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Abstract

Correct calculation of stresses at the interface of bonded or otherwise
joined materials plays a significant role in many applications. It is there-
fore, important that traction at the material interface is calculated as
accurately as possible. This paper describes procedures that can be em-
ployed to achieve this goal by using centre-based finite volume method.
Total traction at the interface is calculated by decomposing it into nor-
mal and tangential components, both being calculated at each side of the
interface, and applying the continuity assumption. The way in which the
traction approximation is achieved depends on calculation of tangential
gradient of displacement at the interface. To this end, three different
methods are proposed and validated against problems with known solu-
tions. It was shown than all methods can be successfully used to simulate
problems with multi-material domains, with the procedure based on finite
area method being most accurate.

1 Introduction

In the last two decades, Finite Volume (FV) method has established itself as a
noteworthy alternative to the widely used finite element (FE) method for the so-
lution of stress analysis problems. Application of both cell-centred (collocated)
and vertex-centred types of the method in the stress analysis can be found in
the literature. Demirdžić and co-workers pioneered application of the collo-
cated FV method to linear-elasticity [1–4], thermo-elastoplasticity [5], thermo-
viscoelasticity [6] and incompressible elasticity [7, 8]. Applications of the collo-
cated FV method in the field of dynamic fracture problems can be attributed to
Ivanković and co-workers [9–16]. Development of aforementioned procedures for
stress analysis problems also opened a possibility of using the same methodology,
i.e. cell-centred FV method in this case, for solving coupled multiphysical prob-
lems, such as fluid-structure interaction problems [17–19]. In this way, the usage
of additional softwares for data transfer between different numerical methods
(and softwares), eg. FV for fluid and FE for solid domain, their maintenance,
etc., can be avoided, thus saving computational time and producing more effi-
cient solvers. Most important contribution to the development and application
of vertex-centred FV method is due to Cross and co-workers [20–24]. Among
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other contributions one should also mention work by Wheel [28–30] who has also
proposed FV formulation for stress analysis in thick and thin plates [31], and
Després and co-workers, who recently introduced a new cell-centred Lagrangian
scheme on unstructured mesh for hyperelasticity based on Glace scheme from
compressible gas dynamics [25–27].

Nevertheless, most of the aforementioned studies consider homogeneous ma-
terials and according to authors’ knowledge there is no published study which
would give detailed description of the FV discretisation for deformable bodies
consisting of two or more dissimilar solid materials. However, joining of dissimi-
lar materials is frequently used in mechanical engineering. Due to the difference
in the (elastic) properties of the constituent materials, their interface can be the
origin of stress singularities and/or discontinuities and potential source of dam-
age onset. Since the continuum assumption is not valid across multi-material
interface, discretisation of mathematical model at the interface require special
care in order to prevent occurrence of physically unrealistic stresses near the
interface.

This paper describes the application of collocated FV method for discreti-
sation of multi-material linear-elastic model with special attention paid to dis-
cretisation of traction at the interface. Numerical procedure is implemented in
OpenFOAM [32].

2 Mathematical model

Isothermal multi-material linear-elastic continuum by neglecting body forces is
considered whose dynamic behaviour is described by linear momentum conser-
vation law and corresponding linear elastic constitutive relation:∫

V

ρ
∂2u
∂t2

dV =
∮
S

n•σ dS, (1)

σ = µ
[
∇u + (∇u)T

]
+ λ tr (∇u) I, (2)

where ρ is the density of elastic material, V is the volume of the continuum,
n is the outward pointing unit normal to the surface S of the body, u is the
displacement vector in respect to initial configuration, σ is the Cauchy stress
tensor and µ and λ are the Lamé’s coefficients:

µ =
E

2(1 + ν)
(3)

λ =


νE

1 − ν2
, for plane stress

νE

(1 − 2ν)(1 + ν)
, for plane strain and 3D

(4)

with ν representing Poisson’s ratio.
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The traction vector t = n•σ on the right-hand side of Eq. (1) can be
expressed in terms of displacement vector u using constitutive equation (2) as
follows:

t = n•σ = µn•∇u + µ∇u•n + λ tr (∇u)n. (5)

This expression is transformed into the form which is more suitable for discreti-
sation using collocated finite volume method, i.e. the traction vector is first
decomposed into normal and tangential component:

tn = (2µ + λ)n•∇un + λn tr(∇tut), (6)

tt = µn•∇ut + µ∇tun, (7)

where ∇t = (I − nn)•∇ is the tangential gradient operator and subscripts n
and t represent the normal and tangential components of a vector, respectively.
Using Eqs. (6) and (7) the traction vector can now be expressed in terms of
normal and tangential derivative of displacement field:

t = (2µ + λ)n•∇u − (µ + λ)n•∇ut + µ∇tun + λn tr (∇tut). (8)

Momentum equation (1) with the traction defined by Eq. (8) is mathemat-
ically equivalent to the form of the model used in [33], where

t = (2µ + λ)n•∇u − (µ + λ)n•∇u + µ(∇u)T + λn tr (∇u). (9)

However, a full separation of the normal derivative of displacement enables
calculation of the normal derivative directly at the control-volume faces what
prevents more efficiently an occurrence of checker-board oscillation pattern in
the numerical solution [34]. This is especially important in the case of multi-
material elastic body since region around the interface can be strong source of
disturbances causing these oscillations.

