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Abstract  22 

It is imperative that nanofiltration membranes are disinfected before they are used for 23 

laboratory-scale bacterial adhesion or biofouling experiments, yet currently no suitable 24 

disinfection protocol exists. This study aimed to determine if an ethanol treatment at a 25 

minimum inhibitory concentration (MIC) could be used to effectively disinfect nanofiltration 26 

membranes without altering membrane properties which could affect research. Two strains of 27 

bacteria, Pseudomonas fluorescens and Staphylococcus sp., were exposed to a range of 28 

ethanol concentrations to determine the MIC required for a 4log10 reduction in bacteria. In 29 

parallel, ethanol’s effects on the filtration, surface and mechanical properties of a Dow 30 

Filmtec NF90 membrane were analysed. A 1.5 hour treatment with 40% ethanol was shown 31 

to effectively disinfect the membrane without significantly affecting any of the membranes 32 

properties tested. This treatment protocol can now be safely used to disinfect the studied 33 

membrane prior to bacterial adhesion or biofouling experiments. This study also acts as a 34 

guideline for researchers using other membranes to determine a suitable disinfection protocol 35 

for their needs. 36 
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1. Introduction 49 

Nanofiltration (NF) is becoming a prevalent process in the production of drinking water [1], 50 

in water recycling [2] and may play an increasing role in water desalination [3]. 51 

Nanofiltration research in these areas has focused on two main objectives: 1) maximising 52 

permeation while achieving a high level of rejection, and 2) maintaining the longevity of 53 

filtration properties, primarily through the mitigation of fouling [4, 5].  54 

 55 

Of the several types of fouling that occur, the adhesion and proliferation of microorganisms 56 

on the membrane known as biofouling is particularly problematic. It is of utmost importance 57 

that fundamental research in which bacterial pure cultures are used, for adhesion and 58 

biofouling experiments, be conducted on sterile surfaces. Biofouling experiments performed 59 

on non-sterile surfaces are at risk of experimental bias, resulting in unspecified multispecies 60 

biofilms. Virgin membranes received from manufacturers may be initially clean but are non-61 

sterile, representing a potential contamination source for controlled adhesion and biofouling 62 

studies in which pure cultures are utilised. 63 

 64 

Sterilisation can be achieved by chemical, thermal, and irradiation means. There is a major 65 

emphasis on sterility in microbiological research and yet there is little research into 66 

sterilisation techniques for NF and reverse osmosis (RO) membranes. Although a number of 67 

different research groups have reported the use of thermal [6, 7] and chemical [8-11]  68 

sterilization procedures on membranes, few have considered the damaging effects that such 69 

treatments could potentially have. This comes at notable risk considering the available 70 

information showing the thermal [12, 13] and chemical sensitivity [14-16] of filtration 71 

membranes. These studies show changes to the flux, active layer stability, pore size, pore 72 

density and chemical composition of the membrane, all of which could be detrimental to a 73 

study involving membrane permeation. 74 

 75 

Alcohols are commonly noted to have biocidal properties. They act as cell membrane 76 

disruptors and denature proteins, inhibiting growth [17, 18]. With their short carbon chains, 77 

ethanol and isopropanol are the most widely used alcohols for this purpose. They are 78 

commonly used in the food industry, as a preservative, and in the healthcare sector, where 79 

their low volatilities makes them useful for hand sanitizers. Studies in both fields have shown 80 



ethanol to be most potent within a concentration range from 30% to 70% [19, 20]. Even in 81 

this range ethanol still remains ineffective against a wide range of fungal and bacterial spores, 82 

and so cannot be considered a means of sterilisation, rather as a means of disinfection. 83 

 84 

It is important to acknowledge that there is no universally accepted definition of disinfection, 85 

an observation made in Seymour Block’s “Disinfection, Sterilization and Preservation” [21]. 86 

While sterilisation is defined as the removal of all forms of life, disinfection is considered to 87 

be the removal of infection, i.e. the killing of microorganisms but not necessarily the removal 88 

of spores. Accepted levels of microorganism removal vary from 3 to 6 log10 (99.9% to 89 

99.9999%) to qualify as disinfection, with the concept largely dependent on the application. 90 

 91 

For the purposes of membrane biofouling research, the application of disinfection is to bring 92 

the quantity of microorganisms on the virgin membrane to a level whereby it will have 93 

minimal effect on the experiment. According to the European surface test (EN 13697), an 94 

effective disinfectant is one capable of reducing the number of sessile cells by 4 log10 95 

(99.99% removal) or more [22]. It is therefore important that a minimum inhibitory 96 

concentration (MIC) of ethanol is determined to achieve such a reduction in a membrane 97 

application. 98 

 99 

To date, the effects of ethanol on water filtration properties of thin film composite (TFC) 100 

Nanofiltration membranes are still poorly understood. The majority of research in this field 101 

analyses solvent permeability through the membrane rather than using the solvent as a pre-102 

treatment [23, 24]. Shukla et al. [25] expressed their concern that membrane polymers would 103 

become damaged upon re-exposure to organic solvents which had previously been used in the 104 

membrane’s manufacture process. Although membrane surface destabilization seems likely 105 

to occur due to the solubility parameters of polysulfone and ethanol, Lencki et al. [26] 106 

mentioned that the affinity of ethanol to hydrogen bonding reduces this risk.  Earlier studies 107 

have shown that exposure of ultrafiltration (UF) and NF membranes to solvents such as 108 

ethanol resulted in the swelling of the membrane polyamide and polysulfone  layers, 109 

subsequently leading to membrane curling [27, 28]. Moreover,  a series of papers by Geens, 110 

