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Volunteered geographic information (VGI) is generated by heterogenous ‘informa-
tion communities’ that co-operate to produce reusable units of geographic knowledge.
A consensual lexicon is a key factor to enable this open production model. Lexical
definitions help demarcate the boundaries of terms, forming a thin semantic ground
on which knowledge can travel. In VGI, lexical definitions often appear to be incon-
sistent, circular, noisy and highly idiosyncratic. Computing the semantic similarity of
these ‘volunteered lexical definitions’ has a wide range of applications in GIScience,
including information retrieval, data mining and information integration. This article
describes a knowledge-based approach to quantify the semantic similarity of lexical
definitions. Grounded in the recursive intuition that similar terms are described using
similar terms, the approach relies on paraphrase-detection techniques and the lexical
database WordNet. The cognitive plausibility of the approach is evaluated in the con-
text of the OpenStreetMap (OSM) Semantic Network, obtaining high correlation with
human judgements. Guidelines are provided for the practical usage of the approach.
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1. Introduction

Geographic knowledge is a crucial asset in human activities. To share geographic informa-
tion across a community, it is necessary to extract concepts from the chaotic repository of
implicit knowledge that lies in human minds, which Sowa (2006) aptly called the ‘knowl-
edge soup’. The first step in gathering and sharing geographic knowledge consists of
describing terms in natural language, focussing on semantic aspects relevant to the target
community. In this sense, lexical definitions constitute the core of any geographic lexicon,
storing informational wealth about the properties and the meaning of each term.

Over the past decades, a variety of models have been developed to represent and share
geographic information. Vector and raster formats, the entity-relationship model and, to a
lesser extent, the object-oriented paradigm have been adopted in geographic information
systems (GISs) (Goodchild et al. 2007). Semantic Web technologies attempt to provide a
platform to share geographic knowledge using logic formalisms and ontologies (Ashish
and Sheth 2011). Despite these attempts, geographic knowledge is highly fragmented
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across different ‘information communities’, i.e. groups of individuals whose interactions
depend on the successful interpretation of shared information.

Lexical definitions play a pivotal role across these diverse formats and models. The
descriptive definitions found in language dictionaries have the purpose of accounting for
accepted usages of a term within a linguistic community. By contrast, lexical definitions in
a GIS lexicon or in a geo-ontology are prescriptive, i.e. indicate the intended usage of a term
within a relevant scope, such as an organisation, an information system or a specific data
set. For example, the definition of the term ‘field’ in a land registration GIS may specify
that it should be used to label discrete objects delimiting a currently active agricultural
field, whilst in a scientific GIS, it may be used to represent sampled intensities of the
Earth’s magnetic field. Lexical definitions are an effective tool to delimit the semantics of
terms in a lexicon with normative effects, narrowing the semantic gap between the different
conceptualisations that human agents construct in their minds.

Volunteered geographic information (VGI) is a key development in the processes of
production and consumption of spatial knowledge (Goodchild 2007). In the context of VGI
crowdsourcing projects, the role of lexical definitions is of paramount importance in order
to allow the collaborative production of information by diverse and heterogenous human
semantic agents. In online projects such as OpenStreetMap (OSM) and Ushuaidi,1 contrib-
utors collect and share large amounts of geographic information, relying on Web 2.0 tools.
Unlike professional information communities commonly found in private companies and
public institutions, amateur online communities do not share similar formal training and
do not have the possibility of creating a solid common semantic ground through years of
intense inter-personal communication and collaborative work.

In VGI, short lexical definitions are often the only resource utilised to decide what
terms describe a new piece of geographic knowledge to be shared. For example, the seman-
tic model underlying OSM is an open tagging system with a recommended set of terms
called ‘tags’. Users who want to add features to the OSM vector data set can use edi-
tors such as Java OpenStreetMap (JOSM) and Potlatch, which offer a catalogue of core
terms.2 However, especially for users unfamiliar with the editing process and for creating
rare or ambiguous features, lexical definitions are necessary to dispel doubts and constrain
the terms’ interpretation to a shared meaning. The usage of a new, undocumented term,
e.g. site = carpark instead of the documented amenity = parking, can result in semantic
ambiguity and possibly uninterpretable data.

Semantic similarity is a specific type of semantic relatedness, typically involving
hyponym–hypernym relations between terms. For example, ‘river’ and ‘stream’ are seman-
tically similar, while ‘river’ and ‘boat’ are dissimilar but semantically related. In the
context of ever-growing online geographic information, computing the similarity of terms
is a valuable endeavour in order to increase co-operation within and across information
communities, providing support for a wide variety of tasks in information retrieval and
integration (Janowicz et al. 2011, Kuhn 2013).

To the best of our knowledge, no geo-semantic similarity measure focussed on lexical
definitions has been devised for VGI, which normally lacks advanced ontology engineer-
ing and design. To fill this lacuna, this article presents a technique to compute the semantic
similarity of geographic terms, based on their lexical definitions, drawing from natural
language processing techniques. The lexical database WordNet is utilised as a source
of term-to-term semantic similarity and is then combined into a definition-to-definition
similarity.

The remainder of this article is organised as follows: Section 2 reviews related work
in the areas of VGI, OSM and semantic similarity measures. The salient aspects of
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volunteered lexical definitions are subsequently discussed in Section 3, with particular
focus on OSM. Section 4 outlines our approach to computing the semantic similarity of
geographic terms and Section 5 presents an empirical evaluation. Finally, Section 6 draws
conclusions from this work and suggests directions for future research.

2. Related work

Our approach to computing the semantic similarity of lexical definitions of geographic
terms is informed by several research areas, including geo-semantics and lexical similarity
measures. Several semantic similarity measures for geospatial data have been devised at the
intersection between cognitive science, psychology, ontology engineering and geographic
information retrieval (GIR) (Janowicz et al. 2011). A detailed survey of geo-similarity has
been conducted by Schwering (2008), including geometric, featural, network, alignment
and transformational models. Lexical measures based on natural language processing are
not included in the survey.

