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Abstract

We analyse technological progress when knowledge has a large tacit

component so that transmission of knowledge takes place through direct per-

sonal imitation. It is shown that the rate of technological progress depends on

the number of innovators in the same knowledge network. Assuming the dif-

fusion of knowledge to mirror the geographical pattern of trade—the greater

the trade between two sites, the greater the probability that technical knowl-

edge flows between them—we show that a gradual expansion of trade causes

a sudden rise in the rate of technological progress.

JEL: O40

1 Introduction.

Underlying current models of technological progress is theassumption that re-

searchers stand on the shoulders of giants by having costless access to the entire

stock of human knowledge. Much of technology however, and technical skill in

particular, has a large tacit, “do it like this” element. To master a skill, it is not in

general sufficient to have access to blueprints, or textbooks and articles in a library:

you must also have contact with people who already possess the skill; and the ex-

tent of their mastery will determine, in part, the extent of yours. This paper looks

at how technology progresses when individuals learn by direct personal contact.

∗This paper is part of the International Trade and InvestmentProgramme of the Geary Institute at
UCD. I should like to thank the referees for their detailed and constructive criticisms of the submitted
draft. All errors are mine.
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Learning through imitation takes place as a follow the leader process. The

skill of each individual equals the skill of the most able practitioner he knows in

the previous generation, minus an imitation error that reflects individual ability.

Innovators do not get to stand on the shoulders of giants, butonly on the shoulders

of the tallest person they know.

In Section2 we show that the rate of technological progress under learning by

imitation depends on the difficulty of imitation, and on the size of the population

of innovatorsN. The larger is a connected group of innovators, the greater the

chance that a highly able person in one generation will be matched to a highly able

person in the previous generation whose skills will serve asa foundation for further

progress in technology.

The influential analysis of scale effects in growth models ofJones(1995) as-

sumes that the growth of technology is an increasing function of the labour force

involved in R&D, and a diminishing function of the level of technology. The model

here gives microfoundations for this specification based ona concrete form of the

spillover from aggregate to individual human capital considered byLucas(1988),

namely direct personal imitation.

What determines the size of population of imitatorsN? Rather than arbitrarily

equatingN with the population of some political or geographical unit,we suppose

that the diffusion of technology mirrors the geographical pattern of trade: the larger

the volume of trade between two sites, the greater probability that innovators at one

site have access to technological knowledge at the other.

What we are calling imitation here is closely related to the idea of familiar-

ization with the frontier technology inAghion, Comin and Howitt(2006) and fa-

miliarity in Goodfriend and McDermott(1998). Technical knowlege can be trans-

mitted through trade in a variety of ways. Flows of goods imply flows of people,

allowing potential innovators to meet directly. More important, seeing a new good

allows domestic producers to incorporate some of its physical features into their

product, or to infer the process used to produce the good and modify their own

processes accordingly. A familiar example of this process is the way that Amer-

ican car firms in the 1980s, faced with cheaper, more reliableJapanese imports,

began to imitate the quality control and inventory practices of Japanese firms.
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Trade here is assumed to follow a gravity model. In Sections3 and 4 each

site has the same population, allowing a closed form solution for the volume of

trade in terms of distance, population, and transport cost.The flow of knowledge

between cities creates a network where knowledge can diffuse along a chain from

one connected city to another, where two cities that are not directly linked can still

have knowledge flow between them through a third city to whicheach is directly

connected.

We show that the size of the knowledge network depends critically on the vol-

ume of trade. Below a critical level of trade, the economy is split into small, frag-

mented knowledge networks. As the critical trade volume is reached, these local

clusters coalesce into a large network that spans most sitesin the economy. Con-

sequently, a gradual rise in trade, as a result of increasingpopulation or reduced

transport cost, gives rise to a sudden increase in the rate oftechnical progress, as

the critical number of knowledge links is reached, and the connected population

of innovatorsN suddenly rises.1 While our concern is with learning by imitation,

exactly the same takeoff can occur in standard growth models where trade gives

access to more intermediate goods (Rivera-Batiz and Romer, 1991). The emphasis

here is on sudden growth accelerations: the model has nothing to say about rea-

sons why different economies should have different equilibrium levels of income

or rates of growth.