The specification of the problem is completed with the definition of the
domain in space and time and the initial and boundary conditions. The initial
condition consists of the specified distribution of displacement u and velocity
∂u/∂t at time zero. The boundary conditions, either constant or time varying,
can be of the following type: fixed displacement, plane of symmetry and fixed
traction.

3 Numerical method

Mathematical model is discretised in space using second order accurate collo-
cated unstructured FV method while numerical integration of the model in time
is performed using first order accurate implicit method. Description of discreti-
sation procedure is divided into two parts: discretisation of the computational
domain and equation discretisation.
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3.1 Discretisation of the computational domain

The discretisation of the computational domain consists of the discretisation
of the time interval and the discretisation of space. The time interval is split
into a finite number of time-steps ∆t and the equations are solved in a time-
marching manner. According to unstructured FV discretisation, computational
space is divided into a finite number of convex polyhedral control volumes (CV)
or cells bounded by convex polygons (faces). The cells do not overlap and fill the
spatial domain completely. Figure 1 shows a simple polyhedral control volume
VP around the computational point P located in its centroid, the face f , the face
area Sf , the face unit normal vector nf and the centroid N of the neighbouring
CV sharing the face f . The geometry of the CV is fully determined by the
position of its vertices.

In this study it is assumed that an interface between different elastic ma-
terials coincides with the internal CV faces. In general, however, a CV can be
bounded by a combination of ordinary internal faces (f), internal faces at the
multi-material interface (i) and boundary faces (b):

SP = ∂VP =
∑

f

Sf +
∑

i

Si +
∑

b

Sb, (10)

where SP is the boundary surface of a control volume VP .

3.2 Discretisation of the mathematical model

The second-order FV discretisation of an integral conservation equation trans-
forms the surface integrals into sums of face integrals and approximates them
and the volume integrals to the second order accuracy by using the mid-point
rule. Temporal discretisation is carried out by numerical integration of govern-
ing equation in time from the old time instance to to the new time instance
tn = to + ∆t using first order accurate implicit Euler scheme [34].

The fully discretised counterpart of the momentum equation (1) for the
control volume VP reads:

ρP
un

P − 2uo
P + uoo

P

(∆t)2
VP =

∑
f

tn
f Sf +

∑
i

tn
i Si +

∑
b

tn
b Sb, (11)

where the subscript P represents the cell-centre value and subscripts f , i and
b represent face-centre value for internal, interface and boundary face, respec-
tively. The superscripts n, o and oo represent values evaluated at the new time
instance tn and two previous time instances to and too = to − ∆t, respectively.
As one can see from the left hand side of Eq. (11), the cell-centre acceleration
is calculated using two old-time levels of displacement, thus representing a first-
order accurate approximation. Following section describes the discretisation of
traction for different types of CV faces.
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3.2.1 Traction at internal faces

Approximation of the traction tn
f at the internal CV faces which do not coincide

with the multi-material interface is obtained by discretisation of Eq. (8) as
follows:

tn
f =(2µf + λf )nf •(∇u)n

f − (µf + λf )nf •(∇ut)n
f

+ µf (∇tun)n
f + λfnf tr(∇tut)n

f .
(12)

The face normal derivative of displacement nf • (∇u)n
f in the first term on

the right-hand side of Eq (12) is discretised as follows (see [35]):

nf •(∇u)n
f = |∆f |

un
N − un

P

|df |︸ ︷︷ ︸
Orthogonal contribution

+ (nf − ∆f )•(∇u)n
f ,︸ ︷︷ ︸

Non-orthogonal correction

(13)

where ∆f = df/(df •nf ) (see Fig. 1). The orthogonal contribution in Eq. (13)
is treated implicitly, while the non-orthogonal correction is explicit1. Discreti-
sation procedure defined by expression (13) is also applied to the face normal
derivative of tangential displacement nf •(∇ut)f in the second term on the right-
hand side of Eq. (12).

Last two terms on the right-hand side of Eq. (12) as well as non-orthogonal
corrections in the first two terms are treated as explicit after discretisation
and for their calculation tangential gradient of displacement field is needed at
the CV faces. The face-centre gradient of displacement is calculated by linear
interpolation of the neighbouring cell-centre values,

(∇u)f = fx(∇u)P + (1 − fx)(∇u)N , (14)

where fx = fN/PN is the interpolation factor. The cell-centre gradient of
displacement is calculated using discretised Gauss integral theorem,

(∇u)P =
1

VP

∑
f

nfufSf , (15)

where uf is the face-centre displacement which is calculated by linear interpola-
tion of the neighbouring cell-centre values. Equation (15) will give a second or-
der accurate approximation of cell-centre gradient if face-centre displacement is
calculated with second order accuracy. Simple linear interpolation (see Eq.(14))
will give second order approximation of variable in face centre only if line PN
intersects face f in its centroid. Otherwise linear interpolation with “skewness”
correction must be applied, i.e.

uf = fxuP + (1 − fx)uN + mf •(∇u)f , (16)

1Here, term explicit means that the expression will be evaluated using displacement field
from the previous iteration and it will contribute to the right-hand side of the resultant linear
algebraic equation.
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where mf is the skewness correction vector, which points from the intersection
point between the line PN and the face f to the face centre, as shown in Fig.1.