Notably, Rodríguez and Egenhofer (2004) have extended Tversky’s set-theoretical ratio
model in their Matching-Distance Similarity Measure (MDSM). Schwering and Raubal
(2005) proposed a technique to include spatial relations in the computation of semantic
similarity. Furthermore, Janowicz et al. (2007) developed Sim-DL, a similarity measure
for geographic terms based on description logic (DL), a family of formal languages for the
Semantic Web. As such approaches rely on rich, formal definitions of geographic terms,
they are unfit to compare volunteered lexical definitions. In our previous work, we have
explored techniques suitable for VGI, such as graph-based measures of semantic similar-
ity on the OSM Semantic Network (Ballatore et al. 2012a). We have enriched the OSM
semantic model with Semantic Web resources (Ballatore and Bertolotto 2011), and we
have outlined a GIR system based on the semantic similarity of map viewports (Ballatore
et al. 2012b).

Keßler (2007) surveyed the idea of context in existing geo-similarity measures. All
approaches share the idea of adjusting the weights of the dimensions that are considered in
the similarity measurement, to reflect a specificity of the context. The context is modelled
by restricting the computation to a subset of terms contained in the knowledge base. In this
article, we focus on general semantic similarity of definitions and the role of context in the
comparison between lexical definitions is left implicit.

2.1. Term-to-term semantic similarity

A semantic similarity measure quantifies the association between two given terms
(sim(ta, tb) ∈ �). Approaches to computing the semantic similarity of terms (as opposed
to larger semantic entities) can be classified in two main families: knowledge-based and
corpus-based. Knowledge-based techniques rely on representational artifacts, such as
semantic networks, taxonomies or full-fledged ontologies. Under a structuralist assump-
tion, most of these techniques observe the relationships that link the terms, assuming, for
example, that the taxonomical distance is inversely proportional to the semantic similarity
(Rada et al. 1989).

The lexical database WordNet, because of its focus on semantic relationships and dense
connectivity, has been successfully used as a support tool to compute similarity (Fellbaum
1998). A variety of measures have been devised and tested to compute generic lexical
similarity on WordNet (e.g. Jiang and Conrath 1997, Hirst and St-Onge 1998, Leacock
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Table 1. WordNet-based similarity measures.

Name Reference Description SPath Gloss InfoC

path Rada et al. (1989) Edge count √
lch Leacock and Chodorow

(1998)
Edge count scaled by depth √

res Resnik (1995) Information content of lcs √ √
jcn Jiang and Conrath (1997) Information content of lcs and

terms

√ √

lin Lin (1998) Ratio of information content of lcs
and terms

√ √

wup Wu and Palmer (1994) Edge count between lcs and terms √
hso Hirst and St-Onge (1998) Paths in lexical chains √
lesk Banerjee and Pedersen (2002) Extended gloss overlap √
vector Patwardhan and Pedersen

(2006)
Second order co-occurrence vectors √

vectorp Patwardhan and Pedersen
(2006)

Pairwise second order
co-occurrence vectors

√

Notes: SPath: the measure uses the shortest path in the Word-Net taxonomy; Gloss: the measure exploits lexical
definitions (glosses); InfoC: the measure uses the information content of terms.

and Chodorow 1998). The characteristics of 10 popular WordNet-based measures are sum-
marised in Table 1. This table shows the core tenets of each measure, i.e. whether they rely
on network topology, information content or on glosses, that is, lexical definitions. As such,
measures are complementary, and they can be combined to overcome their limitations
(Ballatore et al. 2012c).

Unlike knowledge-based approaches, corpus-based techniques do not need explicit
relationships between terms and compute semantic similarity of two terms based on
their co-occurrence in a large corpus of text documents (e.g. Turney 2001). An under-
lying assumption of these techniques was famously put forward by Harris (1954) as the
‘distributional hypothesis’, which states that words that occur in the same contexts tend
to have similar meanings. Going beyond simple co-occurrence, latent semantic analysis
(LSA) has become a prominent approach to extract a similarity model from a text corpus
(Landauer et al. 2007). Instead of only looking at the total number of co-occurrences, LSA
considers detailed patterns of co-occurrence in individual sentences.

2.2. Text-to-text semantic similarity

A family of semantic similarity measures focus on the similarity of segments of text,
instead of isolated terms. A classic area of research, whose core preoccupation is such type
of similarity, is the detection of plagiarism in academic tests and publications (Potthast
et al. 2010). Anti-plagiarism techniques rely on the distributional hypothesis to detect
suspiciously close citation patterns and similarities in writing styles across different text
documents. More recently, the problem of paraphrase detection has become an active
research area (Corley and Mihalcea 2005). For example, the sentence ‘The Iraqi Foreign
Minister warned of disastrous consequences if Turkey launched an invasion of Iraq’ should
be classified as a paraphrase of ‘Iraq has warned that a Turkish incursion would have dis-
astrous results’ (Fernando and Stevenson 2008, p. 2). The challenge lies in the detection of
sentences that convey roughly the same meaning through a different lexicon.
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Mihalcea et al. (2006) have developed a hybrid approach to text similarity, combining
WordNet-based and corpus-based techniques. In terms of precision, the knowledge-
based measures consistently outperform the corpus-based ones, as well as the combined
approach. Tackling similar issues, Islam and Inkpen (2008) combined corpus-based term
similarity with string similarity to compute the similarity of short texts. Furthermore,
random walks on graphs represent an emergent alternative approach to network-based
similarity (Ramage et al. 2009). Because of their conceptual simplicity and effectiveness,
knowledge-based approaches by Corley and Mihalcea (2005) and Fernando and Stevenson
(2008) were included in our technique.

A fundamental trade-off lies between knowledge-based and corpus-based approaches.
Knowledge-based approaches rely on expert-authored knowledge bases, resulting in more
precise similarity models, but at the cost of limiting the coverage to the set of terms
included in the knowledge base. By contrast, corpus-based approaches tend to cover a
wider set of terms, but at the cost of lower precision in the similarity model. Given
the restricted domain covered by the lexical definitions of geographic terms, we adopt a
knowledge-based approach, favouring precision over coverage.

3. Lexical definitions

Lexical definitions play a fundamental role as a tool to create a shared semantic ground in
an information community. In this section, we discuss lexical definitions of geographic
terms, and we focus specifically on the context of VGI. Following a well-established
semiotic tradition, we refer to ‘terms’ as symbols pointing to ‘concepts’ (also known as
‘thoughts’), complex psychological entities utilised by agents to produce and interpret geo-
graphic information about real-world entities (Kuhn 2005). Such external entities are called
‘objects’ or ‘referents’. The relationship between symbols and concepts is not static and
absolute but dynamic and rooted in social agreements among semantic agents.