In Section5 we relax the assumption that there is a fixed number of cities

all with equal population, by allowing the number of cities,and the population

of each, to grow through time. We show that this simple mechanism gives rise

to an empirically realistic truncated Pareto distributionor power law for urban

population, and that knowledge networks continue to show threshold behaviour.

While our central concern is to understand the pattern of technological progress

when knowledge is tacit, the logic of learning by imitation implies that techno-

logical regress can occur if population falls. Section6 considers technological

retrogression in the context of the collapse of historical societies, showing how a

self-reinforcing cycle of urban flight can cause knowledge networks to collapse.

1This prediction that a fall in transportation costs can leadto a sudden spurt of innovation is
consistent with the rise in innovation
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While the purpose of this paper is to develop a theoretical model of growth

when innovators learn by imitating each other, its central empirical prediction, that

a gradual expansion of trade should be associated with a sudden spurt of inno-

vation, appears to accord with reality. In Sung Dynasty China the emergence of

a national market linked by waterways was associated with a surge in innovation

(Kelly, 1997), just as in eighteenth century England with the extension of turn-

pikes and canals. Similarly in nineteenth century America,the completion of the

Erie Canal led to a rise in patenting in adjoining areas (Sokoloff, 1988); while the

first wave of globalization at the end of the nineteenth century was associated with

a surge in the development and commercialization of fundamental technologies in

the 1880s (Smil, 2005).

This papers draws from several different literatures: tacit knowledge, endoge-

nous growth, interacting systems, trade and knowledge diffusion, and geography

and trade. The tacitness of technical skill is stressed byNelson and Winter(1982).

The link to the endogenous growth literature, particularlyJones(1995) andLucas

(1988), was mentioned above. The effect of market expansion on growth through

increased division of labour is examined byBecker and Murphy(1992), Goodfriend and McDermott

(1995), andMurphy, Shleifer and Vishny(1989), whileMcDermott(2002) empha-

sises the role of trade in development, albeit through increasing returns technolo-

gies; and the takeoff caused by threshold effect in knowledge networks is analogous

to the phase transitions surveyed byBrock and Durlauf(2001). The connection

between trade and technology diffusion is reviewed byKeller (2004), while the

modelling of geography and trade here followsAnderson and van Wincoop(2003)

andFujita, Krugman and Venables(1999).

2 Learning by Imitation.

There is a single general purpose technology that determines the quality of all

goods produced: multiple technologies do not change thingsmaterially but need

more notation.N producers use this technology. In Sections3 and4 we determine

N, but for now we treat it as given.

Individuals devote a fixed amount of effort to acquiring human capital. Ability

depends on the individual’s personal quality, and on the ability of the person he im-
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itates. The abilityait of individual i in generationt reflects his success in imitating

the most able individual he knows in the previous generationwhose ability isamax
t−1

ait = eit amax
t−1 (1)

whereeit represents an imitation error: most agents will not be as able as their

exemplar (the average Delta guitarist was inferior to Charlie Patton, the average

MIT PhD was not as smart as Paul Samuelson) so in most caseseit < 1.2

Taking logs, whereαit = logait andεit = − logeit , the minus highlighting the

fact that it is an imitation error and people are usually worse than their exemplar,

αit = α
max
t−1 − εit . (2)

This log error is normally distributed across imitators with meanµt and variance

σ2
t , εit ∼ N(µt,σ

2
t ).

The distribution of log abilityα in each generation is therefore normally dis-

tributed with mean

At = E(αmax
t−1 )−µt (3)

and varianceσ2
t . Define the growth rate of average human capital or technology as

gt = E(at)/E(at−1)−1. For a given difficulty of imitation reflected in the parameters

µ andσ, the rate of technical progress depends on the size of the pool of innovators:

Proposition 1. If the variance of learning is constant,σ2
t−1 = σ

2
t , the rate of tech-

nical progress under learning by imitation is

gt =
(

−c1+c2

√

logNt−1

)

σt−1−µt. (4)

2The role of the most talented person in the previous generation recalls
Murphy, Shleifer and Vishny(1991), although the analysis here hinges on the fact that the
linkage is stochastic rather than deterministic. The multiplicative, rather than additive error term,
allows the relative variation of talent to remain constant (people are only, say, half as good on
average as their exemplar) as ability rises.
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Proof. If there wereNt−1 producers last period, the expected value of the first term

in (3), from Cramér(1946, 374–375), is

E(αmax
t−1 ) = At−1+ ςt−1















√

2logNt−1−
log(logNt−1)+ log4π+2E(v1)

2
√

2logNt−1















(5)

where−v1 has log-gamma distribution with expected value E(v1)= 0.577 (Johnson, Kotz and Balakrishnan,

1995, 89–90).

