Now showing 1 - 10 of 35
  • Publication
    Exercise in the smart workplace
    Employees that engage in even moderate amounts of exercise during their working day suffer less from stress and are more tolerant in the various irritations that accompany normal working life. Though it cannot be said with certainty that such workers are more productive, tentative evidence suggest that this may well be the case. A useful service of a smart office or work environment is to contribute to the health and well-being of those that inhabit such spaces. One practical approach to this is to monitor the exercise that employees engage in during the day, and using this as a basis, motivate them to engage in further physical activity. In this paper, issues relating to monitoring employee physical activity are explored.
      570
  • Publication
    Intelligent agile agents: active enablers for ambient intellgence
    This paper advocates the use of mobile intentional agents as a key enabler in the delivery of ambient intelligence. Ambient computing as an ideal demands levels of functional attainment that have hithertofar not been realised. Ambient applications demand that the computing application be subsumed into the everyday context in an unobtrusive manner with interaction modalities such that they are natural, simple and appropriate to both the individual user and their associated context.
      145
  • Publication
    Diversity & interoperability : wireless technologies in ambient assisted living
    Ambient Assisted Living (AAL) demands the seamless integration of a range of technologies such that the particular needs of the elderly may be met. Given the heterogeneity of the elderly population, in their needs and circumstances amongst others, this is a significant challenge. In essence, it demands that a disparate suite of technologies be deployed, integrated, managed and interacted with in a seamless and intuitive fashion. In this paper, how this heterogeneity may be managed is discussed. In particular, the use of ontologies and middleware are proposed as potential solutions to this heterogeneity problem.
      639
  • Publication
    Views from the coalface : chemo-sensors, sensor networks and the semantic sensor web
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level.
      324
  • Publication
    Implicit interaction : a prerequisite for practical AmI
    Intelligent User Interfaces represent one of the three distinguishing characteristics of AmI environments. Such interfaces are envisaged as mediating between the services available in an arbitrary physical environment and its inhabitants. To be effective, such interfaces must operate in both proactive and passive contexts, implicitly and explicitly anticipating and responding to user requests. In either case, an awareness of the prevailing situation is essential – a process that demands a judicious combination of data and decision fusion, as well as collaborative and centralized decision making. Given the constraints of AmI environments realizing a distributed lightweight computational infrastructure augmented with a need to address user needs in a timely manner poses significant challenges. In this paper, various issues essential to enabling seamless, intuitive and instinctive interaction in AmI environments are explored.
      403
  • Publication
    Garment-based body sensing using foam sensors
    Wearable technology is omnipresent to the user. Thus, it has the potential to be significantly disruptive to the user’s daily life. Context awareness and intuitive device interfaces can help to minimize this disruption, but only when the sensing technology itself is not physically intrusive: i.e., when the interface preserves the user’s homeostatic comfort. This work evaluates a novel foambased sensor for use in body-monitoring for contextaware and gestural interfaces. The sensor is particularly attractive for wearable interfaces due to its positive wearability characteristics (softness, pliability, washability), but less precise than other similar sensors. The sensor is applied in the garment-based monitoring of breathing, shoulder lift (shrug), and directional arm movement, and its accuracy is evaluated in each application. We find the foam technology most successful in detecting the presence of movement events using a single sensor, and less successful in measuring precise, relative movements from the coordinated responses of multiple sensors. The implications of these results are considered from a wearable computing perspective.
      356
  • Publication
    Advantages of Dual Channel MAC for Wireless Sensor Networks
    Traditional low cost radios for wireless sensor networks operate with one frequency channel at any given time. However, recent advances in radio hardware for WSNs made available transceivers that can support two simultaneous channels. In this work, we investigate the benefits of using two parallel independent frequency channels at the MAC layer. In particular, the paper introduces a technique of Dual Channel Multiple Access with Adaptive Preamble (DCMA/AP). The protocol uses two separate frequencies for data and control packets to avoid the use of handshake mechanisms (e.g. RTS/CTS) in order to reduce energy consumption and packet delay. To address the hidden and exposed terminal problems, DCMA/AP enables a receiver to send a busy tone signal on the control channel to notify neighbors that an ongoing reception is in progress. As a result, packet collisions are nullified with an increase of node throughput. Furthermore, an adaptive preamble mechanism in DCMA/AP avoids secondary processes of node synchronization together with a reduction of idle listening of receiving nodes that are considered to be one of the major sources of energy consumption in wireless sensor networks. Finally, DCMA/AP introduces a mechanism of opportunistic crossover speeds up the process of packet forwarding by pre-announcing the successive candidate node intended to receive the packet.
      394
  • Publication
    Agents go Travelling
    This paper is concerned with infrastructural support for nomadic agents. Agent migration offers much potential however issues relating to the security and integrity of their temporary resting nodes has mitigated against the harvesting of their true potential. Within this paper we introduce the Agent Travel Metaphor (ATM) which offers a comprehensive metaphor fostering integrating of control and security. We describe the metaphor together with its incorporation within the Agent Factory multi-agent system.
      148
  • Publication
    Benchmarking latency effects on mobility tracking in WSN
    The number of active nodes in a WSN deployment governs both the longevity of the network and the accuracy of applications using the network’s data. As node hibernation techniques become more sophistocated, it is important that an accurate evaluation methodology is employed to ensure fair comparisons across different techniques. Examining both energy and accuracy ensures a claim of increased longevity for a particular technique can be contrasted against its associated drop, if any, in application accuracy. This change can also be as a result of increased latency and the accuracy encapsulates many aspects of WSN performance in one metric. In this work, we detail the first in a series of experiments designed to demonstrate the tradeoffs for a WSN and we employ mobility tracking as the application to benchmark accuracy. Additionally, we demonstrate experimental evidence for a potential adaptive mobility tracking protocol.
    Scopus© Citations 3  551
  • Publication
    Virtual sensor networks : an embedded agent approach
    Many documented instances of existing research on Wireless Sensor Networks (WSN) use deployments that either fall short of, or barely meet, the resource requirements of the application. In this paper, it is envisaged that future WSN deployments will far exceed the resource requirements of any one single application. In a similar fashion to the use of virtual machines on a mainframe, sub-networks of adequate resources will be carved out of the entire deployment to fulfil the requirements of multiple applications. These will be hosted simultaneously on the network, and in many cases, certain WSN nodes will form a component in a number of these Virtual Sensor Networks (VSN). Such VSNs will also be dynamic in nature, adapting resources as nodes go offline. An additional requirement of such networks will be to engage in opportunistic power management, such as node hibernation, while the networks are adapting. In this paper, a solution for both of these issues is proposed, underpinned by a Multi-Agent System (MAS) resident on individual nodes. This solution facilitates both the practical operation of adaptive VSNs, while ensuring aggregate energy consumption can be minimised.
    Scopus© Citations 14  2575