents at the same concentrations where no enhancement was evident. The increased enhancement ratios seen with the combinations were associated with some perturbation in intestinal histology and with attenuation of an epithelial functional measure, carbachol-stimulated inward short-circuit current. In conclusion, combining three MCFAs separately with Labrasol® increased the Papp of FD4 to values greater than those seen for MCFAs or Labrasol® alone. Ultimately, this may permit lower concentrations of MCFA to be used in combination with other excipients in oral formulations of poorly permeable molecules.
      609Scopus© Citations 19
  • Publication
    Intestinal permeation enhancers for oral peptide delivery
    Intestinal permeation enhancers (PEs) are one of the most widely tested strategies to improve oral delivery of therapeutic peptides. This article assesses the intestinal permeation enhancement action of over 250 PEs that have been tested in intestinal delivery models. In depth analysis of pre-clinical data is presented for PEs as components of proprietary delivery systems that have progressed to clinical trials. Given the importance of co-presentation of sufficiently high concentrations of PE and peptide at the small intestinal epithelium, there is an emphasis on studies where PEs have been formulated with poorly permeable molecules in solid dosage forms and lipoidal dispersions.
      3063Scopus© Citations 268
  • Publication
    Restoration of rat colonic epithelium after in situ intestinal instillation of the absorption promoter, sodium caprate
    Sodium caprate (C10) is an oral absorption promoter that is currently in clinical trials as a component of solid dosage forms for poorly permeable small molecules and peptides. Clinical data with zoledronic acid tablets suggest that significant delivery along with acceptable safety can be achieved from a once-a-week dosing regime. C10 has surfactant-like properties at the high doses used in vivo and therefore we examined its effects on rat intestinal epithelium following intestinal instillation. Results: Addition of 100 mM concentrations of C10 with the paracellular flux marker, fluorescein isothiocyanate-dextran 4 kDa, permitted a bioavailability of 33% to be achieved. When C10 was added 10, 30 and 60 min in advance of fluorescein isothiocyanate-dextran 4 kDa, enhancement still occurred, but was progressively reduced. Histology revealed that the permeability increase was likely related in part to superficial epithelial damage caused in the first few minutes of exposure, which was rapidly repaired within 30–60 min. Conclusions: Design of optimized dosage forms containing C10 should co-release the payload and promoter close to the epithelium in high concentrations. While C10 induces some epithelial damage, its remarkable capacity for epithelial repair may render this effect insignificant in vivo.
      930Scopus© Citations 43