Van der Bruggen and Van der Casteele on the effects of solvents, including ethanol, on 111 

nanofiltration membranes showed polymer swelling to alter the pore size and pore density of 112 

the membrane, as membrane polymers stretch and pores were forced to contract [29-31]. 113 



Furthermore, they showed that solvents can also affect the hydrophobicity of a nanofiltration 114 

membrane, and highlight how each solvent reacts uniquely with each polymer.  115 

 116 

With most studies focusing purely on solvent-membrane interactions in the context of solvent 117 

permeability applications, it is still unclear what bearing their results would have on water 118 

permeability. Only two studies were found detailing the interaction of an alcohol treatment on 119 

the pure-water flux of a TFC membrane: 1) In their 2006 study Jeżowska et al. compared the 120 

pure water flux of a Dow Filmtec NF90 membrane before and after treatment with 121 

isopropanol, a chemically similar alcohol to ethanol [32]. Although a small increase in pure 122 

water flux was observed, the increase shown is an average of three separate treatments 123 

(pressure, alkaline treatment and alcohol treatment). 2) Van der Bruggen et al. in 2002 looked 124 

at the effects of solvent exposure on a collection of solvent-stable nanofiltration membranes 125 

[33]. In this paper they observe that a hydrophobic membrane exposed to ethanol for 10 days 126 

experiences a significant increase in pure water flux despite incurring no mechanical damage 127 

visible by scanning electron microscopy. Neither study analysed the other possible membrane 128 

changes resulting from treatment such as: changes in membrane surface physico-chemical 129 

properties, charge and mechanical properties, all of which play important roles in bacterial 130 

adhesion on NF membranes [34]. Thus, it is impossible to conclude the full effect ethanol 131 

treatment has in this application. 132 

 133 

Due to the lack of sterilising methods of NF membranes and the unclear effect of ethanol on 134 

polyamide based TFC NF membranes, this study sought to assess the suitability of ethanol as 135 

a means of disinfecting polyamide NF membranes. Our aim was to determine a minimal 136 

ethanol concentration and a treatment protocol that could expressly be implemented for 137 

bioadhesion and biofouling research on NF and RO membranes.  In this study, model Gram-138 

positive and Gram-negative bacterial strains were used to test the disinfection efficacy of 139 

different ethanol concentrations. In parallel the filtration, surface and mechanical properties 140 

of Dow Filmtec NF90 membranes were characterised following different ethanol treatment 141 

regimes.   142 

 143 

 144 

2. Materials and methods 145 

 146 



2.1. Chemicals  147 

The water used throughout this study was Grade 1 pure water (18.2 MΩcm-1) obtained from 148 

an Elga Process Water System (Biopure 15 and Purelab flex 2, Veolia, Ireland), hereafter 149 

referred to as MilliQ water. 150 

Emsure® absolute ethanol (Merck, Ireland) was used in this study. All ethanol concentrations 151 

are given as % vol. /vol. based on the ratio of MilliQ water or Phosphate Buffer Solution 152 

(PBS; Sigma-Aldrich, Ireland) and ethanol volumes added together. 153 

2.2. Bacteria 154 

Two strains of bacteria were used: Pseudomonas fluorescens NCTC 10038 (Gram-negative) 155 

and Staphylococcus sp. (Gram-positive). Prior to disinfection experiments, P. fluorescens and 156 

S. sp. strains were separately grown in Tryptic Soy Broth (TSB; Oxoid, Ireland) medium at 157 

30°C and 200 r.p.m. overnight, reaching cell densities of OD600 2.8 and 2.7  respectively.  158 

 159 

2.3. Disinfection 160 

2.3.1. Disinfection of cells in suspension 161 

200 µl sample suspensions of each bacterium (containing 10 log10 cells) were treated with 1.8 162 

ml of aqueous ethanol for 1.5 hours. Treatment concentrations of 0, 10, 20, 30, 40, 50, 60 and 163 

70 % ethanol in PBS were used. Following treatment the suspensions were centrifuged at 164 

7000 rpm for 10 minutes in an Eppendorf Centrifuge 5415C (Eppendorf, Germany), the 165 

supernatant discarded and the pellet re-suspended in PBS, this step was repeated twice. Serial 166 

dilutions (to 10-10) were plated on Trypticase Soy Agar (TSA; Sigma Aldrich) plates. These 167 

were incubated for 18 hours at 30oC. Finally the colony forming units (CFU) were counted 168 

and the post-treatment CFU/ml determined.  169 

 170 

2.3.2. Disinfection of spiked membranes  171 

To test the inhibitory action of a selected range of ethanol concentrations on spiked 172 

membranes, a modified version of a disinfection surface test was used [35, 36].  173 

Membrane samples were autoclaved and sterilized at 121oC for 15 minutes. The samples 174 

were spiked with 30 ml of an overnight bacterial culture (OD600 ≈ 2.7) for 15 minutes and 175 

subsequently dried under laminar flow for one hour. The membrane was cut into 1cm2 176 

sections and treated with 5 ml of a 0, 10, 20, 30 or 40 % ethanol solution for 1.5 hours. 177 

Disinfection experiments of spiked membranes were initially checked against non-autoclaved 178 

membrane samples to ensure that autoclaving did not affect disinfection efficiency by the 179 



infiltration of bacterial cells in structurally damaged sites on the membrane following 180 

sterilization. Each treatment was performed in duplicate in at least three independent 181 

replicates. The treated membranes were rinsed with PBS and sonicated at 44 kHz for 15 182 

minutes in an Ultrawave Ultrasonic bath. Serial dilutions (to 10-10) were plated using the 183 