The expression in brackets in (5) can be approximated to an accuracy of more

than 0.01 percent forN > 20 by (−c1+ c2
√

logNs−1), wherec1 = 0.624 andc2 =

1.482. It follows from (3) and (5) that the change in average log ability from one

generation to the next isAt −At−1 =
(

−c1+c2
√

logNt−1

)

σt−1−µt.

Because logE(at) = At +σ
2
t , if σ2

t−1 = σ
2
t the change in expected log abil-

ity is approximately equal to the growth in the level of average skill At −At−1 =

logE(at)− logE(at−1) ≈ gt. �

Note that the growth rate is increasing inσ the variability of the imitation error.

Just like a call option, all that matters is upside potential: the possibility for very

smart imitators to appear.

Imitation difficulty, reflected in the parametersµt andσt−1, depends on the

characteristics of the technology, and on the characteristics of the population of

imitators. Imitation difficulty rises with the level of technology when technological

advance consists of refinements of existing techniques, with each advance demand-

ing greater exactitude: steel making requires more precisecontrol of temperature

and selection of raw materials than iron smelting; and screws require more pre-

cise machining than nails. Alternatively,µ may rise andσ fall through whatJones

(1995) calls “fishing out”: the easiest innovations are made first,so that a constant

rate of innovation requires greater effort. By contrast, serendipitous technological

advances that result from a single clever insight, such as sewing needles, stirrups

or double-entry book keeping, are trivially imitated once invented.

Imitation difficulty also reflects the characteristics of producers: theirskills,

needs, and cognitive patterns; and the social institutionsthey inhabit. The greater

is the skill of individual producers, through formal education, division of labour,
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and the efficiency that individuals skills are matched with occupations; the lower

will be the difficulty of imitation for a given technology.3

If µ is increasing andσ diminishing in the level of technologyA, the ba-

sic growth equation (4) implies that the rate of technological progress is increas-

ing in the number of innovatorsN and diminishing in the level of technologyA,

g = f (N,A). This is the form of the technological progress function assumed by

Kremer(1993) andJones(1995). By giving a concrete form to the spillover from

aggregate to individual human capital considered byLucas(1988), namely per-

sonal imitation, the approach here delivers microfoundations for that analysis. The

rate of technological progress is slightly different: the change in average ability

rather than in the total stock of knowledge, reflecting personal transmission of skill

instead of access to the entire stock of human knowledge.

Following Romer(1990) we have treated knowledge as a public good by al-

lowing everyone to imitate the most able practitioner in theprevious generation,

but nothing vital hinges on this. If imitators follow socialprestige rather than tech-

nical ability and imitate thek-th most able individual in the previous generation

who happens to have the highest social status, equation (5) still holds, except that

now −E(v1) is replaced by−E(vk) = 0.577−
∑k−1

j=1 1/ j so that equation (4) for the

change in average ability holds but with slightly different values ofc1 andc2.

If individuals are assigned to mentors at random—for instance if ability has a

small heritable component and if skills are transmitted within families—(5) still

holds, averaging overE(νk) by the fraction assigned to mentors at each rank in

the distribution. Finally, if there is sorting of learners by ability, in the manner of

university admissions, with the top few percent assigned tothe most able mentor,

the next few percent to the second most able, and so on; the analysis continues to

hold, focusing on each group of learners separately. There will be one version of

equation (4) for the top group; another, typically with different values ofµ andσ2,

for the second group; and so on.

3Mokyr (2002) emphasises the importance of the empirical method taken from science, which
Margolis(1987) traces back to Copernicus, for the development of Europeantechnology; whileHuff
(2003) argues that the development of autonomous intellectual institutions is what gave European
science a resilience absent in Islam and China.
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3 A gravity model of knowledge diffusion.

From (4) the growth of technical skill under imitation depends critically on the size

of the pool of innovatorsN. The larger is the connected network of innovators, the

greater the chance that a high ability individual in one generation will have the

opportunity to acquire the skills of a high ability person inthe previous generation.

What determinesN?