The cell-centre displacement gradient needed for skewness and non-orthogo-
nal correction and all other explicit terms in the discretised momentum equation
are used from previous outer iteration.

3.2.2 Traction at the interface

Approximation of traction vector tn
i at the internal CV faces coinciding with

the multi-material interface must be derived with a special care. Since the nor-
mal derivative of displacement is discontinuous across the interface, expression
(8) is valid only up to the interface. Taking that into account and using the
fact that displacement and traction must be continuous across the interface,
approximation of the traction will be derived in such a way to ensure physically
realistic solution near the interface and reasonable convergence properties of the
solution procedure.

Figure 2 shows control volumes VP and VNi with the common face i at the
interface between two different elastic materials. Different properties at the two
sides of the interface are designated with the subscripts ia and ib where side ia of
the interface belongs to control volume VP . Derivation of traction approximation
at the centre of the face i is carried out separately for the normal and tangential
component. Normal component of the traction defined by Eq. (6) is discretised
separately at the left and right side of the interface as follows:

(tn)ia = (2µia + λia)
(un)i − (un)P

δan
+ λiani tr(∇tut)ia, (17)

(tn)ib = (2µib + λib)
(un)Ni − (un)i

δbn
+ λibni tr(∇tut)ib, (18)

where it is assumed that mesh is orthogonal at the face i. Taking into account
continuity of traction across the interface, (tn)ia = (tn)ib, one can express the
normal component of displacement vector at the face i by combining Eqs. (17)
and (18) as:

(un)i =
(2µia + λia)δbn(un)P + (2µib + λib)δan(un)Ni

(2µia + λia)δbn + (2µib + λib)δan

+
δanδbn [λibni tr(∇tut)ib − λiani tr(∇tut)ia]

(2µia + λia)δbn + (2µib + λib)δan
.

(19)

where δan and δbn are distances between cell centres of control volumes VP and
VNi and common face, respectively, as shown in Fig.2.

This expression can be further simplified by taking into account continuity of
the tangential gradient across the interface, i.e. (∇tu)ia = (∇tu)ib. However, this
will not be done at this stage in order to leave a possibility to analyse different
approaches for calculation of tangential gradient at the interface. Substituting
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Eq. (19) into Eq. (17), a final expression for the approximation of the normal
traction is obtained:

(tn)i =(2µ + λ)i

(un)Ni − (un)P

δin

+
(2µia + λia)δbnλibni tr(∇tut)ib + (2µib + λib)δanλiani tr(∇tut)ia

(2µia + λia)δbn + (2µib + λib)δan
,

(20)

where δin = δan + δbn and (2µ + λ)i is the material property at the interface
obtained by so-called harmonic interpolation:

(2µ + λ)i =
(2µia + λia)(2µib + λib)

δbn

δin
(2µia + λia) +

δan

δin
(2µib + λib)

. (21)

Applying the same procedure for the tangential component of traction, fol-
lowing expressions for the tangential displacement and traction are obtained:

(ut)i =
µiaδbn(ut)P + µibδan(ut)Ni

µiaδbn + µibδan

+
δanδbn [µib(∇tun)ib − µia(∇tun)ia]

µiaδbn + µibδan
,

(22)

(tt)i =µi

(ut)Ni − (ut)P

δin

+
µiaµibδbn(∇tun)ib + µibµiaδan(∇tun)ia

µiaδbn + µibδan
,

(23)

where µi is a Lamé’s coefficient at the interface obtained by harmonic interpo-
lation:

µi =
µiaµib

δbn

δin
µia +

δan

δin
µib

(24)

By summing Eqs. (20) and (23), the final expression for the interface traction
is obtained:

ti =(2µ + λ)i

uNi − uP

δin
−
[
(2µ + λ)i − µi

] (ut)Ni − (ut)P

δin

+
(2µia + λia)δbnλibni tr(∇tut)ib + (2µib + λib)δanλiani tr(∇tut)ia

(2µia + λia)δbn + (2µib + λib)δan

+
µiaµibδbn(∇tun)ib + µibµiaδan(∇tun)ia

µiaδbn + µibδan
,

(25)

where the first term on the right-hand side is treated as implicit and remaining
terms are explicit. One can note that in the case of equal materials at the two
sides of the interface, Eq. (25) is reduced to Eq. (12) and Eqs. (19) and (22)
are reduced to the linear interpolation formula.
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3.2.3 Calculation of tangential gradient of displacement at the in-
terface

Application of Eqs. (19), (22) and (25) require evaluation of the tangential gra-
dient of displacement at the interface. Three different procedures are proposed.
The simplest approach is based on the application of already calculated gradi-
ents in the neighbouring cell centres. In that sense, two different procedures
can be used. In the first procedure, tangential gradient of displacement at the
interface is extrapolated from the neighbouring cell centres, i.e.

