Now showing 1 - 10 of 22
  • Publication
    Spatially Related Sampling Uncertainty in the Assessment of Labile Soil Carbon and Nitrogen in an Irish Forest Plantation
    The importance of labile soil carbon (C) and nitrogen (N) in soil biogeochemical processes is now well recognized. However, the quantification of labile soil C and N in soils and the assessment of their contribution to ecosystem C and N budgets is often constrained by limited information on spatial variability. To address this, we examined spatial variability in dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) in a Sitka spruce forest in central Ireland. The results showed moderate variations in the concentrations of DOC and DTN based on the mean, minimum, and maximum, as well as the coefficients of variation. Residual values of DOC and DTN were shown to have moderate spatial autocorrelations, and the nugget sill ratios were 0.09% and 0.10%, respectively. Distribution maps revealed that both DOC and DTN concentrations in the study area decreased from the southeast. The variability of both DOC and DTN increased as the sampling area expanded and could be well parameterized as a power function of the sampling area. The cokriging technique performed better than the ordinary kriging for predictions of DOC and DTN, which are highly correlated. This study provides a statistically based assessment of spatial variations in DOC and DTN and identifies the sampling effort required for their accurate quantification, leading to improved assessments of forest ecosystem C and N budgets.
    Scopus© Citations 2  26
  • Publication
    Assessment of nitrous oxide emission factors for arable and grassland ecosystems
    We quantified seasonal nitrous oxide (N2O) emissions and the associated emission factors (EFs) from: (i) winter oilseed rape (WOSR) cultivated under conventional tillage (CT) and strip tillage (ST) at four fertilizer rates (0, 160, 240 and 320 kg N ha−1) in 2014/2015, and (ii) grassland plots receiving no fertilizer (0 kg N ha−1), or mineral nitrogen (67 kg N ha−1), and either cattle or pig slurry (50, 100 and 200 m3 ha−1). Greater fluxes were observed at higher soil temperatures and a higher water filled pore space, suggesting that denitrification was the main source of N2O-N from the applied fertilizer/slurry. For WOSR, the N2O EFs ranged from 0.03 to 1.20% with no effect of the cultivation practice on EFs for equal rates of nitrogen fertilizer. Lower EF values were linked to differences in plant growth at individual sites rather than a specific management effect. For the grassland, the N2O EFs were highly variable, ranging from −0.70 to 0.49%, but were generally the highest in treatments receiving the highest concentrations of slurry. The EF values for WOSR illustrates that the Tier 1 approach for calculating EFs may be inadequate and the identification of site-specific effects can aid in refining N2O EF inventories. For the grassland plots all the EFs were significantly lower than the IPCC default values. Although the reason(s) for the low EFs with slurry amendments on grassland is not known, ammonia volatilization could decrease the pool of inorganic N that is available to nitrifying bacteria thereby lowering N2O fluxes.
    Scopus© Citations 7  178
  • Publication
    The Effect of Cutting and Waterlogging on Plant-Related CO2 and N2O Fluxes Associated with the Invasive N-Fixing Species Gunnera tinctoria
    The overall impact that plant invasions have on greenhouse gas emissions (GHG) by plant-mediated effects and how these interact with environmental and management factors is largely unknown. To address this, we report on the effects of leaf removal and waterlogging, either singularly or in combination, on the fluxes of CO2 and N2O associated with the invasive species Gunnera tinctoria. Both the removal of leaves with and without flooding resulted in higher CO2 emissions due to reductions in photosynthesis. Whilst waterlogging alone was also associated with a reduction in photosynthesis, this was slower than the effect of leaf removal. Significant N2O emissions were associated with intact plants, which increased immediately after leaf removal, or seven days after waterlogging with or without leaf removal. We found positive correlations between CO2 and N2O emissions and petiole and rhizome areas, indicating a size-dependent effect. Our results demonstrate that intact plants of G. tinctoria are a source of N2O emissions, which is enhanced, albeit transiently, by the removal of leaves. Consequently, management interventions on invasive plant populations that involve the removal of above-ground material, or waterlogging, would not only reduce CO2 uptake, but would further compromise the ecosystem GHG balance through enhanced N2O emissions.
