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Abstract

We analyse technological progress when knowledge has e laait
component so that transmission of knowledge takes plaocedirdirect per-
sonal imitation. Itis shown that the rate of technologicalgress depends on
the number of innovators in the same knowledge network. iasy the dif-
fusion of knowledge to mirror the geographical pattern atle—the greater
the trade between two sites, the greater the probabilitytéwdnical knowl-
edge flows between them—we show that a gradual expansioads tauses
a sudden rise in the rate of technological progress.

JEL: 040

1 Introduction.

Underlying current models of technological progress is @ssumption that re-
searchers stand on the shoulders of giants by having cestteess to the entire
stock of human knowledge. Much of technology however, actrieal skill in
particular, has a large tacit, “do it like this” element. Taster a skill, it is not in
general sfficient to have access to blueprints, or textbooks and astiola library:
you must also have contact with people who already possesskily and the ex-
tent of their mastery will determine, in part, the extent ofiys. This paper looks
at how technology progresses when individuals learn byctlpersonal contact.

*This paper is part of the International Trade and InvestrReagramme of the Geary Institute at
UCD. | should like to thank the referees for their detailed annstructive criticisms of the submitted
draft. All errors are mine.



Learning through imitation takes place as a follow the legmecess. The
skill of each individual equals the skill of the most able gtittoner he knows in
the previous generation, minus an imitation error that ot$léndividual ability.
Innovators do not get to stand on the shoulders of giantsriyton the shoulders
of the tallest person they know.

In Section2 we show that the rate of technological progress under legroy
imitation depends on the fiiiculty of imitation, and on the size of the population
of innovatorsN. The larger is a connected group of innovators, the greater t
chance that a highly able person in one generation will beneak to a highly able
person in the previous generation whose skills will serve fasindation for further
progress in technology.

The influential analysis of scaldfects in growth models alones(1995 as-
sumes that the growth of technology is an increasing funatiothe labour force
involved in R&D, and a diminishing function of the level ottenology. The model
here gives microfoundations for this specification based concrete form of the
spillover from aggregate to individual human capital cdesed byl ucas(1988),
namely direct personal imitation.

What determines the size of population of imitattd® Rather than arbitrarily
equatingN with the population of some political or geographical unié suppose
that the difusion of technology mirrors the geographical pattern aférahe larger
the volume of trade between two sites, the greater prolabilat innovators at one
site have access to technological knowledge at the other.

What we are calling imitation here is closely related to ttieai of familiar-
ization with the frontier technology iAghion, Comin and Howit{2006 and fa-
miliarity in Goodfriend and McDermo{tLl998. Technical knowlege can be trans-
mitted through trade in a variety of ways. Flows of goods iridws of people,
allowing potential innovators to meet directly. More imtzott, seeing a new good
allows domestic producers to incorporate some of its playg@atures into their
product, or to infer the process used to produce the good ardifyntheir own
processes accordingly. A familiar example of this procesthé way that Amer-
ican car firms in the 1980s, faced with cheaper, more relidafganese imports,
began to imitate the quality control and inventory practioéJapanese firms.



Trade here is assumed to follow a gravity model. In Secti®m@smd4 each
site has the same population, allowing a closed form saluio the volume of
trade in terms of distance, population, and transport cbisé flow of knowledge
between cities creates a network where knowledge dénsei along a chain from
one connected city to another, where two cities that are inetttly linked can still
have knowledge flow between them through a third city to widahbh is directly
connected.

We show that the size of the knowledge network dependsaltition the vol-
ume of trade. Below a critical level of trade, the economypiét énto small, frag-
mented knowledge networks. As the critical trade volumes&ched, these local
clusters coalesce into a large network that spans mostisitae economy. Con-
sequently, a gradual rise in trade, as a result of incregsomylation or reduced
transport cost, gives rise to a sudden increase in the ratexbhical progress, as
the critical number of knowledge links is reached, and theneated population
of innovatorsN suddenly rised. While our concern is with learning by imitation,
exactly the same také@ocan occur in standard growth models where trade gives
access to more intermediate gooB$vera-Batiz and Romefl991). The emphasis
here is on sudden growth accelerations: the model has gothisay about rea-
sons why diferent economies should havefdrent equilibrium levels of income
or rates of growth.