(∇tu)ia = (I − nini)•(∇u)P , (26)

(∇tu)ib = (I − nini)•(∇u)Ni. (27)

and the procedure is referred to as extrapolated method. Using this procedure
discontinuity of the tangential gradient is present across the interface but it
tends to zero with the mesh refinement. In the second procedure, tangential
gradient is calculated using linear interpolation of the neighbouring cell values,
representing the interpolated method, i.e.

(∇tu)ia = (∇tu)ib = (I − nini)• [fx(∇u)P + (1 − fx)(∇u)Ni] . (28)

This procedure forces the continuity of the tangential gradient across the in-
terface but the use of linear interpolation is dubious since normal derivative of
tangential gradient is discontinuous across the interface.

The third approach is to calculate tangential gradient of displacement di-
rectly at the interface. Let the interface be represented by the surface mesh
consisting of the arbitrary polygonal control areas (faces). In this approach,
one has to calculate the face-centre tangential gradient of displacement using
face-centre displacements given by Eqs. (19) and (22). For this purpose, the
surface Gauss’ integral theorem is used, which, for a displacement u defined on
surface S bounded by closed line ∂S, reads as follows [36,37]:∫

S

∇tu dS =
∫

∂S

mu dL −
∫

S

κnu dS, (29)

where n is the unit normal vector on the surface S, m is the unit bi-normal
vector perpendicular to a line ∂S and tangential to surface S and κ is the mean
curvature of the interface.

Approximation of the face-centre tangential gradient of displacement is ob-
tained by discretising Eq. (29) on the control area Si (see Fig. 3) using basic
principles of the finite volume discretisation procedure. Thus, tangential gra-
dient of displacement at the centroid of control area Si is calculated using the
following expression:

(∇tu)i =
1
Si

∑
e

meueLe − κinivi, (30)

where surface integrals over the control area Si and line integrals over the control
area edge e of length Le are approximated using the mid-point rule. Subscript
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e implies the value of the variable in the middle of the edge e and summation is
performed over all edges closing the face i. The mean curvature at the control-
area centre is calculated as follows:

κi =
1
Si

∑
e

meLe. (31)

The edge-centre displacement ue is calculated using the following linear in-
terpolation formula:

ue = (Te)T
• [exTP •uP + (1 − ex)TN •uN ] , (32)

where ex is the interpolation factor calculated as the ratio of geodetic distances
eN and PeN (see Fig. 4):

ex =
eN

PN
, (33)

and TP , TN and Te are the tensors of transformation from the global Cartesian
coordinate system to the edge-based local orthogonal coordinate system, as
defined in Fig. 4.

The above described finite volume discretisation procedure intended for dis-
cretisation on curved surface mesh is refereed to as the finite area method (FAM).
More details on this method can be found in [38,39].

3.2.4 Traction at boundary faces

Approximation of the traction at the boundary faces depends on the specified
boundary condition. For example, in case of specified displacement, traction is
approximated using following expression:

tn
b =(2µb + λb)

un
b − un

P

δn
− (µb + λb)

(ut)n
b − (ut)n

P

δn

+ µb(∇tun)n
b + λbnb tr(∇tut)n

b ,

(34)

where subscript b represents values at the CV boundary faces and δn is the nor-
mal distance between neighbouring cell-centre and boundary face. Tangential
gradient of displacement is extrapolated from neighbouring cell.

On the other hand, in the case of specified traction at the boundary face, Eq.
(34) is used to calculate displacement un

b needed for calculation of displacement
gradient.

3.2.5 Resulting linear algebraic equation

Applying described discretisation of traction for the different types of CV faces,
Eq. (11) can be written in the form of linear algebraic equation which relates the
value of the unknown variable at the CV centre with the values at the centres
of the neighbouring CVs. Such linear algebraic equation assembled for cell P
reads:

aP un
P +

∑
N

aNun
N +

∑
Ni

aNiun
Ni = rn

P , (35)
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where one should distinguish ordinary neighbouring cells N and neighbouring
cells Ni sharing faces at the multi-material interface with the considered cell
P . Diagonal coefficient aP , neighbour coefficients aN(i) and source term rP are
defined by following expressions:

aP =
ρP VP

(∆t)2
+
∑

f

(2µf + λf )
|∆f |
|df |

Sf +
∑

i

(2µ + λ)i

1
δin

Si, (36)

aN = −(2µf + λf )
∆f

|df |
Sf , aNi = −(2µ + λ)i

1
δin

Si, (37)

rn
P = ρP VP

(
2uo

P

(∆t)2
− uoo

P

(∆t)2

)
+
∑

f

(2µf + λf )(nf − ∆f )•(∇u)n
f Sf

−
∑

f

(µf + λf )
[
|∆f |

(ut)n
N − (ut)n

P

|df |
+ (nf − ∆f )•(∇ut)n

f

]
Sf

+
∑

f

µfnf •(∇tun)f Sf +
∑

f

λfnf tr [(∇tut)f ] Sf

−
∑

i

[
(2µ + λ)i − µi

] (ut)Ni − (ut)P

δin

+
∑

i

(2µia + λia)δbnλibni tr(∇tut)ib + (2µib + λib)δanλiani tr(∇tut)ia

(2µia + λia)δbn + (2µib + λib)δan

+
∑

i

µiaµibδbn(∇tun)ib + µibµiaδan(∇tun)ia

µiaδbn + µibδan
,

(38)

where the contribution from the boundary faces, depending on the specified
boundary conditions, is omitted.