Because of their ubiquity, lexical definitions have been at the centre of centuries-long
debates in philosophy and epistemology. A classical tenet is that a ‘definition signifies the
necessary and sufficient conditions for the application of the term being defined’ (Kavouras
and Kokla 2008, p. III). The term being defined is called the definiendum, whilst the lexical
definition is the definiens. As terms are intrinsically vague, lexicons suffer from semantic
ambiguity. Even basic geographic terms such as ‘mountain’ and ‘lake’ refer to objects with
fuzzy boundaries, whose definitions can vary considerably across different information
communities (Varzi 2001).

Lexical definitions rely implicitly on broad lexical semantic theories. Lexical semantic
theories are divided into constructive and differential (Miller et al. 1990). In constructive
theories, a lexical definition lexa has to provide the agent h with enough information to
accurately construct the concept a. However, in practice, the requirements for a construc-
tive lexical definition are rarely met, as lexical definitions tend to be heavily underspecified,
i.e. relying on agents’ prior knowledge of the domain. Differential theories, on the other
hand, envisage lexical definitions to help the agent distinguish between semantically similar
terms.

3.1. Geographic lexical definitions

A typical lexical definition in a geographic lexicon is intensional, describing properties of
the concept, and precising, narrowing the usage of the target term to the desired scope.
Furthermore, lexical definitions are prescriptive, showing the intended usage of the term
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in a given informational context. In some cases, a lexical definition can be stipulative,
i.e. defines a novel meaning for a term conventionally bearing a different meaning. In the
tradition of Linnaean taxonomies, lexa may include genus (the family) and differentia (the
salient differences to other members of the same family). This is often the case when
very similar concepts have to be distinguished and the existing lexicon does not clearly
differentiate them.

The role of lexical definitions in the interaction between semantic agents can be
expressed formally from a set-theoretical perspective. Given a term ta in a geographic
lexicon L (e.g. ‘river’), a lexical definition lexa provides information about ta (e.g. ‘A large
natural stream of water flowing in a channel’). The lexicon L enables information sharing
within an information community of human agents H . The term ta symbolises the concept
ah, held in the human agent’s mind according to their prior experience and knowledge of
rivers. The lexical definition lexa is a function that enables the construction of concept ah1

for agent h1 : lexa(ta, h1) → ah1 The success of communication between agents h1 and h2

depends on the overlap between the concepts generated by the two agents ah1 ∩ ah2 . On one
extreme, the identity ah1 ≡ ah2 would correspond to perfect communication. On the other,
if ah1 ∩ ah2 = ∅, communication between h1 and h2 fails.

A definition lexa is successful to the degree to which the constructed concepts ah

converge towards a shared concept a for all agents h ∈ H . If lexa contains too much
information or information not salient to the agents, it is overspecified. For example, in
a given geographic information community it might be irrelevant to specify the typical
biological population of different kinds of ‘river’. By contrast, lexa is underspecified if the
constructed concepts ah do not converge to a. Naturally, in real information communities,
it is unlikely that all agents h ∈ H share precisely the concept a. Some convergence towards
a is sufficient to enable semantic co-operation and information production in H , limiting
the semantic failures to a non-critical degree.

As Kavouras et al. (2005) pointed out, lexical definitions of geographic terms differ
to non-geographic terms in a number of respects. Semantic properties capture the loca-
tion, the purpose of man-made entities and the cause that brought an entity into existence.
Similarly, semantic relations indicate the spatial adjacency to, the surroundedness by and
association with other geographic entities. While lexical definitions in expert-authored
geo-lexicons, such as those by the British Ordnance Survey,3 show a high degree of
consistency, VGI differs in a number of ways.

3.2. Volunteered lexical definitions

In VGI projects, a large number of human agents co-operate to generate reusable geo-
graphic information (Goodchild 2007). The negotiation of a shared geographic lexicon is
therefore crucial to the success of any productive effort. In the context of geo-semantics,
it is important to assess how volunteered lexical definitions differ from traditional ones.
Unlike traditional expert-centred production processes, the ontological ground of volun-
teered endeavours is thin, dynamic and often ontologically unsound. Rather than relying
on conceptual models carefully engineered and validated by experts, these projects are
based on open tagging mechanisms and folksonomies (Gruber 2007).

From a semantic perspective, VGI faces a tension between the desiderata of ontology
engineering (correctness, minimality, expressivity, precision, etc.) and the accessibility to
non-expert contributors. The contributors’ drive to share pieces of information can be eas-
ily hampered by complex insertion and validation procedures. For example, a contributor
can quickly share the location of her favourite restaurant, simply by tagging a point with the
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label ‘restaurant’, receiving instant gratification. Tapping this drive is essential to guarantee
the initial survival and eventual flourishing of crowdsourcing projects (Shirky 2010).

To discuss lexical definitions in VGI, the collaborative project OSM constitutes a
paradigmatic case. The OSM contributors form a large and heterogenous information
community that co-operate to produce a general-purpose world map. The shared seman-
tic ground is provided through the OSM wiki website, which hosts crowd-sourced lexical
definitions of OSM terms. This semantic model is a semi-structured folk-sonomy, i.e. a lex-
icon of terms defined by contributors in a negotiation process. Terms, called ‘tags’ in the
OSM terminology, are structured in key/value pairs, where key is a general category and
the value is more specific (e.g. amenity = university). OSM contributors define, update
and refer to these definitions to create and utilise the OSM vector data set. The OSM
Semantic Network, a machine-readable semantic artefact, was extracted from the wiki
website (Ballatore et al. 2012a).4 The average length of lexical definitions in the OSM
Semantic Network is 44 terms, with a standard deviation of 33. Only a small number of
definitions are substantially larger.

From an ontological viewpoint, OSM adopts a fully object-based perspective, with-
out representing field-based views (Goodchild et al. 2007). The terms are used to provide
meta-data for discrete objects, encoded as points, polylines and polygons. The lexicon is
dynamic and the choice of terms is left loosely regulated, following the slogan ‘any tags
you like’.5 Table 2 shows a sample of lexical definitions of OSM terms. The semantics
of OSM terms is heavily underspecified: it includes no explicit taxonomy and does not
encode a partonomy. For example, the term room = ∗ is described as part of a building, but
this relation is not defined formally. The conceptualisation does not distinguish between
attributes and relations, keeping all terms at the same representational level (e.g. width = ∗
is not modelled as an attribute of another entity). Terms are generally vastly underspecified,
encouraging the creative generation of new terms.