      30
  • Publication
    Temperature Impacts the Response of Coffea canephora to Decreasing Soil Water Availability
    (Springer Nature, 2020-03-04)
    Climate change is expected to result in more frequent periods of both low rainfall and above normal temperatures for many coffee growing regions. To understand how coffee reacts to such change, we studied the physiological and gene expression responses of the clonal variety C. canephora FRT07 exposed to water deficits under two different temperature regimes. Variations in the time-dependent impact of water deficits on leaf stomatal conductance and carbon assimilation were significantly different under the 27 °C and 27 °C/42 °C conditions examined. The physiological responses 24 h after re-watering were also different for both conditions. Expression analysis of genes known to respond to water deficits indicated that drought-related signaling occurred at both temperatures. Deeper insights into the response of coffee to water deficits was obtained by RNASeq based whole transcriptome profiling of leaves from early, late, and recovery stages of the 27 °C experiment. This yielded expression data for 13,642 genes and related differential expression analysis uncovered 362 and 474 genes with increased and decreased expression, respectively, under mild water deficits, and 1627 genes and 2197 genes, respectively, under more severe water deficits. The data presented, from a single clonal coffee variety, serves as an important reference point for future comparative physiological/transcriptomic studies with clonal coffee varieties with different sensitivities to water deficits and high temperatures. Such comparative analyses will help predict how different coffee varieties respond to changing climatic conditions, and may facilitate the identification of alleles associated with high and low tolerance to water deficits, enabling faster breeding of more climate-smart coffee trees.
    Scopus© Citations 11  224
  • Publication
    Greenhouse Gas Emissions and Crop Yields From Winter Oilseed Rape Cropping Systems are Unaffected by Management Practices
    Winter oilseed rape is traditionally established via plough-based soil cultivation and conventional sowing methods. Whilst there is potential to adopt lower cost, and less intensive establishment systems, the impact of these on greenhouse gas emissions have not been evaluated. To address this, field experiments were conducted in 2014/2015 and 2015/2016 to investigate the effects of 1) crop establishment method and 2) sowing method on soil greenhouse gas emissions from a winter oilseed rape crop grown in Ireland. Soil carbon dioxide, nitrous oxide and methane emission measurements were carried out using the static chamber method. Yield (t seed ha−1) and the yield-scaled global warming potential (kg CO2-eq. kg−1 seed) were also determined for each management practice. During crop establishment, conventional tillage induced an initially rapid loss of carbon dioxide (2.34 g C m−2 hr−1) compared to strip tillage (0.94 g C m−2 hr−1) or minimum tillage (0.16 g C m−2 hr−1) (p < 0.05), although this decreased to background values within a few hours. In the crop establishment trial, the cumulative greenhouse gas emissions were, apart from methane, unaffected by tillage management when sown at a conventional (125 mm) or wide (600 mm) row spacing. In the sowing method trial, cumulative carbon dioxide emissions were also 21% higher when plants were sown at 10 seeds m−2 compared to 60 seeds m−2 (p < 0.05). Row spacing width (125 and 750 mm) and variety (conventional and semi-dwarf) were found to have little effect on greenhouse gas emissions and differences in seed yield between the sowing treatments were small. Overall, management practices had no consistent effect on soil greenhouse gas emissions and modifications in seed yield per plant countered differences in planting density.
    Scopus© Citations 7  44
  • Publication
    Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta‐analysis
    Litter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta‐analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature. Overall, soil respiration was increased by 36% and 55%, respectively, in response to natural and doubled litter inputs. The increase in soil respiration induced by litter inputs showed a tendency for coniferous forests (50.7%)> broad‐leaved forests (41.3%)> mixed forests (31.9%). This stimulation effect also depended on stand age with 30‐ to 100‐year‐old forests (53.3%) and ≥100‐year‐old forests (50.2%) both 1.5 times larger than ≤30‐year‐old forests (34.5%). Soil microbial biomass carbon and soil dissolved organic carbon increased by 21.0%‐33.6% and 60.3%‐87.7%, respectively, in response to natural and doubled litter inputs, while soil respiration increased linearly with corresponding increases in soil microbial biomass carbon and soil dissolved organic carbon. Natural and doubled litter inputs increased the total phospholipid fatty acid (PLFA) content by 6.6% and 19.7%, respectively, but decreased the fungal/bacterial PLFA ratio by 26.9% and 18.7%, respectively. Soil respiration also increased linearly with increases in total PLFA and decreased linearly with decreases in the fungal/bacterial PLFA ratio. The contribution of litter inputs to an increase in soil respiration showed a trend of total PLFA > fungal/bacterial PLFA ratio > soil dissolved organic carbon > soil microbial biomass carbon. Therefore, in addition to forest type and stand age, labile C availability and soil microorganisms are also important factors that influence soil respiration in response to litter inputs, with soil microorganisms being more important than labile C availability.