3.3 Solution procedure

Equation (35) is assembled for each CV in the mesh resulting in the system of
algebraic equations:

[A][u] = [r], (39)

where [A] is the sparse square matrix with coefficients aP on the diagonal and
aN(i) off the diagonal, [u] is the displacement vector consisting of displacements
for all computational points, and [r] is the right-hand side vector consisting of
rn

P terms for all CVs. The above system is solved for the three components of
u in a segregated manner.

Solution procedure consists of following steps:

1. Switch to the new time step and initialize the value of dependent variable
with the value from the previous time step;
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2. Calculate face-centre displacement for the internal faces using linear in-
terpolation formula (16) and for the faces at the multi-material interface
using Eqs. (19) and (22);

3. Calculate cell-centre gradient using Eq. (15) with face-centre displacement
obtained in the previous step;

4. Calculate face-centre gradient using linear interpolation (or using special
procedure for the faces at the interface)

5. Assemble and solve Eq. (39) for displacement u;

6. Return to step 1 if converged solution is reached, otherwise return to step
2.

The matrix [A] from Eq. (39) is symmetric and diagonally dominant even
in the absence of the transient term, which is important for steady-state cal-
culations. In this work, the system of equations is solved using the incomplete
Cholesky conjugate gradient solver (ICCG) [40].

It has to be mentioned that the discretised system described above includes
some explicit terms, depending on the displacement from the previous iteration.
Therefore, it would be unnecessary to converge the solution of Eq. (39) to a
very tight tolerance, as the new solution will only be used to update the explicit
terms. Only when the solution changes less than some predefined tolerance the
system is considered to be solved. In transient calculations, this is done for
every time-step, using the previously available solution as the initial guess.

4 Validation examples

In order to validate implemented procedures, three different test cases with
known solutions are considered. Namely, a thick-walled bi-material cylinder
subjected to both internal pressure and tangential loading, and multi-material
plate loaded in tension are simulated and results compared to those available in
literature.

4.1 A bi-material thick-walled cylinder - internally pres-
surised

Figure 5a shows a bi-material thick-walled cylinder with associated dimensions
and boundary conditions (similar problem was analysed in [41]). The problem is
considered as plane stress, with a quarter of domain modelled due to symmetry
for the sake of generality (the case can also be considered as axi-symmetric, ie.
one-dimensional.). Number of cells is set to 120 circumferentially and 50 radially.
The case is simulated as steady-state, with constant pressure, pi, applied to
inner bore surface. Outside surface is modelled as stress-free, and left and
bottom boundaries as symmetry planes. Material properties are associated with
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two distinguished areas given in the figure, with constant Poisson’s ratios of
ν1 = 0.35 and ν2 = 0.3 for all simulations, and E2/E1 varying from 0.2 to 10.

Comparison between numerical and analytical solutions is performed in
terms of circumferential and radial stresses in radial direction through cylin-
der, for which analytical solutions are as follows:

σr(r) =


r2
1pi − r2

2p12 + (p12 − pi)
(r1r2

r

)2

r2
2 − r2

1

, r1 ≤ r < r2

r2
2p12 − p12

(r2r3

r

)2

r2
3 − r2

2

, r2 < r ≤ r3

(40)

σθ(r) =


r2
1pi − r2

2p12 − (p12 − pi)
(r1r2

r

)2

r2
2 − r2

1

, r1 ≤ r < r2

r2
2p12 + p12

(r2r3

r

)2

r2
3 − r2

2

, r2 < r ≤ r3

(41)

where pressure at the interface, p12 is given as:

p12 =

2r2
1pi

E1(r2
2 − r2

1)
1

E2

(
r2
3 + r2

2

r2
3 − r2

2

+ ν2

)
+

1
E1

(
r2
2 + r2

1

r2
2 − r2

1

− ν1

) (42)

Figure 6 shows comparison between analytical and numerical solution at the
interface for E2/E1 = 10, when no special treatment in traction calculation at
the interface is carried out. It can be seen that results agree well overall, but
stress peaks are present at and near interface (in cells next to the interface).
This is a big drawback for the problems where stresses at the interface are
important, such as interfacial crack propagation. Stress peak magnitude could
be reduced using finer mesh next to the interface, but success is not guaranteed,
especially for complex interface shapes where necessary mesh refinement cannot
be easily achieved.

On the other hand, Fig.7 shows comparison between numerically calculated
stresses and analytical solutions using developed procedures. Only results using
extrapolated method are shown, but interpolated and FAM methods produce
almost identical results for this particular problem and relatively coarse mesh.
It can be seen that the agreement with analytical solution is excellent for all
E2/E1 ratios, with overall error being less than 1% for the mesh used and
adopted accuracy when solving resulting set of equations (set to 10−9).