Miles & Misera method. These plates were then incubated for 18 hours at 30oC and the 184 

CFU/ml determined. 185 

 186 

2.3.3. Disinfection of virgin membranes 187 

Samples of membrane were cut and divided into two sections. One half was treated with an 188 

ethanol solution (0, 10, 20, 30 or 40% ethanol) while the other half was left untreated to 189 

ensure that all samples had a similar level of bacteria initially attached. TSA contact plates 190 

were pressed against the front and back of the membrane and incubated for 18 hours at 30oC. 191 

The number of post-treatment CFUs was counted. Experiments were performed in at least 192 

three independent replicates. 193 

 194 

 195 

2.4. Membrane, ethanol treatment and filtration protocol  196 

The NF90 nanofiltration membrane (Dow Filmtec) was used as a flat sheet in all the 197 

experiments. All membrane samples used were initially rinsed and soaked overnight at 4°C in 198 

MilliQ water to remove any preservatives from the surface.  199 

 200 

Membrane pure-water flux and salt retention tests were performed in three cross-flow 201 

filtration cells operated in parallel in a closed-loop system driven by a high pressure pump 202 

(model P200, Hydra-Cell, UK). Details on the filtration cells and the system can be found in 203 

a previous work by the current authors [37]. 204 

The membrane samples were compacted in the cross flow system with MilliQ water for 22 205 

hours at 16 bar. When first exposed to high pressure these membranes underwent a period of 206 

compaction observed as a steady drop in pure-water flux. Six to ten hours of compaction 207 

resulted in an almost constant membrane flux. However it was noticed that if the pressure 208 

was alleviated and the membrane was left at atmospheric pressure for a few hours, restarting 209 

the compaction at 16 bar led to a higher pure water flux compared to the one obtained at the 210 

end of the compaction process. This was attributed to reversibility of the incomplete 211 



compaction process [38]. It was hence determined that at least 18 hours of compaction were 212 

necessary to avoid reversibility of the compaction process. 213 

Pure water flux was determined by measuring the mass of permeate over a two minute 214 

period. This was repeated three times at half hour intervals to ensure that a steady flux had 215 

been obtained. 216 

Salt retention tests of the compacted membranes were performed by filtering a 10 mM 217 

Sodium Chloride (NaCl; Sigma-Aldrich Ireland) solution at 16 bar. Equilibrium was 218 

established after 15 minutes of filtration at which point the conductivities of the feed and 219 

permeate were measured for each cross-flow cell using an inoLab Cond Level 2 system with 220 

a Tetracon 325 probe (WTW, Germany). The system was rinsed out with MilliQ water and 221 

the salt retention of a 5 mM Calcium Chloride (CaCl2.2H2O; Merck Ireland) solution was 222 

performed in the same conditions. 223 

  224 

Ethanol treatment was then performed at atmospheric pressure with the cells disconnected 225 

from the system, with the membranes still sealed in place. The water on the feed side of the 226 

membranes was replaced with ethanol at the designated concentration and left for 1.5 hours. 227 

The ethanol concentrations used were 0, 20, 30, 40, 60 and 70 %. Final results are an average 228 

of three independent replicates for each concentration. 229 

 230 

Once the treatment solution was rinsed from the cross-flow cells with MilliQ water, they 231 

were reconnected to the system and the membranes were compacted again for 22 hours in 232 

order to obtain a steady flux. Pure water flux and salt retention tests were performed again as 233 

previously described. 234 

 235 

 236 

2.5. Surface properties 237 

2.5.1. Surface energy 238 

Membrane samples were pre-soaked in MilliQ water and then compacted at 15 bar for 22 239 

hours in the flow cell system. The flow cells were then disconnected from the system, filled 240 

with treatment solution (0% and 70% ethanol respectively) and left for 1.5 hours. The MFS-241 

cells were rinsed with MilliQ water to remove the treatment solution. The membranes were 242 

removed from the cells and samples cut and affixed to a glass slide using double-sided tape. 243 



These were left to dry fully. This process was repeated for another set of samples with the 244 

addition of a second 22 hour compaction step at 15 bar immediately following treatment. 245 

The Lifshitz-van der Waals (γLW), electron-donor (γ-) and electron-acceptor (γ+) surface 246 

tension components of dehydrated treated NF90 membrane samples (S) were determined by 247 

measuring contact angles using the following expression: 248 

 
 

(1) 

 249 

Contact angles (θ) and surface energy measurements (γS) of dehydrated compacted NF90 250 

membrane were measured at room temperature using a goniometer (OCA 20 from 251 

Dataphysics Instruments) with three static pure liquids (L):  deionised water, diiodomethane 252 

and ethylene glycol. 253 

The Lewis acid-base component was deduced from: 254 

  (2) 

 255 

And the total surface energy was defined by: 256 

  (3) 

 257 

Contact angle values, and determined surface energy values, represent the mean of at least 6 258 

to 10 measurements per compacted membrane sample.  259 

 260 

2.5.2. Bench treatment  261 

Membrane samples for surface property analysis were first soaked in MilliQ water and then 262 

submerged in the designated treatment solution for 1.5 hours. After treatment they were then 263 

rinsed again with MilliQ water to remove all traces of ethanol before experimentation.  264 

