Now showing 1 - 4 of 4
  • Publication
    Principles of Electrospray Ionization
    (American Society for Biochemistry and Molecular Biology, 2011-05-19)
    Electrospray ionization is today the most widely used ionization technique in chemical and bio-chemical analysis. Interfaced with a mass spectrometer it allows to investigate the molecular composition of liquid samples. With electrospray a large variety of chemical substances can be ionized. There is no limitation in mass which enables even the investigation of large non-covalent protein complexes. Its high ionization efficiency profoundly changed bio-molecular sciences because proteins can be identified and quantified on trace amounts in a high throughput fashion. This review article focusses mainly on the exploration of the underlying ionization mechanism. Some ionization characteristics are discussed which are related to this mechanism. Typical spectra of peptides, proteins and non-covalent complexes are shown and the quantitative character of spectra is highlighted. Finally the possibilities and limitations in measuring the association constant of bivalent non-covalent complexes are described. 
      626
  • Publication
    DMSO enhances electrospray response, boosting sensitivity of proteomic experiments
    We report that low percentages of dimethylsulfoxide (DMSO) in liquid chromatography solvents lead to a strong enhancement of electrospray ionization of peptides, improving the sensitivity of protein identification in bottom-up proteomics by up to tenfold. The method can be easily implemented on any LC-MS/MS system without modification to hardware or software and at no additional cost.
      1167Scopus© Citations 192
  • Publication
    Quantitative proteomics in biological research
    (Wiley, 2009-10)
    Proteomics has enabled the direct investigation of biological material, at first through the analysis of individual proteins, then of lysates from cell cultures, and finally of extracts from tissues and biopsies from entire organisms. Its latest manifestation - quantitative proteomics - allows deeper insight into biological systems. This article reviews the different methods used to extract quantitative information from mass spectra. It follows the technical developments aimed toward global proteomics, the attempt to characterize every expressed protein in a cell by at least one peptide. When applications of the technology are discussed, the focus is placed on yeast biology. In particular, differential quantitative proteomics, the comparison between an experiment and its control, is very discriminating for proteins involved in the process being studied. When trying to understand biological processes on a molecular level, differential quantitative proteomics tends to give a clearer picture than global transcription analyses. As a result, MS has become an even more indispensable tool for biochemically motivated biological research.
      721Scopus© Citations 69
  • Publication
    Lipid Discovery by Combinatorial Screening and Untargeted LC-MS/MS
    (Nature Publishing Group, 2016-06-17) ; ; ; ;
    We present a method for the systematic identification of picogram quantities of new lipids in total extracts of tissues and fluids. It relies on the modularity of lipid structures and applies all-ions fragmentation LC-MS/MS and Arcadiate software to recognize individual modules originating from the same lipid precursor of known or assumed structure. In this way it alleviates the need to recognize and fragment very low abundant precursors of novel molecules in complex lipid extracts. In a single analysis of rat kidney extract the method identified 58 known and discovered 74 novel endogenous endocannabinoids and endocannabinoid-related molecules, including a novel class of N-acylaspartates that inhibit Hedgehog signaling while having no impact on endocannabinoid receptors.
      325Scopus© Citations 10