4.2 A bi-material thick-walled cylinder - tangential trac-
tion applied

Next example has identical geometry to the previous one, except tangential
load is applied along external surface, whereas the inner bore surface is fixed, as
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shown in Fig.5b. Since axi-symmetry is not complied in terms of loading, the
whole geometry is modelled, with 480 cells circumferentially, and 50 in radial
direction. Analytical solution for this problem is based on work by Nie and Batra
[42], where they treated plane strain deformation of hollow nonhomogeneous
cylinders subjected to various boundary conditions. They showed that radial
and circumferential stresses are equal zero for any material distribution, whereas
shear stress distribution is given as

σrθ(r) = τ
r2
3

r2
(43)

and does not depend on shear modulus. Applying their procedure to a bi-
meterial compound cylinder, one can obtain radial displacements to be zero,
and the expression for circumferential displacement in radial direction as follows
(see Appendix A for more details):

uθ(r) =


τr2

3

2µ1

(
r

r2
1

− 1
r

)
, r1 ≤ r < r2

τr2
3

2

[(
1

µ1r2
1

− 1
µ1r2

2

+
1

µ2r2
2

)
r − 1

µ2

1
r

]
, r2 ≤ r ≤ r3

(44)

Figure 8 shows comparison between numerical predictions (only extrapo-
lated method) and aforementioned analytical solutions. Again, an excellent
agreement is achieved for all E2/E1 ratios using all procedures for traction cal-
culation at the interface.

4.3 A multi-material plate

The third test case considers a problem of free-edge stress singularity near the
interaction of the free surface and the interface of bonded materials. The case
geometry is shown in Fig.9a with associated mesh in Fig.9b. The only variable
geometry parameter is the mid-layer thickness, h, being 0, 0.002W , 0.005W and
0.01W , where 2W is the specimen width. Number of cells in y direction is 240
for all cases and material domains, with 120 cells in x direction for material
domains 1 and 2. Number of cells in x direction of the mid-layer depends on
thickness and is equal to 0 for h = 0, 250 for h = 0.002W and h = 0.005W ,
and 500 for h = 0.01W . The reason for such a high number of cells was to have
the cell aspect ratio near the edge and the interface closer to 1. Apart from
the mid-layer, where uniform mesh distribution is used, the specimen is meshed
using so-called geometrical distribution with aspect ratio between the last and
first cell size in each direction equal to 10000, to ensure very fine mesh near the
interface and free edge (order of µm), as indicated in Fig.9b, providing more
computational points/cells in log-log plot as discussed below.

This problem is analysed in details in [43] using two sets of material proper-
ties. Here, however, only the first set is analysed with properties given in Table
1. In short, a two-dimensional plate is subjected to tensile stress σ0 at the left
boundary, whereas the right boundary is modelled as symmetry plane. Due to
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symmetry, the upper boundary is also modelled as symmetry plane, whereas
other boundaries are stress free. Following the analysis by Ioka et al. [43] nor-
mal stresses, σxx, along interfaces between materials 1 and 3 (interface 13), and
2 and 3 (interface 23), are monitored, for four different mid-layer thicknesses.

Figure 10 shows comparison between calculated stress distributions using
extrapolated method with results from [43], where boundary element method
(BEM) was used. As can be seen, the differences between methods are negligible.
Simulations produce a r−p-type singularity in the vicinity of the interaction of
free surface and interface, typical for this kind of problem. Here, p stands for
the exponent of free-edge stress singularity and can be obtained analytically by
solving following characteristic equation (eg. [44]):

λ2(λ2 − 1)α2+2λ2[sin2(πλ/2) − λ2]αβ

+[sin2(πλ/2) − λ2]β2 + sin2(πλ/2) cos2(πλ/2) = 0
(45)

where
Re(λ) = 1 − ω (46)

and

α =
m2 − km1

m2 + km1

β =
(m2 − 2) − k(m1 − 2)

m2 + km1

(47)

are Dundurs’ parameters, with k = µ2/µ1 and mi = 4(1 − νi) for plane strain.
For example, in the absence of the mid-layer, using Eq. (45) one can obtain
p12 = 0.09336 whereas finite-volume method predicts the value of p12 = 0.09347
via nonlinear regression of calculated stress profile along the interface. Similarly
to previous two examples, there is no much difference between three proposed
methods for calculating tangential gradients in terms of stress profiles along
the interfaces for chosen mesh densities, as shown in Fig.11 for the case with
h = 0.01W . However, as noted earlier, the mesh in the mid-layer is very fine,
thus increasing the accuracy of gradient calculations in the interfaces’ regions,
and potentially reducing the differences between methods.

Let us now examine the same case with a coarser mesh, with the number
of cells in domains 1 and 2 as earlier, except a uniform meshing strategy is
employed, i.e. cells have the same aspect ratio throughout these domains. On
the other hand, the number of cells in mid-layer in x direction is decreased
from 500 to 10. Figure 12 shows stress distribution along interfaces 13 and 23
for three different methods with results from previous simulations using finer
mesh. As can be seen, there is no much difference between methods, except
in the region for r/W < 0.1. For smaller values of r/W , the interpolated
method deviate from finer-mesh results both in value and trend, whereas the
extrapolated and FAM methods have similar results and follow nicely finer-mesh
results up to the last cell. This is, however, expected since the size of the cell
in y direction was similar to the thickness of mid-layer, so free-edge singularity
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could not be picked-up. If the stress distribution along horizontal line in the
region where all three methods do not differ much, e.g. 15 mm from the free
edge (and upper symmetry plane) is plotted, as in Fig.13a, there is no obvious
difference between methods. However, when the region around mid-layer is
magnified, as given in Fig.13b, one can notice deviations from stress continuity
for extrapolated and interpolated methods in the cells next to the interfaces,
whereas the FAM method follows physically realistic, continuous trend.