We assume that the diffusion of technical knowledge reflects the pattern of

trade, and model trade patterns in a standard gravity model with CES preferences

(Anderson and van Wincoop, 2003).4 To derive closed form solutions, we make

things symmetric across sites. There is a fixed numberC of cities spread at random

on a plain of areaR, each with the same populationn. We show that the results

continue to hold with a more realistic distribution of population in Section5.

Each city specializes in the production of a subset of goods that, by symmetry,

we can think of as one good. Each good comes in a range of qualitiesαik reflecting

the skill of workerk at sitei that produced it. Ifxi jk is the amount of regioni good

of quality k consumed in regionj, region j consumers choosexi jk to maximize















∑

i

αikx(ǫ−1)/ǫ
i jk















ǫ/(ǫ−1)

(6)

subject to the budget constraint
∑

i pi jk xi jk = y j . We suppose that every location

j receives equal quantities of the output of each worker so that the price of each

unit of goodi is proportional to its log qualitypi jk/pi jl = αk/αl. Therefore we can

suppose that each region produces a homogeneous good of quality ᾱi = E(αi), the

average quality of producers at the site. Goods incur iceberg costs in transit: of one

unit of a good shipped fromi to j, a fraction 1−1/ti j is lost in transit sopi j = ti j pi .

Expenditure on goodi at site j is

ei j =

(

pi ti j
ᾱiP j

)1−ǫ

y j (7)

4Eaton and Kortum(2002) develop a model of gravity and technology, but in their framework the
technology of each site is drawn from a Frechet distributionindependently of its neighbors.
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where the price index

P j =















∑

i

(pi ti j/ᾱi)
1−ǫ















1/(1−ǫ)

. (8)

Market clearing requires thaty j =
∑

i ei j . Assuming that transportation costs be-

tween sites are symmetric,Anderson and van Wincoop(2003) show that

P1−ǫ
j =

∑

i

Pǫ−1
i ηi ti j (9)

whereηi = yi/
∑

i yi , and derive the gravity equation for the value of goods shipped

from i to j

ei j =
yiy j
∑

i yi

(

ti j
PiP j

)1−ǫ

. (10)

Following Fujita, Krugman and Venables(1999, Chapter 4) we suppose that

producing quantityq of a good requiresl = f +cqworkers, and that units are chosen

so that marginal costc= (ǫ −1)/ǫ, makingpi = wi andq= l; while the zero profit

condition implies that each site with populationn producesn/ f ǫ varieties of good

(Fujita, Krugman and Venables, 1999, p. 54).

The C sites have identical populationsn and endowments and differ only in

their technology level ¯αi and transportation coststi j . Because our concern here

is with the development of technology through time rather than the distribution

of economic activity through space, we will assume that these spatial differences

are negligible: each site has the same technology level ¯α ; and the same average

transport cost

T j = T =















∑

i

t1−ǫi j















1/(1−ǫ)

. (11)

Equal transport costs require that cities on the edge of the surface face the same

costs as those in the centre. This can be achieved by allowingthe the surface to

become unbounded so that every site is equally a central point or, by placing the

points to be on a sphere rather than a plain so that, again, no point is a central or

edge point.

9



In this symmetric case, from (9) every site has price level

P=C1/2(ǫ−1)T1/2 (12)

and producer price and wage from (8) of

p= ᾱC1/2(ǫ−1)T−1/2. (13)

Nominal income at each site isy= npand each site has a shareη j = y j/
∑

i yi = 1/C

of world income. The quantity of goods shipped fromi to j, xi j = ei j /pi ti j is

therefore

xi j =
n

T1−ǫ
t−ǫi j (14)

If sites i and j are a distancedi j apart, we suppose that transport costs between

them areti j = θdi j for j , i andtii = θd0 whered0 > 0, so that

xi j =
n

θD1−ǫ
d−ǫi j (15)

whereD j =
(

∑

i d
1−ǫ
i j

)1/(1−ǫ)
.

4 Knowledge networks.

C cities are spread at random on a surface of areaR giving a settlement density of

δ =C/R. The probability that technological knowledge flows directly between two

cities i and j is an increasing function of the volume of trade between themπi j =

h(xi j ), so from (15) πi j = g(n/θ,di j ) which is increasing in the ratio of population

to transport costn/θ and diminishing in distancedi j .