 265 

2.5.3. Fourier transform infrared (FTIR) spectroscopy  266 

Samples for FTIR spectroscopy were dried in air after bench treatment. Three absorption 267 

spectrums were recorded for each membrane sample, using an Agilent Cary 670 FTIR air-268 

bearing spectrometer, and an average taken. 269 



 270 

2.5.4. Zeta potential 271 

Zeta potential measurements were performed using a ZetaCAD® system (CAD Instruments, 272 

France). Bench treated samples were suspended in the buffer solution overnight (0.1M NaCl, 273 

pH 7) to equilibrate with the salt solution prior to analysis. Zeta potential values were 274 

determined by streaming the buffer solution across each sample, and measuring the resultant 275 

voltage difference. Measurements were taken for a range of flowrates, alternating flow 276 

direction between measurements, each sample was analysed three times. 277 

 278 

2.5.5. Atomic force microscopy (AFM) 279 

Submerged contact mode AFM images were obtained for 10 x10 µm2 scan areas, for 280 

membranes bench treated with 0, 30 and 70% ethanol, with a JPK AFM system (JPK 281 

Instruments, Germany) using a Silicone (DNP) cantilever manufactured by Bruker (UK).The 282 

cantilever spring constant was 0.32 N.m-1 with a nominal tip radius of 10 nm and the line 283 

scan rate was 0.7 Hz. Prior to contact mode imaging of the treated membranes, it was 284 

demonstrated that no difference in Rrms values was calculated for contact or tapping mode 285 

images for the NF90. 286 

 287 

The scanned images were flattened using Gwyddion SPM image analysis software by fitting 288 

a second-order polynomial into the data in the scanned region and subtraction of the resulting 289 

best fit from the image. Flattening was done to remove curvature and slope from the images. 290 

After flattening, root-mean-squared roughness (Rrms) was calculated using Equation 4, where 291 

 is the average of the z values within the given area,  is the current  value, and N is the 292 

number of data points within the given area. Three Rrms values were calculated for each 293 

membrane sample and the average taken. 294 

 295 

 

 
(4) 

  296 

 297 

2.6. Physical properties 298 

 299 



2.6.1. Tension tests 300 

Samples for tension-failure analysis were cut using a dog-bone punch (3.3 mm wide in the 301 

testing region) prior to. Six samples were cut for each bench treatment (0, 30 and 70 % 302 

ethanol). The polyester support layer was removed from three of these, leaving only the 303 

polyamide and polysulfone layers. A Zwick/Roell tensile testing machine (Zwick, Germany) 304 

exerted an increasing tensile load on the samples while a VideoXtens camera unit (Zwick, 305 

Germany) recorded the extension of the testing region. Each sample was tested to failure. 306 

 307 

3. Results and discussion 308 

 309 

3.1. Disinfection efficacy of ethanol  310 

High concentrations of ethanol (60-70%) may be the most potent for disinfection but they are 311 

also more likely to damage a nanofiltration membrane. This study attempted to determine the 312 

minimum inhibitory concentration (MIC) required to achieve a 4 log10 reduction of the 313 

chosen bacterial strains, based on European surface test (EN 13697). Preliminary tests (not 314 

shown) performed to determine a suitable exposure time, to achieve maximum efficacy with 315 

minimum concentration, showed insignificant difference in log10 reduction between a 1.5 316 

hour and 24 hour treatment time. 317 

  318 

3.1.1. The inhibitory action of different ethanol concentrations on planktonic cells 319 

The inhibitory action of different ethanol concentration was determined using planktonic 320 

Gram-positive and Gram-negative model bacterial cells. This study enabled to help define the 321 

minimum inhibitory ethanol concentration required to reduce the cultivable bacterial 322 

population in suspension by approximately 4 log10 cfu/mL.  323 

 324 

Results showed that following a treatment time of 1.5 hours, 40% ethanol was sufficient to 325 

reduce the bacterial population of planktonic Pseudomonas fluorescens and Staphylococcus 326 

sp. cells by 5.7 log10 and 6.5 log10 cfu/mL respectively (Figure 1). This MIC is within the 327 

effective range of ethanol (30 – 70%) on similar bacterial strains discussed by numerous 328 

sources [19-21]. Considering that disinfection efficacy assays are usually performed using a 329 

treatment period from 5 to 60 minutes [21], the long exposure time of 1.5 hours revealed that 330 

lower inhibitory concentrations can be employed to achieve acceptable levels of log10 331 

reductions. Lower concentrations of ethanol with the required inhibitory action are preferable 332 



in this application as they reduce the risk of potentially damaging or altering the membranes 333 

properties.  334 
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 335 

Figure 1: The inihibitory action following a 1.5 hour exposure period of ethanol at different 336 
concentrations (10-70% vol/vol ethanol in PBS) on Pseudomonas fluorescens and 337 
Staphylococcus sp. planktonic cell suspensions. Data points are averages of three 338 
independent replicates with error bars displaying standard deviations. 339 

 340 

3.1.2. Disinfection of spiked membranes 341 

Based on the results obtained from the suspension test, the inhibitory action of ethanol on 342 

spiked membranes was investigated using 1.5 hour treatments with 10, 20, 30 and 40% 343 

ethanol. To ensure that membranes were free from organisms before spiking with either 344 

Pseudomonas fluorescens or Staphyloccus sp. model strains, membranes were autoclaved at 345 