According to presented results, it appears that three methods differ in ac-
curacy, what is to be investigated next. To this end, simpler bi-material plate
cases (h = 0), to avoid interface interactions due to their vicinity, with combina-
tion of material properties at interfaces 13 and 23 are set. Domain is discretised
using five different mesh densities with uniform, square, cells, namely, 18×54,
30×90, 90×270,150×450 and 450×1350, and the cases are simulated using all
three methods.

Figure 14 shows the maximum and average relative errors of displacement
magnitudes for coarse meshes when compared to the displacements of the finest
mesh (450×1350), for both material combinations. As can be seen, the maxi-
mum error, being always at the interface cells next to the free surface boundary,
is the smallest for FAM method for all cases. On the other hand, the average er-
ror for all cases was very similar between methods, with slightly better accuracy
of the FAM method.

Differences between methods in terms of stress distribution along the inter-
face are given for the coarsest mesh (18×54) and material combination 13 only,
but similar conclusions can be drawn for other cases. Normal and shear stresses
are compared with the finest mesh results and presented in Figure 15. It can be
seen that all methods do well again except near the free surface boundary. In
terms of normal stresses the interpolation method seems to have the smallest
maximum error, whereas extrapolation and FAM methods give similar, slightly
higher results. However, in terms of shear stresses, only FAM method, having
the smallest error, is able to simulate physically realistic distribution, with ex-
trapolation and interpolation methods leading to rather poor results with error
higher than 20%.

So far all three presented problems were modelled using structured hexago-
nal meshes due to simple problems’ geometries. However, in reality many prob-
lems have complex geometry, for which is difficult to produce a good hexagonal
mesh. Nevertheless, all three methods can also be used on unstructured meshes.
To demonstrate their capabilities, the bi-material case with material combina-
tion 13 is simulated on two unstructured meshes, with trigonal and polyhedral
cells, both with approximately 30 and 90 faces along vertical and horizontal
edges, respectively. The trigonal mesh (Fig.16a), containing 6070 cells, is pro-
duced in Gambit and converted to OpenFOAM using fluentMeshToFoam utility,
whereas the polyhedral mesh, containing 3187 cells (Fig.16b) is generated using
existing trigonal meshes of both material domains by means of polyDualMesh,
mergeMesh and stitchMesh utilities in OpenFOAM.

As can be seen in Figure 17, where stresses for all three methods and both
mesh types are compared with the fine hexagonal mesh stresses, the results are
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in the line with previous results on structured meshes, with FAM having better
overall accuracy in terms of normal and shear stresses along the interface. It
is, however, important to mention that simulations on polyhedral mesh were
50% faster than those on trigonal mesh due to less computational cells, but
with similar maximum and average error in terms of displacements and stresses
throughout computational domain. The accuracy of both is of the same order
as for corresponding hexagonal mesh errors.

5 Conclusions

A finite volume based application for stress analysis of multi-material domain
problems with accurate calculation of stresses at the material interface is pre-
sented. Three different methods of calculating tangential gradient of displace-
ments at the interface, necessary for traction calculation, are considered and
validated against problems given in literature. Two problems are geometrically
axi-symmetric and simulate a compound bi-material cylinder, one subjected to
pressure at the inner bore and the other one with tangential load applied to the
outer surface. It is shown that all three methods perform well with this type of
problem, producing negligible differences with analytical solutions.

All methods also agree well with published results when stress singularity
near free edge is investigated by calculating stress distribution along the interface
of multi-material plate subjected in tension, using refined mesh near interface
between materials and near the edge. However, with coarser and more uniform
mesh, interpolated procedure, i.e. the one where tangential gradient of displace-
ment at the interface is obtained by linear interpolation, produces significant
error near the free edge, whereas other two methods perform well. When stress
distribution across the interface is investigated, it is shown that FAM method,
i.e. finite area based method, is most accurate and produces physically realistic
continuous trend, although differences near the interface are below 0.2% for the
material properties considered, and can be neglected.

Bi-material plate simulations showed that FAM method produces the small-
est maximum error in displacements, and is the only method to produce phys-
ically realistic trends of both normal and shear stresses along interface with
coarser meshes. It is also worth noting that the average error for all methods
follows the second-order accuracy in space, whereas the maximum error fol-
low the first-order accuracy due to vicinity of boundary where the first-order
accuracy discretisation schemes are imposed.