Depending on the terms, definitions can be very detailed to the point of overspecifica-
tion (e.g. leisure = garden), or circular, when the term is deemed to be self-explanatory
(e.g. building = university). Some definitions adopt a differential perspective, indicating

Table 2. Examples of lexical definitions of OSM terms, extracted from the OSM Semantic Network
on 25 August 2012.

Term (Key = Value) Lexical definition

leisure = garden Place where flowers and other plants are grown in a decorative and
structured manner or for scientific purposes. . . . A garden can
have aesthetic, functional and recreational uses. Not to be confused
with shop = garden-centre. Meant to tag the land area itself.

waterway = stream A naturally-forming waterway that is too thin to be classed as a river.
Maybe you can just jump over it. It may not even be permanently
filled with water. An active, able-bodied person should be able to
jump over it if trees along it are not too thick.

building = university A university building. Completed with the tag amenity = university.
room = ∗ Room marks a room inside a building. Man made. The room Key is

used to mark nodes or areas as a room, typically inside a building.
Part of Proposed features/indoor.

natural = wetland An area subject to inundation by water or where waterlogged ground
may be present. Examples include swamps, tropical mangroves,
tidal, marshland and bogs. Wetlands are also typically found at the
fringes of rivers, lakes or along the coastline.
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relevant differences from semantically related terms (e.g. leisure = garden is ‘Not to be
confused with shop = garden-centre’). Some definitions contain OSM-specific details (e.g.
‘Part of Proposed features’ and ‘Approved’) and prescriptive and stipulative details, indi-
cating to the human agent how the term should be used in the context of OSM, focussing
on counter-intuitive aspects of the lexicon. The main issue with the OSM lexical defini-
tions is the frequent underspecification and the high variability of length, semantic content
and quality across the terms. To meet the challenges of this uncertain semantic territory,
we investigate a bag-of-words approach to compute the semantic similarity of OSM terms,
outlined in the next section.

4. A semantic similarity measure for lexical definitions

This section outlines an approach to compute semantic similarity of lexical definitions in a
geographic lexicon, based on WordNet as the source of semantic similarity and paraphrase-
detection techniques. The purpose of this measure is to quantify the semantic similarity s
of two given geographic terms ta and tb as a real number, based on their lexical definitions
lexa and lexb. The real number s(ta, tb) is not meaningful in isolation, but conveys useful
information when compared with other values of other pairs of terms.

The psychological intuition behind our approach to geo-semantic similarity is that sim-
ilar terms are described using similar terms. The infinite regression that would ensue is
avoided by using WordNet to compute the similarity scores of definitional terms. The
approach computes the semantic similarity of two terms s(ta, tb) based on four input param-
eters {POS, C, simt, simv}: a part-of-speech (POS) filter, which consists of a set of valid
POS (e.g. nouns, verbs and adjectives); a text corpus C; two similarity functions simt and
simv. The four steps of the similarity algorithm are the following:

(1) Given two terms ta and tb, lemmatise and POS-tag their definitional terms
{ta1. . .tan} and {tbl. . .tbm}.

(2) Construct semantic vectors 
a and 
b, including definitional terms based on the POS
filter, and retrieving weights wt from corpus C.

(3) Construct similarity matrices Mab and Mba. Each cell of these matrices contains
a term-to-term similarity score simt (tai, tbj), relying on WordNet as a knowledge
base.

(4) Compute similarity score s(ta, tb) from the similarity matrices using vector-to-
vector similarity simv, based on paraphrase-detection techniques.

The architecture of the approach and its resources are schematised in Figure 1. For illus-
trative purposes, we consider lexical definitions from the OSM Semantic Network. The

simv = s(ta,tb)

SemVec a

Lexicon L Corpus C

Matrix
Mab

Mba

WordNet

simt

SemVec b

w

Term ta lexa

DefTerms
ta1 tan

Term tb lexb

simv (ta,tb)

simv (tb,ta)DefTerms
tb1 tbm

Figure 1. Approach to semantic similarity of lexical definitions lex for terms ta and tb.
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remainder of this section describes in detail the four steps to compute the semantic
similarity of geographic terms.

4.1. Extraction of definitional terms

Given a geographic term ta, the lexical definition lexa can be seen as a function associating
ta with a set of definitional terms {ta1 . . . tan}, i.e. words contributing to the overall meaning
of the term ta. From a linguistic perspective, the term ta is the definiendum, whilst the def-
initional terms are part of the definiens. Definitional terms can either be single words (e.g.
‘lake’) or compound words (e.g. ‘swimming pool’) and are described by a part-of-speech
tag (t = word/POS), following the format of the Penn Treebank (Marcus et al. 1993).
Among all the Penn tags, we restrict our method to nouns (NN), verbs (VB) and adjec-
tives (JJ). To facilitate their usage, the definitional terms must be lemmatised (e.g. ‘rivers’
to ‘river’, ‘ate’ to ‘eat’). For example, the OSM lexical definition of ‘garden’ as a ‘place
where flowers and other plants are grown’, reported in Table 2 contains the definitional
terms place/NN , flower/NN , plant/NN and grow/VB.

4.2. Construction of semantic vectors

As discussed in the previous section, the definitional terms {ta1 . . . tan} contribute to con-
veying the meaning of ta. A geographic term ta can therefore be represented as a semantic
vector, whose components represent the definitional terms. This representation is often
called bag-of-words, as it does not take into consideration the syntactical structure of text,
but only the presence of terms, regardless of their order. To represent the geographic term
ta in a semantic vector space, we define a multidimensional vector 
a, whose scalars are
non-negative weights and components are the definitional terms {ta1 . . . tan}:


a = wa1 · ta1 + ... + wan · tan ∀wai : wai ∈ R≥0

n∑
i=1

wai = 1 (1)

The weights w capture the fact that, in a lexical definition, terms can contribute to the
overall meaning of the definiendum to different degrees. For example, in the definition
of OSM term building = university in Table 2, the terms university/NN and building/NN
carry more meaning than completed/JJ or tag/NN . Thus, an appropriate weighting scheme
has to be used to compute the weight wt of a term t in the corpus.