121°C for 15 minutes. Although sterilising the membranes may have led to their physical 346 

damage, as described elsewhere [13], it did not affect the cell loading and susceptibility to 347 

ethanol exposure (results not shown). 348 

  349 

Membranes spiked with Staphylococcus sp. tended to be less susceptible following 1.5 hour 350 

exposure to low ethanol concentration 10% and 20% compared to Pseudomonas fluorescens 351 

spiked membranes (Figure 2). For both spiked membranes, 1.5 hour exposure to 30% and 352 

40% ethanol led to at least a 4 log10 reduction. Staphylococcus sp. spiked membranes 353 



revealed the highest log reduction with values exceeding 5 log10 following exposure to 30% 354 

and 40% ethanol concentrations.  355 

 356 

An equal MIC for adhered and planktonic cells for a specific exposure time is contrary to 357 

what is reported by Chambers et al. [20] who observed a rise in tolerance to 70% ethanol for 358 

plastic-adhered bacteria (including Staphylococcus sp.). They discussed that the material 359 

properties may influence the bacteria adhesion, and that the material may grant the cells 360 

protection by reducing the exposed cell surface area. The porosity of the membrane in our 361 

study however may not act in the same way as the plastics described, as the bacteria are in 362 

contact with the ethanol treatment solution absorbed within the membrane active layer. It is 363 

therefore understandable that an MIC for cells adhered to the membrane could equal to that 364 

of planktonic cells. 365 

 366 
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Figure 2: The inihibitory action following 1.5 hour exposure to ethanol at different 368 

concentrations (10-40% vol/vol ethanol in PBS) on Pseudomonas fluorescens and 369 

Staphylococcus sp. spiked NF90 membranes. Data points are averages of three independent 370 

replicates with error bars displaying standard deviations. 371 

 372 

3.1.3. Disinfection of virgin membranes 373 

In the previous sections it was shown that an MIC of 40% is necessary for a 4log10 reduction 374 

of two sample strains. In practice the treatment will be applied to virgin membranes which 375 



will host many wild strains of bacteria, each with a different tolerance to ethanol. To 376 

determine the efficacy of ethanol treatment on wild strains, samples of virgin membrane were 377 

treated with a range of ethanol concentrations and contacted with agar plates to quantify the 378 

amount of bacteria that had survived the treatment (Figure 3). 379 

 380 

Each of the plates contacted with an untreated membrane showed excessive growth 381 

highlighting the importance of disinfecting membranes before conducting any form of 382 

bacterial adhesion of biofouling studies with them. There is a notable difference between the 383 

quantity and types of bacteria on the front (active layer) of the membrane and back (support 384 

layer) of the membrane. More growth was observed for plates which had contacted the back 385 

of the membrane, possibly due to the higher porosity and roughness of the support layer 386 

incurring a higher level of bacterial adhesion. 387 

 388 

There is an expected decreasing trend of bacterial growth with increasing ethanol 389 

concentration, with almost no colonies detected on samples treated with concentrations of 390 

30% or higher. Spore growth could be seen after incubation, however, on plates treated with 391 

concentrations as high as 70% ethanol (not shown) concurrent with the understanding that 392 

ethanol can be used for disinfection but not sterilisation [21].  393 

 394 

The MIC of 40% discussed previously was high enough to remove almost all microorganisms 395 

from the three membranes tested at this concentration (7 CFU were counted on a single plate 396 

contacted with the back of one of the membranes).  397 



 398 

  399 

Figure 3: TSA plates, contacted with the front (active layer) or back (support layer) of an 400 
NF90 membrane pre-treated with 0, 10, 20, 30 or 40% ethanol after 18 hours of incubation. 401 
Plates with a cell density too high to be counted are marked as having overgrowth (OG). 402 
Images shown are representative of the three repetitions. 403 

 404 

3.2. Ethanol’s effects on membrane performance 405 



It has been shown in Section 3.1 that ethanol can be used as a very effective means of 406 

membrane disinfection, capable of at least a 4 log10 reduction of both planktonic and sessile 407 

bacterial populations. Before it can be considered a suitable disinfection method for 408 

polyamide NF membranes however, it is vital to understand how ethanol affects membrane 409 

performance as well as its physical and chemical properties.  410 

Two parameters, pure-water flux and salt retention, were considered in order to quantify 411 

ethanol’s effects on the NF membrane’s filtration performance. The change in pure water flux 412 

before and after ethanol exposure was initially used to assess if ethanol had any effect in the 413 

membrane structure, such as pore size or porosity. 414 

 415 

No significant correlation between increasing ethanol concentration and flux change was 416 

observed (Figure 4). As pure water flux is predominantly dependant on pore size and porosity 417 

(when all filtration conditions are the same) it appears that ethanol exposure within the tested 418 

range followed by MilliQ water compaction did not significantly damage the NF90 419 

membrane structure. The observed variance in water flux values over the range of ethanol 420 

treatment concentrations is more likely attributable to the heterogeneity of the membrane 421 

sheet. Membrane samples, although cut from the same sheet, had a range of initial pure-water 422 

fluxes (5.03 ± 0.95 L/ hr bar m2). 423 

 424 

A small decrease in flux after treatment was seen for the majority of samples measured. Since 425 

this decrease is also present for each of the samples treated with 0% ethanol, the experimental 426 

process rather than exposure to ethanol was concluded to be the cause. Despite the steady 427 

flux achieved during the compaction period, a rise in pure-water flux (up to 28% of the initial 428 

flux) was measured immediately after treatment: evidence that the membrane expanded 429 

during this time. Over the second compaction period the flux decreased once again to a 430 

steady state, lower than the initial steady state in most cases. The decrease is therefore 431 

determined to be associated with slight changes in the polymer configuration following the 432 

expansion and re-compaction of the membrane due to the changing pressure conditions over 433 

the course of the experiment. 434 
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Figure 4: Pure water flux of NF90 membrane samples, after a 1.5 hour treatment (JPT) with 436 