Finally, the execution times using all three methods were very similar for
all simulations performed, with FAM being marginally slower than the other
two (less than 5%). Therefore, it is suggested to primarily use FAM method for
multi-material problems, although the extrapolated method can also be used
safely for some problems (i.e. with thin interfaces, where interpolation method
produce poorer results). It is also demonstrated that all methods can be used
on unstructured meshes with no significant loss in accuracy when compared to
simulations on structured meshes.
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A Analytical solution of tangentially loaded bi-
material cylinder

Differential equations describing a cylinder subjected to external loading in
cylindrical coordinates are as follows [42]:

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

σrr − σθθ

r
= 0

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

2
r
σrθ = 0

(A.1)

General solution of Eq. (A.1) in terms of stresses is given by following
expressions:

σrr =
1
r

∂ϕ

∂r
+

1
r2

∂2ϕ

∂r2

σθθ =
∂2ϕ

∂r2

σrθ = − ∂

∂r

(
1
r

∂ϕ

∂θ

) (A.2)

where Airy stress function, ϕ, for a homogeneous isotropic cylinder, is

ϕ = (C1 ln r + C2r
2 + C3r

2 ln r + C4)θ (A.3)

and Ci are integration constants.
For a bi-material cylinder, as shown in Fig.5b, above equations lead to the

following expressions for stresses

σ(k)
rr =

(
C

(k)
1

r2
+ 2C

(k)
2 + C

(k)
3 + 2C

(k)
3 ln r

)
θ

σ
(k)
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(
−C

(k)
1

r2
+ 2C

(k)
2 + 3C

(k)
3 + 2C

(k)
3 ln r

)
θ

σ
(k)
rθ = −C

(k)
1 (1 − ln r) + C

(k)
2 r2 + C

(k)
3 r2(1 + ln r) − C

(k)
4

r2

(A.4)

and displacements

u(k)
r = −θ(C(k)

1 + r2C
(k)
3 )

2µ(k)r
+ f(θ)(k)

u
(k)
θ =

rθ2C
(k)
3

2µ(k)
−
∫

f(θ)(k)dθ + f1(θ)(k)

(A.5)

where

f1(θ)(k) = −C
(k)
1 ln r

2µ(k)r
− C

(k)
2 r ln r

µ(k)
− C

(k)
3 r ln r(1 + ln r)

2µ(k)
− C

(k)
4

2µ(k)r
+rC

(k)
5 (A.6)
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f(θ)(k) = C
(k)
6 sin(θ) + C

(k)
7 cos(θ) (A.7)

and k is a material index (1 or 2 in this case).
Using boundary conditions

u(1)
r |r1 = u

(1)
θ |r1 = 0 σ(2)

rr |r3 = 0 (A.8)

and the condition of displacement continuity at the interface, it can be shown
that integration constants C

(k)
i are all equal 0 for i = 1, 2, 3, 6, 7 and k = 1, 2.

As a consequence, it follows that ur = 0, σrr = σθθ = 0 throughout cylinder.
Using boundary condition σrθ|r3 = τ , and determining C

(k)
4 constants, one can

obtain the expression for shear stress profile in a bi-material cylinder, being
independent on shear modulus:

σrθ(r) = τ
r2
3

r2
(A.9)

Now, using u1
θ|r1 = 0 and u1

θ|r2 = u2
θ|r2 , the only unknown constants, C

(k)
5 , can

be obtained, and hence the solution for circumferential displacement as:

uθ(r) =


τr2
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2µ1
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r
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1

− 1
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)
, r1 ≤ r < r2

τr2
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]
, r2 ≤ r ≤ r3

(A.10)
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[11] V. Stylianou, A. Ivanković, Finite volume analysis of dynamic fracture phe-
nomena - I. A node release methodology, International journal of fracture
113 (2) (2002) 107–123.
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Figure 5: Geometry of compound cylinder problems: a) internal pressure ap-
plied b) tangential loading applied
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b) a)

Figure 7: Stress distribution in pressurised cylinder: a) radial stress, σr, b)
circumferential stress, σθ
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b) a)

Figure 8: Stress distribution in tangentially loaded cylinder: a) shear stress,
σrθ, b) circumferential displacement, uθ
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Figure 9: Multi-material plate: a) geometry b) mesh
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a) b)

Figure 10: Normal stress distribution along interfaces: a) Interface 13 b) Inter-
face 23
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b) a)

Figure 11: Stress distribution along interfaces for finer mesh (h = 0.01W ): a)
Interface 13 b) Interface 23
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b) a)

Figure 12: Stress distribution along interfaces for coarser mesh (h = 0.01W ):
a) Interface 13 b) Interface 23
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b) a)

Figure 13: Stress distribution along mid-line for coarse mesh (h = 0.01W )
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a) b)

Figure 14: Error analysis for bi-material case: a) Material combination 13, b)
Material combination 23
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a) b)

Figure 15: Stress distribution along the interface for bi-material cases: a) Nor-
mal stress b) Shear stress
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a) b)

Material 1 

Material 3 

Figure 16: Segments of unstructured meshes for bi-material case: a) Trigonal
cells b) Polyhedral cells
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b)a) 

Figure 17: Stress distribution for bi-material unstructured mesh cases: a) Nor-
mal stress b) Shear stress (empty symbols: trigonal, filled symbols: polyhedral)
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Property Material 1 Material 2 Material 3
E, GPa 206.0 70.3 4.93

ν, - 0.300 0.345 0.330

Table 1: Material properties used in example 4.3
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