Take an arbitrary site and label it as the origin. For any other site at location

y ∈ R2, the probability that they are connected isg(n/θ,d0y). The number of sites

connected directly to the origin is a Poisson process with parameter

ν = δ

∫

g(n/θ,d0y)dy. (16)
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Figure 1: A technological network in the case where each city, represented by a
dot, shares knowledge with all neighbours in a fixed radius.

The probability that each site connects directly tok other sites is

pk =
e−ννk

k!
. (17)

To rule out trivial behaviour, we assume 0< ν <∞.

For example, suppose each site shares knowledge directly with all other sites in

a circle of radiusρ: this network is illustrated in Figure1 on page11. Thenh(xi j )=

1 for xi j ≥ x̄ and 0 otherwise; andg(n/θ, r) = 1 for r ≤ ρ whereρ =
(

n/(θx̄D1−ǫ)
)1/ǫ

,

and 0 otherwise. The average number of knowledge links per site is ν = δπρ2.

Alternatively, if h(xi j ) =
(

1+exp(x−1/ǫ
i j )

)−1
the probability of linkage depends lo-

gistically on distance

g(n/θ,di j ) =
1

1+exp(c−1/ǫdi j )
(18)

wherec = n/θD1−ǫ is the volume of trade between sites that are a unit distance

apart. The average number of neighbours linked to each site is thenν = δc2/ǫ
π

3/6.

Each city is linked directly to other cities, that are linkedin turn to other cities,

giving rise to a connected network of cities through which technical knowledge

can diffuse. It is obvious that the larger is the connectivity parameter ν, the larger
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will be the resulting knowledge networks. What is less immediately obvious is that

the size of connected clusters rises discontinuously withν (Meester and Roy, 1996,

Theorem 6.1):

Proposition 2. For the number of sites C large there is a critical valueν∗ for ν.

For ν < ν∗, an infinitely large connected cluster of sites exists with probability zero;

for ν > ν∗, an infinite cluster exists with probability one.

The intuition for the result is that asν rises at first, small connected islands

first appear and grow slowly. As these islands continue to grow a critical stage is

reached when, instead of swallowing up isolated points, they all start to bump into

each other and coalesce into a large continent. This sudden threshold behaviour is

generic for random graphs (Bollobás and Thomason, 1986).

In consequence the size of networks of potential imitatorsN changes suddenly

as the volume of trade rises. In economies with low volumes oftrade due to low

populationn or high transport costθ, the average number of knowledge links per

city ν is small, and the economy is split into small isolated clusters of communicat-

ing cities. This limits the possibility that highly talented individuals in one gener-

ation will be matched with highly talented individuals in the previous generation.

As the critical number of connectionsν∗ is reached, these isolated knowledge net-

works rapidly coalesce into a single network that spans mostsites in the economy,

increasing the pool of innovators who can learn from the mosttalented producer in

the previous generation.

It is not necessary to assume that knowledge diffuses without friction across

connected networks. The important point is that there is a sudden increase in net-

work size so that, even if information flows imperfectly, there are still many more

innovators in each generation being matched together.

Figure2 shows a simulation withC = 1024 sites spread at random on a 32×32

square so settlement densityδ = R/C = 1. The connection probability declines

logistically with distance (18). Figure2 plots the fraction of sites that are in the

largest cluster against the volume of trade between two sites a unit distance apart,

assuming an elasticity of substitutionǫ = 1. As the volume of trade rises from 0.5

to 0.7, the fraction of sites in the largest cluster rises from 0.1 to 0.8. Increasing the

elasticityǫ reduces the average number of connectionsν for a given trade volume
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Figure 2: Proportion of sites in largest connected cluster versus trade volume.
Trade volume is measured between two sites at distance one apart, assuming an
elasticity of substitutionǫ = 1.

c, shifting the curve to the right. Figure3 gives two snapshots of the system when

trade between sites one unit apart is 0.55 and 0.6. It can be seen that adding extra

linkages causes clusters of sites to link into a single cluster that goes right across

the economy. As the number of sites in the network rises, the takeoff becomes

more sudden.

Market expansion does not limit economies to just one takeoff in human cap-

ital accumulation. Repeated takeoffs can be modelled in two ways. First, a new

round of development can occur where points that have connected into a large net-

work can be thought of as being fused together into a single, compound point, and

get to join with other compound points in a second round. The development of

internal markets through canals and railways in the first half of the nineteenth cen-

tury linked cities in individual countries into national networks, that can be treated

as individual economies. The development of steamships andelectric telegraphs in

the second half of the nineteenth century joined these internally articulated national

economies into an international network.