In Section5 we relax the assumption that there is a fixed number of cities
all with equal population, by allowing the number of cities)d the population
of each, to grow through time. We show that this simple meidmargives rise
to an empirically realistic truncated Pareto distributionpower law for urban
population, and that knowledge networks continue to shaestiold behaviour.

While our central concern is to understand the pattern diitelogical progress
when knowledge is tacit, the logic of learning by imitatianglies that techno-
logical regress can occur if population falls. Sect®ronsiders technological
retrogression in the context of the collapse of historicaisties, showing how a
self-reinforcing cycle of urban flight can cause knowledgenorks to collapse.

1This prediction that a fall in transportation costs can léa sudden spurt of innovation is
consistent with the rise in innovation



While the purpose of this paper is to develop a theoreticatlehof growth
when innovators learn by imitating each other, its centnapigical prediction, that
a gradual expansion of trade should be associated with aeausigurt of inno-
vation, appears to accord with reality. In Sung Dynasty @hime emergence of
a national market linked by waterways was associated witlrgesin innovation
(Kelly, 1997, just as in eighteenth century England with the extensibtuim-
pikes and canals. Similarly in nineteenth century Ameriba,completion of the
Erie Canal led to a rise in patenting in adjoining areagkpldt, 1988; while the
first wave of globalization at the end of the nineteenth cgnivas associated with
a surge in the development and commercialization of funaéahéechnologies in
the 1880s $mil, 20095.

This papers draws from severali@irent literatures: tacit knowledge, endoge-
nous growth, interacting systems, trade and knowledffegion, and geography
and trade. The tacitness of technical skill is stresseNdigon and Winte(1982).
The link to the endogenous growth literature, particulaidyeg1995 andLucas
(1988, was mentioned above. Thé&ect of market expansion on growth through
increased division of labour is examinedBgcker and Murphy1992), Goodfriend and McDermott
(1995, andMurphy, Shleifer and Vishny1989), while McDermott(2002 empha-
sises the role of trade in development, albeit through airey returns technolo-
gies; and the take¢bcaused by thresholdtect in knowledge networks is analogous
to the phase transitions surveyed Byock and Durlauf(2001). The connection
between trade and technologyffdsion is reviewed byeller (2004, while the
modelling of geography and trade here follodwsderson and van Wincod{2003
andFujita, Krugman and Venablg¢$999).

2 Learning by Imitation.

There is a single general purpose technology that deteattime quality of all
goods produced: multiple technologies do not change thimgigrially but need
more notationN producers use this technology. In Secti@end4 we determine
N, but for now we treat it as given.

Individuals devote a fixed amount offert to acquiring human capital. Ability
depends on the individual’s personal quality, and on thktyabf the person he im-
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itates. The abilityg;; of individuali in generatiort reflects his success in imitating
the most able individual he knows in the previous generatibnse ability isa"$*

a = e a"y: 1)

whereg; represents an imitation error: most agents will not be as akltheir
exemplar (the average Delta guitarist was inferior to Gbadplatton, the average
MIT PhD was not as smart as Paul Samuelson) so in most ease$.?

Taking logs, wherey;; = logai; andejr = —logeg, the minus highlighting the
fact that it is an imitation error and people are usually edfsan their exemplar,

@it = @y — &it. )

This log error is normally distributed across imitators lwiheanu; and variance
a'tz, Eit ~ N(ﬂt,O'tz).

