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Abstract Item response modelling is a well established method for analysing or-
dinal response data. Ordinal data are typically collected as responses to a number
of questions or items. The observed data can be viewed as discrete versions of an
underlying latent Gaussian variable. Item response models assume that this latent
variable (and therefore the observed ordinal response) is a function of both respon-
dent specific and item specific parameters. However, item response models assume
a homogeneous population in that the item specific parameters are assumed to be
the same for all respondents. Often a population is heterogeneous and clusters of
respondents exist; members of different clusters may view the items differently. A
mixture of item response models is developed to provide clustering capabilities in
the context of ordinal response data. The model is estimated within the Bayesian
paradigm and is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis.

1 Introduction

Ordinal data arise naturally in many different fields and are typically collected as
responses to a number of questions or items. A common approach to analysing such
data is to view the observed ordinal data as discrete versions of an underlying latent
Gaussian ‘generating’ variable. Many models such as graded response models and
ordinal regression models [2] make use of this concept of latent generating variables.

Item response modelling [4] is an established method for analysing ordinal re-
sponse data. It is assumed that the observed ordinal response to an item will be
level k, say, if the underlying latent variable lies within a specified interval. Item re-
sponse models further assume that the latent generating variable (and therefore the
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observed ordinal response) is a function of both respondent specific and item spe-
cific parameters. The respondent specific parameters are often called latent traits.
The probability of a certain response from a respondent is related to both the value
of their latent trait and also some item specific parameters.

Item response models assume that the item specific parameters are the same for
all respondents, i.e. a homogeneous population is assumed. Often a population is
heterogeneous however and clusters of respondents exist; members of different clus-
ters may view the items differently. Here an item response model is embedded in a
mixture modelling framework to facilitate clustering of respondents in the context
of ordinal response data. Under the mixture of item response models the probability
that a respondent gives a certain response depends on their latent trait and on group
specific item parameters. An alternative approach to this problem is given in [17].

The mixture of item response models is developed and estimated within the
Bayesian paradigm using Markov chain Monte Carlo methods. A key issue is choos-
ing the optimal model or equivalently, the number of components in the optimal
mixture model. The marginal likelihood is employed here to choose between mod-
els and a bridge sampling approach to estimating the marginal likelihood is used.

The model is illustrated through an application to an ordinal response data set
resulting from a clinical trial involving self-assessment of arthritis pain levels.

The paper proceeds as follows. In Section 2 the arthritis pain levels data set used
to demonstrate the model is introduced. Item response models and their extension
to a mixture of item response models are considered in Section 3. Section 4 is con-
cerned with Bayesian model estimation and also model selection. The results from
fitting the model to the illustrative data set are presented in Section 5. Finally, dis-
cussion of the model takes place in Section 6.

2 Arthritis pain data

An ordinal data set is employed to illustrate the mixture of item response models.
The data come from a clinical trial in which patients suffering from rheumatoid
arthritis are randomly assigned to a treatment group or a placebo group. The patients
self-assess their arthritis related pain as 1 (poor), 2 (fair) or 3 (good) at one and five
month examinations. Some covariate information associated with each patient such
as their age and sex are also recorded. Further details are given in [12] and [1].

Here only the ordinal response data are analysed. Interest lies in determining if
there is an underlying group structure among the group of 289 patients in the clin-
ical trial. Members of the same group would be expected to have similar arthritis
pain profiles. In particular, whether or not patients in the treatment group are differ-
entiated from the patients in the placebo group is of interest.
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3 Item Response Models and Mixtures of Item Response Models

The concepts behind item response models and the proposed extension to a mixture
of item response models are explained in this section.

3.1 Item Response Models for Ordinal Data

Suppose the responses of N individuals to each of J items are observed. Since the
data are ordinal, the set of possible responses to item j is {1,2, . . . ,K j} where K j
denotes the number of possible responses to item j. Thus the data can be represented
by an N× J matrix, Y , where yi j is the response of individual i to item j.