Hence, a corpus of text documents C is utilised to compute the weights of terms on a
statistical basis. The corpus C is a set of text documents, each containing a set of terms.
Formally, let the document di = {t1 . . . tn} and C = {d1 . . . dm}. A term can be non-
unique (∃(ti, tj) : ti = tj). A popular approach to computing the weight of the terms in a
corpus is the term frequency–inverse document frequency (TF-IDF). IDF scores represent
how common a term t is in the whole corpus, while TF is the number of occurrences of t
in document d. A relatively infrequent term in a corpus is expected to have a higher weight
than a very frequent one. The result of this step consists of the semantic vectors 
a and 
b.

4.3. Construction of similarity matrices

The similarity s(ta, tb) could, in principle, be computed as a simple vector similarity 
a and

b, e.g. as the inverse of the distance between the vectors, such as the Euclidean, cosine and
Chebyshev distances. However, these techniques are effective only when there is an overlap



10 A. Ballatore et al.

between the components of the two vectors. When there is little or no overlap in the vectors,
the vast majority of similarity scores are 0. For this reason, the term-to-term similarity
function simt is necessary to capture a continuous semantic distance between terms in 
a
and 
b. We define a normalised, term-to-term semantic similarity measure simt(ti, tj) ∈ [0,1].

In principle, any term-to-term semantic similarity measure might be adopted as simt.
However, in order to compute semantic similarity exploiting relationships between terms,
knowledge-based approaches are generally deemed to have higher precision than corpus-
based techniques (Mihalcea et al. 2006, Agirre et al. 2009). In Table 1 (Section 2.1),
we described 10 WordNet similarity techniques, which are utilised in this phase. These
measures consider semantic relationships such as synonyms (e.g. ‘buy’ and ‘purchase’),
hyponyms and hypernyms (e.g. ‘oak’ and ‘tree’). As the evaluation will confirm, the choice
of simt impacts on the cognitive plausibility of the measure. In this sense, simv is a function
f (simt). Two similarity matrices, Mab and Mba, have to be constructed with simt:

|Mab| = |
a| × |
b| ∀i, j : Mi,j = simt(tai, tbj)

|Mba| = |
b| × |
a| ∀i, j : Mj,i = simt(tbj, tai)
(2)

If simt is symmetric (simt(ti, tj) = simt(tj, ti)), Mba = MT
ab. The matrices Mab and Mba are

used by the vector-to-vector measures simv.

4.4. Computation of overall similarity

Having constructed the semantic vectors 
a and 
b and the matrices Mab and Mba, it is pos-
sible to compute the vector-to-vector similarity simv. As the comparison of two semantic
vectors is in many ways analogous to paraphrase detection, in this step, we consider tech-
niques originally developed in this area of research. An asymmetric similarity measure of
semantic vectors sim′

v(
a, 
b) can be formalised as follows:

sim′
v(
a, 
b) =

|
a|∑

i=1

wai · ŝ(tai, 
b, Mab), sim′
v(
b, 
a) =

|
b|∑

i=1

wbi · ŝ(tbi, 
a, Mba)

sim′
v(
a, 
b) �= sim′

v(
b, 
a), sim′
v(
a, 
b) ∈ [0, 1]

(3)

where function ŝ returns a similarity score between a definitional term, a semantic vector,
based on a similarity matrix. Two alternative functions can be adopted as ŝ : ŝcom or ŝfes.
Based on the approach presented by Corley and Mihalcea (2005), abbreviated as com, the
function ŝ corresponds to the maximum semantic similarity score between a term ti and a
vector 
v, based on the similarity scores in matrix M:

ŝcom(ti, 
v, M) = Mi,k ∀tj ∈ 
v : Mi,j ≤ Mi,k (4)

More recently, Fernando and Stevenson (2008) have developed an alternative approach,
which we abbreviate as fes. Instead of considering only the terms with maximum similarity
to the vector being analysed, ŝ is the sum of all similarities in M , where tj ∈ 
v:

ŝfes(ti, 
v, M) =
|
v|∑

j=0

Mi,j (5)
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A symmetric measure simv ∈ [0, 1] can be easily obtained from sim′
v as:

simv(a, b) = sim′
v(a, b) + sim′

v(b, a)

2
, simv(a, b) = simv(b, a) (6)

This knowledge-based approach relying on semantic vectors enables the computation
of the semantic similarity of lexical definitions. In order to give precise indications of its
practical applicability, it is necessary to analyse the spatio-temporal computational com-
plexity of the approach. First, the construction of semantic vectors can be considered to
have a linear complexity O(|
a| + |
b|) = O(n), where n is the number of terms present in
the two lexical definitions. Subsequently, the computational complexity of the term-to-
term similarity scores depends on the selected simt. WordNet simt measures vary from
shortest-path algorithms (path, wup, res, etc.), to very complex lexical chains (hso).

As a general estimate of the complexity for simt, we consider Dijkstra’s classic shortest-
path algorithm O(|
a| · |
b| · (|WE| + |WV |log|WV |)) = O(n3), where WE and WV are the
edges and vertices of WordNet. The vector-to-vector measures construct two similarity
matrices of size |
a| × |
b|. The overall upper bound of the lexical approach complexity
is cubic: O(n + n3 + n2) ≤ O(n3). Considering the limited size of geographic lexicons
(for example, the OSM Semantic Network contains about 6500 terms) and applying the
appropriate pre-computations, the cubic complexity does not constitute an obstacle for the
practical usage of the technique.

5. Evaluation

This section presents an empirical evaluation of our approach to compute the semantic
similarity of volunteered lexical definitions. The hypotheses that this evaluation purports
to validate are the following:

(1) The volunteered lexical definitions of geographic terms allow the computation of
a more plausible semantic similarity measure than the terms in isolation.

(2) Our bag-of-words, knowledge-based approach can reach a high cognitive plausi-
bility, handling the high variability of volunteered lexical definitions.

To evaluate similarity measures, two complementary approaches have been widely utilised:
cognitive plausibility and task-based evaluation. The approach based on cognitive plausi-
bility aims at quantifying the effectiveness of a similarity measure through psychological
tests, directly comparing human similarity judgements on sets of pairs with machine-
generated scores. The plausibility is therefore proportional to the technique’s ability to
mimic human behaviour. Task-based evaluation, by contrast, applies the similarity measure
to a specific task, for example, in the area of natural language processing. The performance
of the similarity measure is inferred from how satisfactorily the task is carried out, using
appropriate information retrieval metrics such as precision and recall.