0, 20, 30, 40, 60 or 70 % vol/vol ethanol in MilliQ water, as a percentage of initial pure 437 

water flux (J0). The dotted horizontal line represents no change in flux after treatment. Data 438 

points are averages of three independent replicates with error bars displaying standard 439 

deviations. Test conditions employed were: Temperature = 22oC, Pressure = 16 bar, and 440 

crossflow velocity = 2.2 L/min. 441 

 442 

Changes to the Donnan charge and steric exclusion of the membrane can be quantified by 443 

analysing the rejection ability of the membrane to charged particles of different sizes such as 444 

monovalent and divalent ions, obtained from the dissolution of NaCl and CaCl2 respectively.  445 

Salt retention was determined by measuring the conductivity of the feed (Cf) and permeate 446 

(Cp) samples and employing Equation 5. 447 

 448 

 

 
(5) 

 449 
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Figure 5: NaCl (10mM; a), and CaCl2 (5mM; b) retentions of NF90 membrane samples after 452 
a 1.5 hour treatment (RPT) with 0, 20, 30, 40, 60 or 70 % vol/vol ethanol in MilliQ water, as a 453 
percentage of initial salt retention (R0). The dotted horizontal line represents no change in 454 
retention after treatment. Data points are averages of three experiments with error bars 455 
displaying standard deviations. Test conditions employed were: Temperature = 22oC, 456 
Pressure = 16 bar, and crossflow velocity = 2.2 m/min. 457 

A small increase in the membrane’s retention for each salt solution (maximum of 7.5% for 458 

NaCl and 4.6% for CaCl2) was observed after all treatments, even for samples treated with 459 



0% ethanol. This could be associated with the minor drop in post-treatment flux seen 460 

previously in Figure 4. A reduction in porosity of the membrane’s active layer due to a 461 

polymer rearrangement during the membrane expansion and recompaction explains both the 462 

membranes drop in pure water flux and this increased rentention.  463 

Ethanol exposure did not affect the membrane performance in terms of salt retention (Figure 464 

5) and pure water flux (Figure 4), and therefore appears not to have affected the membrane’s 465 

pore-size or charge exclusion capacity. These results are contrary to those found by Geens, 466 

Van der Bruggen and Van der Casteele who showed that membrane swelling in ethanol lead 467 

to a higher pure-water flux for a hydrophobic membrane [33]. The differences in results most 468 

probably arise from the different active layer polymers of the membranes studied, and the 469 

different treatment times used: 10 days (to see the maximum damage wrought by the solvent) 470 

versus 1.5 hours (to incur a minimal amount of damage by the solvent). 471 

 472 

3.3. Ethanol’s effects on membrane surface properties 473 

Filtration performance is not the only factor that could be affected by exposure to ethanol. An 474 

important prerequisite for undertaking membrane fouling and biofouling research is the 475 

characterisation of the membrane surface properties including hydrophobicity, surface 476 

chemical groups and roughness [39]. Alterations to membrane surface physic-chemical 477 

properties could potentially lead to experimental biases during dynamic biofouling studies. It 478 

was therefore necessary to assess the membrane surface properties following ethanol 479 

treatment. 480 

3.3.1. Visual observations 481 

During the treatment process some changes in the physical shape and colour of the membrane 482 

were observed. Exposure to ethanol solutions of 20-70% led to a deviation from the 483 

membranes natural curl (originating from the flat sheet having been rolled up by the 484 

supplier). Figure 6 shows how increasing ethanol concentration causes the membrane 485 

samples to become flat and then to bend against the natural curl. Once rinsed with MilliQ 486 

water, these membranes reverted to their original shape. 487 

 488 

Likewise, a visible loss in opacity was observed on membranes treated with high ethanol 489 

concentrations. The NF90 membrane has a natural cream colour which becomes more 490 



transparent after exposure to higher ethanol concentrations (>30%). This, however, does not 491 

revert to its original state after rinsing. These results have been combined in Table 1. 492 

Table 1: Visual effects of ethanol treatment on the NF90 membrane samples. 493 

Ethanol  

(% vol/vol) 
0 10 20 30 40 50 60 70 

Curvature 
Roll 

curve 
Flat 

Polyamide expanding 

(Curling) 

Colour No Colour Change Discolouring/transparency 

 494 



 495 

 496 

Figure 6: NF90 membrane samples before and after treatment. Treatments shown: No 497 

treatment, 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70% ethanol. Rinsing with MilliQ water 498 

returned the samples to their original shape. 499 

 500 

Membrane curvature and transparency changes have been reported in previous studies 501 

involving similar membranes and solvents [27, 28]. Water molecules linked to the hydrogen 502 

bonds within the polyamide structure are reportedly replaced by ethanol molecules for the 503 

higher concentration treatments. This causes the polyamide layer to swell slightly stretching 504 



the top layer, causing the membrane to curl. When the membrane is immersed in water this 505 

effect is reversed due to water’s higher affinity to hydrogen bonding. 506 

3.3.2. Surface energy  507 

Surface energy plays a leading role in bacterial adhesion, as shown in a study by Lee et al. 508 

whereby an increasing concentration of adhered bacteria was linearly correlated to increasing 509 

hydrophobicity [39]. Changes to membrane surface energy would therefore negatively impact 510 

on biofouling fundamental research. 511 

 512 

 Surface energy experiments were performed on membranes that had been compacted once 513 