Alternatively, different levels of technology may have different connectivity

functionsh. Simple technologies can have high probabilities of connection h at

low volumes of tradex allowing a global network to appear early; whereas more

13



Figure 3: Connections between 1024 cities, when trade between sites one unit apart
equals 0.55 and 0.6.

advanced technologies have lowerhs, and require higher populations and lower

transportation costs for a connected network to appear.

5 Distribution of settlements.

There are two, complementary approaches to analysing the role of cities in economies:

as nodes in commercial networks, and as central places supplying services to sur-

rounding areas (Hohenberg and Lees, 1995, 47–73). So far, to make the equations

of the gravity model tractable through symmetry, we have focused on cities as trade

nodes, assuming that there was a fixed numberC of cities with an equal population

n. We now allow each city to function also as a central place in an urban hierarchy,

with its own satellite villages and towns. We suppose that existing settlements give

rise to new settlements at a constant rate, and that all settlements grow at a constant

rate. This simple process causes population to be distributed across settlements ac-

cording to a truncated power law.

In an interval of length dt each existing city gives rise to a new city with proba-

bility λdt. Starting with one settlement at time 0, there will be an expected number

expλT after timeT has elapsed. The initial size of each city isn0 which we nor-

malize to unity.
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Following Gibrat’s law (Gabaix, 1999; Mitzenmacher, 2002), settlements grow

at a constant multiplicative rateγ: settlements develop independently of each other,

and Malthusian pressures and overcrowding do not impede their growth. The Ap-

pendix generalizes the growth process to geometric Brownian motion. Integrating

the distribution function we have immediately

Proposition 3. At time T after the first settlement is established, the probability

distribution of population n across settlements is

F(n) = K(1−n−λ/γ) 1≤ n≤ eλT (19)

where K= (1−exp(−λT))−1.

In other words, population follows a truncated Pareto distribution or power

law. When new cities emerge at the same rate that population grows we have an

exponent of minus one: Zipf’s law.

Proposition3 generalizes the standard result that an exponentially growing pro-

cess observed at exponentially distributed times has a Pareto distribution (Johnson, Kotz and Balakrishnan

1994, 608;Reed 2001) by allowing time to have a finite beginning. This rules out

the usual tail of unboundedly large cities and gives expected city size a finite value

E(n) =
Kλ
γ−λ

[

−1+exp(λ−γ)T
]

. (20)

Trade is described by the same model of Section3. Now that sites have differ-

ent populationsni the gravity equation for expenditure (10) continues to hold but

the pricepi of each region’s output is weighted by the number of varieties ni/Fǫ

it produces; and the price index in larger sites will be lower, reflecting the smaller

share of goods that incur transport costs. While closed formsolutions are no longer

possible, the volume of trade between two sites will be increasing in their popula-

tions, and diminishing in the cost of transport. It follows that the probability that a

city at the origin with populationi will communicate with a city of populationj at

15



locationy isπi j = g(θ,y, i, j) so the probability that a city at the origin communicates

with a city at locationy is

g(θ,d0y) =
∫ expγT

1

∫ expγT

1
g(θ,d0y, i, j) f (i) f ( j)d j di (21)

where f is the density of city sizes corresponding to the distribution function (19).

The analysis of network size then goes through as in Section4

6 Technological retrogression.

The concern so far has been with explaining technological progress under learning

by imitation. However, our basic equation for the change in skill ( 4) also implies

that technology can regress if population falls.5

From (4) there is a critical population needed to maintain the existing level of

technology

N∗ = exp















1

c2
2

(

µt

σt−1
+c1

)2












(22)

This critical population increases rapidly with the difficulty of imitating the tech-

nology given by the inverse of the coefficient of variationµ/σ. For µ/σ = 3,

N∗ = 395; for µ/σ = 5, N∗ = 1.8 million. Consequently, if imitation difficulty

rises with the level of technology, a fall in population willcause technological ret-

rogression.6

6.1 Locational choice.

To understand societal collapse, we now allow each household the choice between

engaging in market activity, which allows the consumption of tradeable goods but

requires tax to be paid, and a rural, subsistence existence that gives reservation

5The retrogression of technology to simpler forms, togetherwith a fall in the quality and ho-
mogeneity of artifacts, are features common to the collapseof urban societies such as Harappa,
Mesopotamia, Mycenae, and the Western Roman empire in the Old World; and the Maya, Olmec,
Chacoans, and Hohokam in the New (Tainter, 1988, 20).