Corresponding to each ordinal response, yi j, is a latent Gaussian variable, zi j.
A Gaussian link function is used here but other link functions, such as the logit
[4], can be employed. For each item there exists a vector of threshold parameters
γ

j
= (γ j,0,γ j,1, . . . ,γ j,K j). This vector is subject to the constraint:

−∞ = γ j,0 ≤ γ j,1 ≤ . . .≤ γ j,K j = ∞

The observed ordinal response, yi j, serves as an indicator to the latent variable zi j:

yi j = k ⇒ γ j,k−1 ≤ zi j ≤ γ j,k

In addition to the latent variable, zi j, it is assumed that there exists a latent trait
vector, θ i, of dimension q corresponding to each individual. Here q is user specified.
The mean of the conditional distribution of zi j is related to this latent trait:

zi j|θ i ∼ N(λ T
j θ i−b j,1)

In the item response literature the item parameters λ j and b j are usually termed item
discrimination parameters and item difficulty parameters respectively. The condi-
tional probability that a response takes a certain ordinal value can then be expressed
as the difference between two standard Gaussian cumulative density functions:

P(yi j = k|λ j,b j,γ j
,θ i) = Φ [γ j,k− (λ T

j θ i−b j)]−Φ [γ j,k−1− (λ T
j θ i−b j)]

3.2 A Mixture of Item Response Models (MIRM) for Ordinal Data

A mixture modelling framework can be imposed on the item response model for
cases where there is an underlying group structure in the data. The aim of this mix-
ture of item response models is to cluster individuals into their unobservable groups.
Under the MIRM, the latent variable zi j is a mixture of G Gaussian densities:
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f (zi j) =
G

∑
g=1

πgN(λ T
g jθ i−bg j,1)

The probability of belonging to group g is denoted πg while λ g j and bg j are group
specific item discrimination and difficulty parameters respectively.

A latent indicator variable, `i = (`i1, . . . , `iG) is introduced for each individual
i. This binary vector indicates to which group individual i belongs i.e. lig = 1 if i
belongs to group g; all other entries in the vector are 0. Thus, conditional on `i, the
probability of observing a particular ordinal response is:

P(yi j = k|λ g j,bg j,γ j
,θ i, lig = 1)=Φ

[
γ jk− (λ T

g jθ i−bg j)
]
−Φ

[
γ j,k−1− (λ T

g jθ i−bg j)
]

The augmented likelihood, L (Λ ,B,Γ ,Θ ,L,Z|Y ), is given by:

N

∏
i=1

G

∏
g=1

J

∏
j=1

{[
K j

∑
k=1

1
(
γ j,k−1 ≤ zi j ≤ γ j,k

)
1(yi j = k)

]
N
(

λ
T
g jθ i−bg j,1

)}`ig

An assumption of local independence is implicit here, i.e. conditional on the latent
trait θ i the J responses by individual i are independent. The responses of different
individuals are also regarded as independent.

4 Parameter Estimation and Model Selection

The Bayesian framework in which the model is estimated, the Markov chain Monte
Carlo (MCMC) algorithm used to fit the model and the bridge sampling algorithm
which facilitates model selection are all described in what follows.

4.1 Prior and Posterior Distributions

To implement the model described above in a Bayesian framework prior distri-
butions must be specified for all unknown parameters. Priors are required for the
threshold parameters γ

j
, the item parameters, λ g j and bg, and for the mixing weights

π (for j = 1, . . . ,J and g = 1, . . . ,G). Specifically, a uniform prior is specified for
the threshold parameters and for the other parameters the prior distributions are:

p(λ g j) = MV Nq(µ
λ
,Σλ ) p(bg) = MV NJ(µb

,s2
bI) p(π) = Dir(α)

The posterior distribution is:

p(Λ ,B,Γ ,π,Θ ,L,Z|Y ) ∝ L (Λ ,B,Γ ,Θ ,L,Z|Y )p(Λ)p(B)p(Γ )p(Θ)p(L|π)p(π)
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where p(Λ), p(B), p(Γ ) and p(π) are the prior distributions detailed above. The
latent trait variable θ i is assumed to have a standard multivariate Gaussian distribu-
tion; the latent indicator variables li follow a Multinomial(1,π) distribution.

This model suffers from non-identifiability. To identify the model (as in [11]) the
second element of each of the threshold vectors, γ

j
for j = 1, . . . ,J, is fixed at 0. The

model is also rotationally invariant. Therefore, a specific form is imposed on each
matrix of discrimination parameters Λg for g = 1, . . . ,G. As in [8], the first q rows
of this matrix are constrained to have a lower triangular form. In what follows, the
free and fixed elements of the jth row of Λg are denoted by λ

◦
g j and λ

•
g j respectively.

4.2 Estimation via a Markov Chain Monte Carlo Algorithm

The marginal distributions of the unknown parameters cannot be obtained analyt-
ically for this model so a MCMC algorithm is used to produce estimates of the
model parameters. The algorithm used here is similar to the algorithm proposed in
[3]. A Gibbs sampler is used to sample all latent variables and parameters, except
the threshold parameters, γ

j
. These are sampled using a Metropolis-Hastings step.