In this evaluation, we adopted the cognitive plausibility approach, utilising a human-
generated data set as ground truth. Formally, given the human-generated rankings for term
pairs RH and the corresponding machine-generated rankings RM, the cognitive plausibil-
ity can be computed as Spearman’s ρ(RH, RM), in range [−1, 1]. This evaluation permits
the detailed observation of the impact of the algorithm parameters, providing empirical
insights.
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5.1. Ground truth

A set of human rankings of geographic term pairs, the MDSM evaluation data set, was
utilised as ground truth. This data set was originally collected by Rodríguez and Egenhofer
(2004) from 72 human subjects and was utilised to evaluate the MDSM, their semantic
similarity measure. Because these terms were defined with short lexical definitions without
focussing on ontology-specific details, they are suitable to study the cognitive plausibility
of our approach. The original data set contains contextual and non-contextual similarity
judgements for 108 geographic term pairs, grouped in 10 questions, with 10 or 11 pairs
in each question. The term pairs cover 33 terms, ranging from large natural entities (e.g.
‘mountain’ and ‘forest’) to man-made features (e.g. ‘bridge’ and ‘house’). The subjects
were asked to rank the pairs from the most to the least similar (e.g. 〈athletic field, ball
park〉 → . . . → 〈athletic field, library〉).

In order to compare the human rankings with the rankings generated by our technique,
the terms were manually mapped onto the corresponding terms in OSM and WordNet,
based on their lexical definitions. For example, the term ‘tennis court’ was matched to
OSM tag sport = tennis and WordNet synset tennis court#n#1. While 29 terms have a sat-
isfactory equivalent in OSM, four terms (‘terminal’, ‘transportation’, ‘lagoon’ and ‘desert’)
were discarded because they did not have a precise matching term in OSM. The four ques-
tions that include contextual judgements, outside the scope of this study, were excluded.
The resulting data set consisted of the rankings of 62 term pairs, grouped in six questions,
and covering 29 geographic terms.6 In order to summarise the cognitive plausibility of the
algorithms evaluated in the experiments that follow, the results across six questions had to
be aggregated. For this purpose, we utilised the Hunter–Schmidt meta-analytical method
by obtaining a tie-corrected Spearman’s p as a weighted average across the six questions
(Field 2001).

5.2. Preliminary experiments

To validate the first hypothesis, we ran three preliminary experiments. First, the semantic
similarity of the 62 term pairs in the MDSM evaluation data set was computed using the
10 WordNet-based similarity measures outlined in Section 2.1. These measures quantify
the semantic similarity of two input terms by observing different aspects of the WordNet
taxonomy. The tie-corrected Spearman’s ρ was obtained between each of the 10 WordNet-
based rankings and the human rankings. The cognitive plausibility of this approach turned
out to be poor, with ρ falling in the interval [.24, .5]. Moreover, the statistical significance
of the correlation test was largely insufficient for several WordNet measures (P > .1). The
inadequacy of this approach validates the hypothesis, supporting the necessity of including
the lexical definitions in the similarity computation.

The second experiment focussed on the similarity measure based on set-theoretical
overlap of terms. A term is similar to another term to the degree to which they share
the same terms in their lexical definition, seen as a bag-of-words, using Tversky or
related set-theoretical approaches, such as the Dice coefficient (Tversky 1977). The lex-
ical similarity of the pairs contained in the MDSM evaluation data set was computed
using the Text::similarity tool on the OSM definitions.7 As the lexical definitions share
a very limited number of terms (mostly generic terms such as ‘refer’ or ‘tag’), these tech-
niques incur a limited-information problem, showing no correlation with the human scores
(ρ ∈ [−.1, .1] for all the set-theoretical measures).

To support the claim that existing corpus-based measures do not handle the similarity
of volunteered lexical definitions, we ran a third experiment focussing on latent semantic
analysis (LSA), a state-of-art semantic similarity measure (Landauer et al. 2007).
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We selected two typical LSA similarity analyses, term-based and document-based, using
the Touchstone Applied Science Associates (TASA) data set as a general-purpose English
corpus.8 In the case of the term-based comparison, the similarity of term definitions is com-
puted in the vector space of terms, extracted from the corpus, whilst the document-based
case analyses the texts in the document vector space.

Hence, we computed the similarity scores of the term pairs in the MDSM evaluation
data set using the two LSA analyses. For example, the similarity of pair <lake,mountain>

was based exclusively on the terms ‘lake’ and ‘mountain’. This approach obtained a cog-
nitively plausibility of ρ = .54 for the term-based analysis and of .56 for the vector-based
analysis (with P < .05 in both cases). Subsequently, the same analyses were run on the
lexical definitions, with more plausible results (ρ = .61 and .64, with P < .01). In this
case, the term ‘lake’ was compared with ‘mountain’ based on their full OSM lexical def-
initions. Therefore, the cognitive plausibility of LSA fell in the interval [.54, .64]. The
experiment described in the following section shows that our knowledge-based approach
obtains considerably better results.

5.3. Experimental set-up

In order to explore in detail the performance of our approach to lexical similarity of geo-
graphic terms, we included several options for the four parameters {POS, C, simt, simv}:
three POS combinations, 10 WordNet-based term-to-term similarity measures, four text
corpora and two vector-to-vector measures (Table 3). Further details of the corpora C are
summarised in Table 4. Each of the 240 combinations of parameters {POS, C, simt, simv}
returns a unique set of similarity scores for the term pairs, which can be compared with the
human-generated ground truth.

The lexical definitions of the 29 terms were extracted from the OSM Semantic
Network, and the definitions were lemmatised with Stanford CoreNLP and POS tagged
with the Stanford log-linear part-of-speech tagger.9 Of all the tagged terms, only nouns,
verbs and adjectives were selected (NN , VB and JJ, respectively). As a result, 1406 terms

Table 3. Experiment set-up: resources included for each of the four input parameters.

Symbol Number Description

POS 3 POS filters (NN , VB, NN VB). Adjectives (JJ ) were initially included, but
most simt measures are designed to handle only nouns and verbs,
making a direct comparison difficult.