6Henrich(2002) argues that this process can explain the loss of basic technologies among the
aboriginal Tasmanians

16



utility Ū j. We suppose for concreteness that there is the same potential population

n at each of theC sites in the economy.

A household in a city divides expenditure to maximize utility

Ui = Ai M
βF1−β (23)

whereM is a basket of manufactured goods with Dixit-Stiglitz utility given by (6)

and price indexP (8); andF represents food and fuel coming from the agricultural

sector. The parameterAi represents inherent utility of city life and varies randomly

across households: this ensures that not everyone deserts the city simultaneously.

Agricultural goods costpF and the household pays a fractionτ of its income in

tax to the government. Each unit of agricultural goods requireslF units of labour to

produce sopF = lFw and, from the zero profit condition, household incomeY=w.

As before, quantities are normalized so thatw= p. The household receives indirect

utility from (12) and (13)

Ui = Aiβ
β(1−β)1−β (1− τ)Y

Pβp1−β
F

= Aiβ
β(1−β)1−β1− τ

l1−βF

(

ᾱ

θD

)β

. (24)

Welfare is increasing in technology ¯α, and diminishing in tax ratesτ, the labour

requirement of agriculturelF , and the cost of transportationθ.

Households will desert the city if utility falls below the autarky thresholdŪ.

This threshold utility has a distribution function across households ofH(Ū) with

associated densityh(Ū). If a city has potential population ofn, its actual population

reflects the fraction of households whose utility lies abovethe threshold for urban

living L = n
∫ U

0 h(Ū)dŪ. L now replacesn as the relevant population term for the

volume of trade and network size in Sections3 and4.

Any factor that reduces the return to market activity (24) can induce a civiliza-

tional collapse if it drives urban populationL below the value needed to maintain

the critical number of knowledge linkagesν∗. Once the threshold is passed the

economy splits into local knowledge networks with small populations belowN∗,

causing technological knowledge to regress, and further reducing the utility of ur-
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ban livingU. We focus on two causes of urban collapse that have received partic-

ular attention: ecological decline, and increasing taxation in response to military

pressure.

Deteriorations in climate and ecology increase the labour requirement of agri-

culture lF , reducing the payoff to market activity (24).7 The impact will be more

immediate if utility (23) is generalized to a Geary-Stone formU = Mβ(F − F̄)1−β

where F̄ is the subsistence quantity of agricultural goods, so that afall in agri-

cultural productivity that driveslF F̄ above households’ labour endowments causes

cities to be abandoned immediately.

6.2 Political factors.

When not a vector of epidemic disease, the destructive powerof pre-industrial

armies was limited, and the effects of military conflict are principally through tax-

ation and geographical disunity. Military conquest can split knowledge networks,

causing regression in isolated clusters such as the cities of Western Europe after

the disintegration of the western Roman empire. Even without military collapse,

the taxes needed to maintain an effective army can lead to a flight of population

from cities, causing urban networks to collapse.

We suppose that the government uses tax revenue to recruit anarmy of sizeS.

Suppose that a force ofSi directly engages an enemy force of sizeEi . It inflicts

casualties on the enemy at a ratekS while the enemy inflicts casualties at ratekE:

Ṡi = −kEEi , Ėi = −kSSi , so that the loss rate relative to the enemy iskEE2
i /kSS2

i .

This is the Lanchester square law: the effective forces, defined in terms of relative

casualty rates, on each side arekSS2
i andkEE2

i .

While the outcome of an engagement on part of a battlefield from these equa-

tions is deterministic, the outcome of a campaign reflects additional factors such as

skill and luck in concentrating forces, disease, hunger, weather, and other fortunes

of war. In a campaign where an army of total sizeS faces a total enemy force of

7While there are few civilizations whose decline has not beenattributed to climatic change
(Tainter, 1988, 44–51), strong evidence implicates prolonged drought in the collapse of the Akkadian
and classical Maya, states and the Chacoan pueblo culture (deMenocal, 2001); while salinization due
to irrigation has been blamed for the abandonment of Mesopotamian cities (Postgate, 1995, 181); and
deforestation appears central to the collapse of Easter Island (Brander and Taylor, 1998).
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sizeE, we suppose that the probability of victory is proportionalto effective forces

PiV = kSS2/
(

kSS2
+kEE2

)

. The value of winning isV which will generally be

greater for a defensive war than an offensive one.