Full conditional distributions for the model parameters and latent variables are:

• `i| . . .∼Multinomial(1, p = (p1, . . . , pG)) where

pg ∝ πg

J

∏
j=1

[
K j

∑
k=1

1
(
γ j,k−1 ≤ zi j ≤ γ j,k

)
1(yi j = k)

]
N(λ T

g jθ i−bg j,1)

• π| . . .∼ Dirichlet(n1 +α1, . . . ,nG +αG) where ng = ∑
N
i=1 lig.

• zi j| . . .∼NT
(

λ
T
g jθ i−bg j,1

)
where the distribution is truncated to [γ j,(yi j−1),γ j,(yi j)].

• θ i| . . .∼MVNq
[
D−1

g Λ T
g
(
zi +bg

)
,D−1

g
]

where, zi = (zi1, . . . ,ziJ)
T and

Dg = Λ T
g Λg + Iq.

• λ
◦
g j| . . .∼MVN

{
S−1

[
Θ ◦Tg

(
zg j−Θ •g λ

•
g j +bg j1

)
+Σ

−1
λ

µ
λ

]
,S−1

}
where S =

[
Σ
−1
λ

+Θ ◦Tg Θ ◦g
]

and 1 = (1, . . . ,1)T . The ith row of Θ ◦g consists of the
elements of θ i which multiply λ

◦
g j for all individuals i in group g. Similarly Θ •g

consists of the elements which multiply λ
•
g j. The elements of the jth column of

the N× J matrix Z corresponding to individuals in group g are denoted by zg j.

• bg j| . . . ∼ N
[
(ng + s−2

b )−1(1T
Θgλ g j + s−2

b µb j− zT
g j1),(ng + s−2

b )−1
]

where the
rows of Θg are the latent trait vectors θ i for all individuals i in group g.

The posterior full conditional distribution of each of the threshold parameters,
γ j,k can be shown to be uniform. When there are a large number of observations in
adjacent categories this interval tends to be small which results in minimal move-
ment of the Gibbs sampler. The algorithm therefore converges slowly. This diffi-
culty is overcome by sampling from the posterior of the threshold parameters us-
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ing a Metropolis-Hastings step, as in [3, 11]. Candidate values v j,k are proposed
for γ j,k from the Gaussian distribution NT (γ

(t−1)
j,k ,σ2

MH), truncated to the interval

(v j,k−1,γ
(t−1)
j,k+1) where γ

(t−1)
j,k+1 is the value of γ j,k+1 at iteration (t − 1). The tuning

parameter σ2
MH is selected to achieve appropriate acceptance rates.

4.3 Model Selection via the Bridge Sampler

Since the proposed model is a finite mixture model, the number of components G
in the mixture must be chosen. A bridge sampling algorithm [16, 6] is employed to
approximate the marginal likelihood of a G component model. The marginal like-
lihood is evaluated for a range of models with different values of G and the model
with the highest marginal likelihood is chosen as optimal. Here, the posterior mean
of the latent Gaussian variable Z is treated as the ‘observed data’. This approach
removes the need to work with the intractable marginal distribution of the ordinal
data, Y , and also the posterior distribution of the threshold parameters.

In order to use bridge sampling to approximate the marginal likelihood it is im-
portant that the MCMC algorithm mixes well over all posterior modes. The random
permutation MCMC sampler [5] is used to achieve this. For more details on the
bridge sampling estimator of the marginal likelihood of a mixture model see [7].

5 Arthritis pain data: results.

The mixture of item response models (MIRM) was fitted to the ordinal arthritis
pain data described in Section 2. A number of mixture of item response models
were fitted to the data with the number of components G ranging from one to five,
and with a user specified q = 1 dimensional latent trait. The marginal likelihood of
each of the models was estimated using the bridge sampling technique described in
Section 4.3. The values obtained are illustrated in Figure 1. The highest marginal
likelihood value is obtained when a two component MIRM is fitted. Posterior mean
parameter estimates for the optimal model are detailed in Table 1.

Inspection of the responses of individuals in each cluster suggests that the pa-
tients have been partitioned into a group (group 1) who judge the state of their
arthritis to be poor to fair and a group (group 2) who consider the state of their
arthritis to be fair to good. Although the item difficulty parameters for both groups
are negative, the parameters for group 1 [b1 = (−0.18,−0.20)] are smaller in mag-
nitude than those for group 2 [b2 = (−2.29,−2.27)]. This difference means that the
values of the latent Gaussian variable Z (with marginal mean −bg for g = 1,2) are
lower in group 1, reflecting the generally lower observed ordinal responses found in
group 1. The confidence regions for the discrimination parameters include 0 which
indicates that even the one dimensional latent trait may be unnecessary for this data
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Fig. 1: Estimated marginal likelihood values
for a range of mixture of item response
models with a one dimensional latent trait.