C 4 We collected three corpora: the OSM wiki website, a set of random news
stories from the newspaper Irish Independent and Wikipedia. The OSM
wiki website corpus is strongly skewed towards geographic and
OSM-related terms, whilst the Irish Independent and Wikipedia
represent examples of primarily non-geographic corpora (see Table 4).
The Null corpus corresponds to constant weights, i.e. a constant w > 0.

simt 10 The term-to-term similarity function simt is utilised to construct the
similarity matrices needed to compute the similarity. Table 1 in
Section 2.1 shows the 10 WordNet-based semantic similarity measures
included in the experiment: hso, jcn, lch, lesk, lin, path, res, vector,
vectorp and wup.

simv 2 Two vector-to-vector similarity measures, originally developed to detect
paraphrases, were included: com (Corley and Mihalcea 2005) and fes
(Fernando and Stevenson 2008)

Total 240 |POS|·|C|·|simt|·|simv|
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Table 4. Details of text corpora C, used to weight terms in semantic vectors.

Corpus name Extracted on Doc Number Term Number Description

OSM wiki website 13 October 2011 6.4 × 103 2.5 × 106 Wiki website of OSM.
Irish Independent 28 May 2011 4.9 × 103 2.2 × 106 News stories.
Wikipedia 11 November 2011 3.8 × 106 2.5 × 109 English Wikipedia

were selected, of which 789 were nouns, 236 were adjectives and 381 were verbs. Because
of the complexity of computing their similarity in WordNet, adjectives were finally
discarded.

The similarity matrices Mab and Mba were constructed with the tool
WordNet::Similarity (Pedersen et al. 2004). This pre-computation offers the possi-
bility of empirically observing the temporal complexity of each measure. Bearing in mind
the variability induced by the implementation of the measures, it is possible to notice
that shortest path-based measures (path, res, jcn, lin and wup) are remarkably faster to
compute than both the gloss-based ones (lesk, vector and vectorp) and the lexical-chains
of hso.

5.4. Experimental results

For each of the 240 combinations {POS, C, simt, simv}, we computed the tie-corrected
Spearman’s correlation coefficient ρ, which expresses the correlation between the rank-
ings computed by our similarity approach applied to the OSM Semantic Network and the
MDSM evaluation data set. The correlation ρ is computed between the human and the
machine-generated rankings over the 62 term pairs.10 This correlation captures the cogni-
tive plausibility of our computational approach, using the MDSM evaluation data set as
ground truth, where ρ = 1 corresponds to perfect correlation, ρ = 0 corresponds to no
correlation and ρ = −1 corresponds to perfect inverse correlation. For the cases includ-
ing only verbs (POS = VB), the correlations with the human data set were very weak
(ρ ∈ [−.1,.4]) and obtained insufficient statistical significance (P > .1). For this reason,
we excluded these cases from the analysis, and the resulting correlations are not reported.
By contrast, all the other parameter combinations obtained high statistical significance
(P < .001).

To measure the performance of a particular parameter (e.g. C = Null or simt = lin), all
the cases where that parameter is used are treated as a set of ρ. By looking at the distribution
of ρ within these sets, it is possible to notice that the distributions are often skewed to the
left, i.e. towards lower values. For this reason, we consider the median to be a more robust
descriptor of central tendency than the mean. Table 5 reports the detailed results of the
cognitive plausibility of our approach to lexical similarity. For example, when the POS
filter is set to NN , the distribution of ρ results in a ρ̃ = .68, with a maximum value of .81.
The distributions of ρ are displayed in Figure 2. This allows for an intuitive understanding
of the impact of each parameter option on the ρ distribution.

POS filter. The selection of certain parts of speech (POS) have a noticeable impact on
the results. As is reasonable to expect, given the descriptive nature of the OSM Semantic
Network definitions, nouns (NN) carry most of the term semantics, with ρ̃ = .68 Verbs
(VB) showed a very weak correlation with the human data set and, because of the low
statistical significance of their correlation tests, were not included in the analysis. The com-
bination of nouns and verbs (NN VB) performs marginally better than nouns by themselves
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Table 5. Results summary of cognitive plausibility. The central tendency of each parameter is
summarised by the median ρ̃, its lower and upper quartiles and its maximum value.

Param name Param value Median ρ̃
25%–75%
quartiles Max ρ

simv com .7∗ .64 .75 .81
fes .66 .56 .73 .79

POS NN VB .7∗ .63 .75 .81
NN .68 .56 .73 .81
VB − − − −

C Null .7∗ .62 .76 .81
Wikipedia .7 .6 .73 .8
Irish Indep .7 .6 .74 .79
OSM Wiki .67 .59 .74 .81

simt jcn .75∗ .73 .75 .77
lch .74 .69 .76 .81
wup .74 .66 .78 .8
res .72 .69 .77 .81
hso .71 .7 .73 .76
path .7 .66 .76 .77
lin .67 .58 .75 .81
vector .62 .58 .66 .68
vectorp .56 .55 .64 .69
lesk .52 .45 .55 .6

All − .69 .6 .74 .81

Note: ∗Indicates best performance.
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Figure 2. Cognitive plausibility of the similarity measure against the MDSM evaluation data set.
The box plot shows the distribution of ρ, sorted by the median in ascending order. For each value of
the parameter, the box plot shows the smallest ρ, the 25% quartile, the median, the 75% quartile and
largest ρ. The white diamond represents the mean.
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(ρ̃ = .7). The inclusion of verbs also slightly reduces the dispersion, and the best results
are obtained when both nouns and verbs are included. When compared with a paired t-test,
the correlations of cases with NN VB and NN are significantly different (P < .01).

Corpus C. The corpus C determines the vector weights. Figure 2 shows ρ grouped by
the four corpora included in this study. The Null, Irish Independent and Wikipedia corpora
have very close medians (.7), with the quartiles of the distribution of Null being higher.
The OSM wiki website shows slightly lower cognitive plausibility (ρ̃ = .67). Therefore,
it is clear that the corpus-based weights do not improve the cognitive plausibility of the
approach. This is consistent with the findings of Fernando and Stevenson (2008), who
showed that in the area of paraphrase detection such weighting schemes slightly worsen
the performance. The reasons for this counter-intuitive result can be various. The OSM
wiki website and Irish Independent corpora bear an obvious bias (i.e. a geographic lexicon
and news stories), and Wikipedia obtains similar results, indicating that the corpus size has
no impact on the cognitive plausibility. The weighting scheme (classic TF–IDF) could be
sub-optimal compared to other schemes, such as BM25 (Jonesh et al. 2000).