(prior to treatment with 0 and 70% ethanol) with MilliQ water, and on membranes that had 514 

been compacted twice (before and after treatment with 0 and 70% ethanol). In this way the 515 

effects of both compaction and ethanol on membrane hydrophobicity could be analysed in 516 

parallel. The results are presented in Table 2. 517 

 518 

The results show membranes that had been compacted a single time to have a hydrophobic 519 

tendency with a contact angle (θ) in the range 106-110o while those that had been compacted 520 

twice had a hydrophilic nature with a contact angle in the range 80-86o. Contact angle 521 

measurements of membranes are often difficult to perform as the porous surface of the active 522 

layer absorbs the droplets: the contact angle has been found to vary with time [40]. This issue 523 

was alleviated somewhat for the compacted membranes: the droplets retained their shape for 524 

longer and the results were more reproducible for each sample than ones measured previously 525 

with non-compacted membranes (results not shown). While ethanol had no significant effect 526 

on the membrane’s surface energy, compaction seems to have affected its hydrophobicity, 527 

possibly linked to the decrease in porosity of the active layer shown previously in section 3.2, 528 

hence the differences in absorption of the water droplets on the membrane surface. This could 529 

be an interesting area for future research. 530 

 531 

The values obtained for the other components of surface energy show a large variance for the 532 

membrane samples studied probably linked to the heterogeneous nature of the membrane’s 533 

active layer. 534 

 535 



Table 2: Surface energy components of NF90 membrane samples treated with 0 and 70% 536 

ethanol: contact angle (θ), electron-donor (γ-), electron-acceptor (γ+), Lewis acid-base (γAB), 537 

Lifshitz-van der Waals (γLW), total surface free energy (γS). 538 

Sample Treatment θ γ- γ+ γLW γAB γS 
0%  1 compaction 106.9 ± 0.69 40.15 ± 0.28 0.67 ± 0.14 2.42 ± 0.38 10.17 ± 1.2 12.60 ± 1.49 

70% 1 compaction 108.3 ± 1.23 41.80 ± 0.36 0.99 ± 0.35 4.06 ± 0.969 12.10 ± 2.26 16.16 ± 3.08 

0% 2 compactions 81.28 ± 1.41 37.60 ± 0.33 1.39 ± 0.68 14.19 ± 3.58 12.01 ± 4.13 26.21 ± 7.65 

70% 2 compactions 85.74 ± 2.19 41.02 ± 0.18 0.47 ± 0.27 6.17 ± 2.61 7.16 ± 2.57 13.34 ± 5.1 

 539 

 540 

3.3.3. Surface chemistry 541 

FTIR spectrums of the active layer chemistry of membrane samples treated with various 542 

ethanol concentrations are shown in Figure 7. The results show no peak straying and minimal 543 

change in peak area. The largest changes in peak area were around wavenumbers 800, 1100, 544 

1220 and 1480. The largest deviations in each case were for 10 and 40 % ethanol while those 545 

treated with intermittent concentrations remained unaffected. Furthermore, these 546 

wavenumbers are commonly associated to ‘C-H bend’ and ‘C-O stretch’ molecular motions; 547 

these bonds are abundant in the polyamide structure. As there is no peak change around 548 

wavenumbers 3300-3400 (associated with ‘O-H stretch’ motions) it is unlikely that these 549 

peaks are associated to any alterations of the membrane’s surface chemistry by ethanol. 550 

These results show that ethanol was not responsible for the observed surface chemistry 551 

variations. They are merely further evidence of the heterogeneous nature of the polyamide 552 

structure and surface chemistry of the membrane.  553 



 554 

Figure 7: FTIR spectrums of NF90 membrane samples treated with 0, 10, 20, 30, 40, 50, 60, 555 

or 70% vol/vol ethanol. Each spectrum shown is an average of readings done in triplicate. 556 

 557 

3.3.4. Zeta potential 558 

Zeta potential is another factor which is important to characterise due to the role it plays in 559 

colloidal deposition and bio-adhesion on NF membranes [41]. If ethanol exposure has had a 560 

significant effect on the membrane’s surface charge it could affect the membrane’s biofouling 561 

outcome. 562 

The results of the study performed for the range of ethanol treatments can be seen in Figure 8. 563 

The zeta potential of the membrane samples was relatively constant (-10 ± 1.5mV) for the 564 

majority of the ethanol concentrations tested, concurring with the previous salt retention 565 

analysis (Figure 5). The samples which were exposed to 10% and 20% ethanol however each 566 

had a notably lower zeta potential, -14.4mV and -15.7mV respectively. No correlation could 567 

be found for these two concentrations with the salt retention results in Section 3.2. 568 

Pasmore et al. [41] showed in their experiments on the role of zeta potential in bacterial 569 

adhesion that a positive (greater than 0) or highly negative (lower than -20) zeta potential can 570 

have a significant effect on bacterial adhesion. In this context the range of results obtained in 571 

this experiment is not enough to impact on the bacterial adhesion potential of the NF90 572 



membrane. Therefore ethanol’s effects on this membrane’s zeta potential can be concluded to 573 

be insignificant. 574 
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 575 
Figure 8: Zeta Potential of NF90 samples after bench treatment with 0,10,20,30,40,50,60, or 576 
70% ethanol. Data points are averages of three experiments with error bars displaying 577 
standard deviations. Test conditions employed were: Temperature = 20oC, Test solution = 578 
0.1M NaCl and PH = 7. 579 
 580 