Parameter Posterior mean

b11 -0.18 [-1.02, 0.47]
b12 -0.20 [-1.11, 0.70]
b21 -2.29 [-3.35, -1.50]
b22 -2.27 [-3.35, -1.44]
λ11 0.59 [-0.25, 1.49]
λ12 0.81 [-0.32, 1.71]
λ21 0.96 [-0.02, 1.79]
λ22 0.75 [-0.10, 1.54]
γ1,2 2.10 [1.59, 2.97]
γ2,2 1.78 [1.30, 2.63]
π1 0.40 [0.22, 0.60]
π2 0.60 [0.40, 0.78]

Table 1: Posterior mean es-
timates (and 95% quantile-
based confidence regions) for
the optimal model.

set. Interestingly, the two groups uncovered by the model do not correspond to the
treatment and placebo group (Rand index = 0.51, Adjusted Rand index = 0.015).

6 Discussion

Ordinal data arise in many different fields. The mixture of item response models
presented here facilitates the clustering of such data. This is achieved by assuming
the observed ordinal data are discrete versions of an underlying latent Gaussian
variable. The clustering is achieved by fitting a mixture model to the latent Gaussian
data. The model is closely related to the mixture of factor analysers model [14, 15]
for continuous data; in the case of the mixture of item response models however,
only a discrete version of the data are observed.

Bridge sampling was employed for model selection. Simulation studies and the
illustrative data example suggest that the bridge sampling approach works well in
the context of the mixture of item response models. However, it should be noted
that as the bridge sampler relies on the posterior mean of the latent Gaussian data Z,
the same ‘data’ are not used when evaluating the marginal likelihood for different
models. Again, simulation studies suggest that given a sufficiently large data set
(both in terms of number of observations and cell counts for the ordinal variables)
the results are not very sensitive to this approximation to Y .

There are a number of ways in which the model could be extended. The model
selection technique employed here is used only to choose the number of compo-
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nents in the mixture. Extending the bridge sampling technique to determine the op-
timal number of dimensions (q) for the latent trait would be very beneficial [13].
Additionally, in the illustrative data set used here covariate data were available.
Incorporating these data in the model would be potentially informative and could
be achieved within a mixture of experts framework [10, 9]. Finally, as with most
clustering models, the set of variables on which the clustering is based strongly in-
fluences the MIRM; incorporating a variable selection step while clustering would
potentially improve clustering performance.
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7. Frühwirth-Schnatter, S. Finite Mixture and Markov Switching Models. Springer. (2006)
8. Geweke, J. and Zhou, G. Measuring the price of arbitrage theory. The Review of Financial

Studies. 9:557–587. (1996)
9. Gormley, I.C. and Murphy, T.B. A mixture of experts model for rank data with applications

in election studies. The Annals of Applied Statistics, 2(4), 1452–1477. (2008)
10. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. Adaptive mixture of local

experts. Neural Computation, 3, 79–87. (1991)
11. Johnson, V. E. and Albert, J. H. Ordinal Data Modeling. Springer, New York. (1999)
12. Lipsitz, S. R. and Zhao, L. Analysis of repeated categorical data using generalized estimating

equations. Statistics in Medicine. 13, 1149–1163. (1994)
13. Lopes, H. F. and West, M. Bayesian model assessment in factor analysis. Statistica Sinica 14,

41–67. (2004)
14. McLachlan, G. J. and Peel, D. Finite mixture models, John Wiley & Sons, New York. (2000)
15. McNicholas, P.D. and Murphy, T. B. Parsimonious Gaussian mixture models. Statistics and

Computing, 18(3), 285–296. (2008)
16. Meng, X. L. and Wong, W. H. Simulating ratios of normalizing constants via a simple identity:

A theoretical exploration. The Econometrics Journal. 7:143–167. (1996)
17. Von Davier, M. and Yamamoto, K. Partially observed mixtures of IRT Models:An extension

of the generalized partial credit model. Applied Psychological Measurement, 28(6), 389–406.
(2004)


	Clustering Ordinal Data via Latent Variable Models
	Damien McParland and Isobel Claire Gormley
	Introduction
	Arthritis pain data
	Item Response Models and Mixtures of Item Response Models
	Item Response Models for Ordinal Data
	A Mixture of Item Response Models (MIRM) for Ordinal Data

	Parameter Estimation and Model Selection
	Prior and Posterior Distributions
	Estimation via a Markov Chain Monte Carlo Algorithm
	Model Selection via the Bridge Sampler

	Arthritis pain data: results.
	Discussion
	Acknowledgements
	References