Vector-to-vector similarity measure simv. The vector similarity measure, simv, has a
stronger impact than the corpus on the approach performance. Corley and Mihalcea’s com
approach shows high cognitive plausibility (ρ̃ = .7), while Fernando and Stevenson’s fes
tends to obtain lower results (ρ̃ = .66). When compared with a paired t-test, the results of
the two approaches are significantly different (P < .01). While in paraphrase detection fes
performs slightly better than com, in the context of semantic similarity the opposite is true
(Fernando and Stevenson 2008).

Term-to-term similarity measure simt. The term-to-term measure, simt, displays
higher variability than the other three parameters, and its analysis requires more caution.
The measure jcn has the highest mean (.75) and reaches .77 as max ρ. Measures lch and
wup have a comparable median (.74) and obtain a higher max value (≈ .8). However, as it
is possible to notice in Figure 2, wup has a wider distribution, with a minimum substan-
tially lower than jcn and lch (.51). Another measure that falls in the top performing group
is res, with a lower median (.72) but relatively high quartiles and maximum (.69, .77 and
.81, respectively). Thus, the three measures that provide the most promising results are jcn
(Jiang and Conrath 1997), lch (Leacock and Chodorow 1998) and res (Resnik 1995). All
the other measures have either considerably lower medians, maximum values or have very
wide distributions that show low stability in the results.

Fixing the other parameters to optimal values (POS = NN VB, C = Null, simv =
com), the cognitive plausibility of the three top performing simt is ρ = .77 ± .23 for jcn,
.76 ± .17 for lch, and .77 ± .1 for res, where the confidence intervals were computed with
the Hunter–Schmidt meta-analytical method, with P < .05. These three measures maintain
a high performance even with suboptimal POS (NN), respectively, .76 ± .18 (jcn), .81 ±.09
(lch) and .7±.08 (res). The stability of these results is further confirmed when selecting a
suboptimal corpus C, such as the OSM wiki website. Even in this case, the correlation with
the human data set falls in the interval [.71, .81], indicating high cognitive plausibility.

6. Conclusions

In this article, we tackled the challenge of devising a computational model for the semantic
similarity of terms in a volunteered geographic lexicon. Based on the recursive intuition
that similar terms tend to be defined using similar terms, the proposed approach to compute
the semantic similarity of volunteered lexical definitions combines existing WordNet and
paraphrase-detection techniques. The following conclusions can be drawn:
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• Volunteered lexical definitions of geographic terms show high variability in length
and low consistency, as generally observed in crowdsourcing projects. As shown
in Section 3, such definitions are often circular, underspecified and overspecified.
This makes automatic semantic analyses challenging, making existing techniques
unsatisfactory. Simple measures based on term overlap between lexical definitions
are inadequate (ρ ∈ [−.l,.l].). WordNet similarity measures applied directly to
geographic terms obtain low cognitive plausibility (ρ ∈ [.24, .5]). Corpus-based
technique LSA falls in interval ρ ∈ [.54, .64].

• Our approach quantifies the semantic similarity of geographic terms by compar-
ing their volunteered lexical definitions, using paraphrase-detection techniques and
WordNet as a knowledge base. The method was evaluated against human-generated
similarity judgements, obtaining high cognitive plausibility (ρ ∈ [.71, .81]). Even
without expert- authored, sophisticated conceptual models, our approach provides a
highly-plausible measure of semantic similarity for volunteered geographic terms,
purely relying on volunteered lexical definitions.

• From a pragmatic viewpoint, the following guidelines to select input parameters
{POS, C, simt, simv} can be adopted. Nouns should be included in the POS filter;
verbs slightly improve the results. The TF–IDF weighting scheme does not seem to
improve the results, making C = Null preferable to other corpora because it is com-
putationally less expensive. Term-to-term similarity measures simt either by Jiang
and Conrath (1997), Leacock and Chodorow (1998) or Resnik (1995) obtain good
results. As vector-to-vector similarity function simv, the paraphrase-detection tech-
nique by Corley and Mihalcea (2005) outperforms the technique by Fernando and
Stevenson (2008). As these guidelines refer to general similarity judgements on geo-
graphic terms, particular similarity-based tasks might require a different parameter
tuning.

The approach we have presented in this article can be applied to a number of complex
semantic-centred tasks, within the same lexicon or between different lexicons. In the con-
text of data mining, it can be used to cluster similar terms together and identify patterns in
the spatial distribution of terms. The comparison of terms based on their lexical definitions
can also support information integration and alignment between different VGI lexicons,
increasing semantic interoperability across diverse geographic communities and the emer-
gent constellation of open knowledge bases (Ballatore et al. 2013). Semantically similar
terms are needed to perform query expansion and relaxation in GIR, supporting the users
in the querying process (Cardoso and Silva 2007).

Possible extensions to this work might focus on the syntactical aspects, which are
ignored in the bag-of-words model (Kavouras et al. 2005). Although the approach pre-
sented in this article is geared towards the context of VGI, it could be applied to other
geographic information repositories. Furthermore, the validation of the approach on larger
human-generated data sets may reveal insights on the strengths and weaknesses of the
approach. A deeper understanding of similarity measures would facilitate the usage of
the ever-increasing informational wealth extracted by human agents from the implicit
geographic ‘knowledge soup’ residing in their minds.

Notes
1. http://openstreetmap.org, http://ushahidi.com (acc. March 19, 2013)
2. http://wiki.openstreetmap.org/wiki/Editing (acc. March 19, 2013)

http://openstreetmap.org
http://ushahidi.com
http://wiki.openstreetmap.org/wiki/Editing
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3. http://www.ordnancesurvey.co.uk/oswebsite/ontology (acc. March 19, 2013)
4. http://wiki.openstreetmap.org/wiki/OSM_Semantic_Network (acc. March 19, 2013)
5. http://wiki.openstreetmap.org/wiki/Any_tags_you_like (acc. March 19, 2013)
6. The data set is available online at http://github.com/ucd-spatial/Datasets
7. http://text-similarity.sourceforge.net (acc. March 19, 2013)
8. See implementation at http://lsa.colorado.edu
9. http://nlp.stanford.edu/software/corenlp.shtml (acc. 19 March 2013)

10. The 62 pairs in the MDSM evaluation data set are grouped in six questions. To compute ρ, we
utilise the Hunter–Schmidt meta-analytical method across the six questions (Field 2001).
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