    Scopus© Citations 38  109
  • Publication
    Gunnera tinctoria invasions increase, not decrease, earthworm abundance and diversity
    Invasive plants often modify soil biotic communities through changes in soil physicochemical characteristics or the amount and/or quality of litter inputs. We assessed the impacts of Gunnera tinctoria invasions on soil and the earthworm community, on Achill Island, Co. Mayo, Ireland. We compared replicated (n = 5) areas invaded by G. tinctoria with uninvaded semi-natural grasslands, as well as with areas subjected to mechanical removal or herbicide treatment. Modifications in physiochemical properties included lower soil temperatures and higher soil pH during the summer in invaded areas, yet little effect on C and N stocks, or soil moisture. Marked differences in litter were observed, however, with invaded areas having c. 20-fold higher (above-ground) litter input than uninvaded ones, as well as lower C:N ratio (17 vs. 29). This was associated with a significantly higher overall abundance and biomass of earthworms in invaded plots (375 individuals m–2, 115 g biomass m–2), compared to the uninvaded control (130 individuals m–2, 45 g biomass m–2), with removal treatments having intermediate values. Earthworm communities comprised 10 species, typical for Irish grasslands, dominated by the common endogeic species Allolobophora chlorotica, Aporrectodea caliginosa and Aporrectodea rosea. Both earthworm species richness and Shannon diversity were significantly higher in invaded areas, but only in spring samples. Based on this new information, plant invaders may increase the abundance and diversity of earthworms, mainly due to much larger litter inputs, increased soil pH and possibly lower soil temperatures in the summer typical of Irish grasslands.
    Scopus© Citations 3  19
  • Publication
    Biological invaders: Always the bad guys?
    (Frontiers Media, 2022-11-08) ;
    Invasive species are recognized as one of the major environmental problems worldwide and responsible for a myriad of impacts on ecosystems and ecosystem processes. Although many invasive species exert a range of detrimental effects a more nuanced approach is now emerging, which acknowledges that they can make a positive or beneficial contribution (Schlaepfer et al., 2011; Vimercati et al., 2020, 2022; Mantoani et al., 2022). Clearly, a positive impact may not always be beneficial (Vimercati et al., 2022) and nutrient enrichment due the introduction of an alien nitrogen-fixing plant species, for instance, could result in the loss of important resident species with low nutrient requirements.
      27Scopus© Citations 2
  • Publication
    Post-Invasion Recovery of Plant Communities Colonised by Gunnera tinctoria after Mechanical Removal or Herbicide Application and its Interaction with an Extreme Weather Event
    The interventions that are required for both the control and post-invasion restoration of native plant communities depends on several factors, including the efficacy of the measures that are used and how these interact with environmental factors. Here, we report on the results of an experiment on the effects of mechanical removal and herbicide application on the invasive plant Gunnera tinctoria and how an extreme weather event impacted on the invader and on the recovery of native coastal grassland communities. Both removal protocols were largely effective in eradicating mature plants, but the mechanical removal treatment resulted in a major increase in the number of G. tinctoria seedlings, which was exacerbated by the extreme event. Nine months after removal, the number of native species had recovered to c. 80% of that in uninvaded grasslands. In contrast to seedlings, mature plants of G. tinctoria showed a significant reduction in above-ground production after the extreme weather event, although these had largely recovered after six months. Overall, our results indicate that post-control restoration of the plant community may be possible without further significant management interventions. Nevertheless, since some invasive plants survived, further monitoring is required to ensure that recolonisation does not occur.
    Scopus© Citations 1  29
  • Publication
    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
      29Scopus© Citations 66