3.3.5. Membrane roughness 581 

Membrane roughness has been linked in previous studies as a leading factor in the adhesion 582 

of bacteria onto a membrane [42]. The roughness values presented in Table 3 show no 583 

correlating effect with increasing ethanol concentration on the roughness of the NF90 584 

membrane. There is however a minor decrease (11%) in average roughness for the 585 

membranes treated with 30% ethanol. When seen in the context of Subramani’s analysis of 586 

bacterial adhesion onto membranes with a range of roughness averages (4-108 nm) [34], 587 

however, it is obvious that this minor difference would not significantly affect bacterial 588 

adhesion experiments. This decrease in roughness is most likely an error due to the small 589 

sample size (3 images) taken, and the heterogeneity of the membrane.   590 



Table 3: Roughness values for three NF90 membrane samples treated with 0, 30 or 70% 591 

ethanol. Rrms values shown are an average three 10x10µm2images for each sample; the 592 

standard deviation of these values is shown. 593 

Ethanol Concentration 

(vol/vol) 

Rrms  

Image 1 

(nm) 

Rrms 

Image 2 

(nm) 

Rrms  

Image 3 

(nm) 

Average Roughness 

(Rrms)  

(nm) 

0%  90.96 99.52 100.00 96.83 ± 5.09 

30%  91.64 83.70 83.47 86.27 ± 4.65 

70%  96.35 103.00 89.97 96.44 ± 6.52 

 594 

 595 

3.4. Ethanol’s effects on membrane mechanical properties 596 

 597 

3.4.1. Tensile strength 598 

The polyamide layer of the membrane consists of many long-chain polymers which may be 599 

arranged in a crystalline or amorphous way. If ethanol has affected this structure physically, 600 

through the swelling behaviour described previously in the visual results or otherwise, it 601 

could lead to a weakening of the active layer that may be undetectable via the methods 602 

described previously. As these membranes operate at high pressure, changes in strength may 603 

elevate the risk of membrane failure. 604 

 605 

Table 4 shows the tensile strength properties that were determined by testing samples of the 606 

NF90 membrane, with and without the polyester support layer, to failure. The role of the 607 

support layer is obvious from the large difference in tensile strength between the membrane 608 

samples with (226 ± 25 MPa), and those without (76.4 ± 17 MPa) the support layer. For each 609 

case the membrane samples exhibited characteristic stress/strain curves with similar slopes 610 

(Young’s modulus), yield stresses and sharp declines upon failure indicative of the brittle 611 

nature of the polymer material. These values are comparable to those found by Chung et 612 

al.[43] in their 2011 study of chlorine-induced mechanical deterioration of a polyamide RO 613 

membrane; their results showed the polyamide layer to have a Young’s modulus in the range 614 

of 1GPa with an ultimate tensile strength of 67MPa. Furthermore, their study showed no 615 

significant increase in Young’s modulus after a short exposure to chlorine but a four times 616 

increase in Young’s modulus after a long exposure time. 617 



 618 

Ethanol treatment for such a short exposure time had no significant effect on tensile strength, 619 

with results from samples treated with each concentration within the margin of error. The 620 

error in this experiment stemmed from the tiny cross-sectional area due to the membrane’s 621 

ultrathin nature.   622 

Table 4: Tensile strength and elastic properties of an NF90 membrane after treatment with 623 

various concentrations of ethanol. 624 

 Entire Membrane Polyamide/Polysulfone 

Ethanol 

Concentration 

(% vol/vol) 

Young’s 

Modulus 

(GPa) 

Yield Stress 

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Young’s 

Modulus 

(GPa) 

Yield Stress 

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

0% 8.14±0.36 62.4±0.37 236±16 3.1±0.20 33.7±3.4 74.1±24 

30% 7.76±0.68 58.9±1.19 209±39 3.26±0.13 31.8±8.0 83.3±17 

70% 8.26±0.97 66.6±1.11 232±12 3.27±0.58 30.9±3.6 71.8±13 

 625 

 626 

4. Conclusion 627 

This study has shown a 1.5 hour treatment of 40% ethanol to be a suitable and effective 628 

method of disinfecting Dow Filmtec NF90 membranes. Researchers conducting bacterial 629 

adhesion and biofouling studies with NF90 membranes can now use this treatment to remove 630 

competing microorganisms from their samples without affecting membrane properties. 631 

 632 

It is important to note that each membrane has a unique active-layer polymeric structure, and 633 

thus has a specific chemical interaction with ethanol. While this treatment has been shown to 634 

be suitable for an NF90 membrane this may not be true for all other polyamide RO and NF 635 

membranes. It is therefore imperative that researchers are aware of the chemical sensitivity of 636 

these membranes and that they evaluate a disinfectant’s effects on their studied membrane 637 

prior to experimental use. Further investigation is required to assess the suitability of this 638 

disinfection protocol for other polyamide membranes. 639 

 640 



While this study focused on the application of ethanol as a means of disinfecting a membrane 641 

prior to biological fouling, the results (showing bacterial removal without damaging 642 

membrane properties) may be of interest as a means of removing biological fouling. For this 643 

purpose further study would also be required on the repeated treatment of these membranes 644 

with ethanol. 645 

 646 

The effects of membrane compaction and swelling were seen in a number of the experiments 647 

in this study. Further research in this area is required to fully understand reversible 648 

compaction and the way in which the polyamide layer restructures itself upon re-compaction.  649 

 650 
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