There areN taxpayers with incomep. Each soldier costscS > 1 so the di-

rect cost of the army iscSS. Given national income ofN p we suppose that the

perceived cost to the government of raising each denarius, in taxpayer discontent

and defections, is proportional to the share of military spending in national income

cτcSS/pN, so the cost of spendingcSS on an army isC(S) = cτc2
SS2/pN.

The government’s problem is to chooseS to maximizePivV −C(S) which

implies that

S =













max













E
cS

√

kEkSpNV
cτ

−kEE2,0

























1/2

. (25)

This is positive and increasing in the number of enemiesE, their effectivenesskE,

populationN, and the payoff to victoryV, as long as the first term is positive which

will be the case so long as the number of taxpayers is very muchlarger than the

effective enemy force.

The tax rate isτ = cSS/pN. From (25) it follows that the tax rate is of the order

N−3/4. Tax rates rise rapidly as population falls. As a consequence, an epidemic

induced decline in population accompanied by increased military pressure, such as

occurred in third century Rome and seventh century Byzantium, can set off a cycle

where rising taxes induce urban flight, increasing the tax burden on the remaining

population.

7 Conclusions.

Since Adam Smith’s observation that the division of labour is limited by the extent

of the market, economics has been aware of the close links between technologi-

cal skill and trade. The goal of this paper was to use this linkage to provide a set

of explicit microfoundations for the production function for technology. Whereas

existing models assume that all technical knowledge is available to all researchers

(requiring that technical knowledge can be stored, transmitted, and retrieved loss-

lessly and costlessly), this paper began with the premise that technical knowledge

has a large tacit component that must be transmitted by direct personal contact.
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It showed that under such learning by imitation the rate of technological progress,

or regress, depended on the size of the population of innovators sharing the same

knowledge network. If knowledge networks reflect trade—thegreater the volume

of trade between sites, the greater the probability that producers at one site have

knowledge of the technology at the other site—we demonstrated a threshold in the

size of knowledge networks. As the volume of trade rises to a critical volume be-

cause of rising population or lower transport costs, the size of knowledge networks

suddenly rise, leading to a jump in the rate of technical progress.

Appendix: Population distribution under geometric Brow-

nian motion.

Suppose that settlement size evolves as geometric Brownianmotion

dn(t) = γn(t)+ ςn(t)B(t)

so that the population of settlements of aget is lognormally distributed

logn(t) ∼ N
((

γ− ς2
)

t, ς2t
)

.

The age of settlements is exponentially distributed with parameter 1/λ and maxi-

mumT so the density of settlement sizes is

f (n) =
∫ T

0
λe−λt

1
√

2πς2t

1
n

exp−

(

logn−
(

γ− ς2
)

t
)2

2ς2t
dt.

Substitutingu2
= t

f (n) =
λ

ς

√

2
π

na−λ−1
∫

√
T

0
exp

(

−au2−bu−2
)

du
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wherea≡ λ+
(

γ− ς2
)

/2ς2 andb≡
(

logn
)2
/2ς2. Solving the integral

f (n) =
λ

ς
√

2a
na−λ−1















e−2
√

ab
Φ















√
2aT−

√

2b
T















−e2
√

ab
Φ

c















√
2aT+

√

2b
T





























whereΦ is the standard normal distribution andΦc
= 1−Φ. Expanding the e2

√
ab

terms

f (n) =























λ

ς
√

2a

{

na−λ−1−d
Φ

(√
2aT−

√

2b
T

)

−na−λ−1+d
Φ

c
(√

2aT+
√

2b
T

)}

n≥ 1

λ

ς
√

2a

{

na−λ−1+d
Φ

(√
2aT−

√

2b
T

)

−na−λ−1−d
Φ

c
(√

2aT+
√

2b
T

)}

n< 1

whered ≡
√

2a/ς. ForT large and logn small relative toT, theΦ term is close to

1 and theΦc term is close to zero. This gives a densityf (n) that is again close to a

power law, with different distributions on either side of the initial city size of 1.
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