The distribution of log abilitya in each generation is therefore normally dis-
tributed with mean

Ac=E(@"T) -t ®)

and variancer?. Define the growth rate of average human capital or techycisg
o: = E(ay)/E(a._1) — 1. For a given diiculty of imitation reflected in the parameters
u ando, the rate of technical progress depends on the size of tHepimmovators:

Proposition 1. If the variance of learning is constant? | = o'Z, the rate of tech-
nical progress under learning by imitation is

O = (—01+C2 log Nt—l) Ot-1— it 4)

2The role of the most talented person in the previous gemeratirecalls
Murphy, Shleifer and Vishny(1991), although the analysis here hinges on the fact that the
linkage is stochastic rather than deterministic. The rplittative, rather than additive error term,
allows the relative variation of talent to remain constgmédple are only, say, half as good on
average as their exemplar) as ability rises.




Proof. If there wereN;_; producers last period, the expected value of the first term
in (3), from Cramér(1946 374-375), is

E@™®) = At +611 m_ log(logN;_1) + log 4+ 2E(v1) (5)
2/2I0gN; 1
where-v; has log-gamma distribution with expected valug.t€ 0.577 Johnson, Kotz and Balakrishnan
1995 89-90).

The expression in brackets iB)(can be approximated to an accuracy of more
than 0.01 percent foN > 20 by (-c; + ¢z logNs_1), wherec; = 0.624 andc; =
1.482. It follows from @) and 6) that the change in average log ability from one
generation to the next i — Ay = (—¢y + 2 yIogNe1 ) o1 — pat.

Because lo§(a) = A + o2, if o2, = o the change in expected log abil-
ity is approximately equal to the growth in the level of agaaskill A — A1 =
logE(a;) —logE(ai-1) ~ g m

Note that the growth rate is increasingetithe variability of the imitation error.
Just like a call option, all that matters is upside potentiaé possibility for very
smart imitators to appear.

Imitation difficulty, reflected in the parameters and o_1, depends on the
characteristics of the technology, and on the charadesisif the population of
imitators. Imitation dfficulty rises with the level of technology when technological
advance consists of refinements of existing techniqueb,emith advance demand-
ing greater exactitude: steel making requires more premsdrol of temperature
and selection of raw materials than iron smelting; and ssresquire more pre-
cise machining than nails. Alternatively,may rise andr fall through whatJones
(1999 calls “fishing out™: the easiest innovations are made fagstthat a constant
rate of innovation requires greateff@t. By contrast, serendipitous technological
advances that result from a single clever insight, such aggeneedles, stirrups
or double-entry book keeping, are trivially imitated onnednted.

Imitation difficulty also reflects the characteristics of producers: thkits,
needs, and cognitive patterns; and the social institutibeg inhabit. The greater
is the skill of individual producers, through formal eduoat division of labour,



and the éiciency that individuals skills are matched with occupatdiotine lower
will be the dfficulty of imitation for a given technology.

If u is increasing andr diminishing in the level of technology, the ba-
sic growth equation4) implies that the rate of technological progress is increas
ing in the number of innovatorsl and diminishing in the level of technology,
g= f(N,A). This is the form of the technological progress functiosumsed by
Kremer (1993 andJones(1995. By giving a concrete form to the spillover from
aggregate to individual human capital consideredLbgas (1988, namely per-
sonal imitation, the approach here delivers microfourmhegtifor that analysis. The
rate of technological progress is slightlyffégirent: the change in average ability
rather than in the total stock of knowledge, reflecting peatéransmission of skill
instead of access to the entire stock of human knowledge.

Following Romer (1990 we have treated knowledge as a public good by al-
lowing everyone to imitate the most able practitioner in fpinevious generation,
but nothing vital hinges on this. If imitators follow socjalestige rather than tech-
nical ability and imitate thé-th most able individual in the previous generation
who happens to have the highest social status, equdjastil{ holds, except that
now —E(v;) is replaced by-E(w) = 0.577- Z'j‘j 1/j so that equation4| for the
change in average ability holds but with slightlyfférent values of; andc;.

If individuals are assigned to mentors at random—for instaif ability has a
small heritable component and if skills are transmittechimittamilies—6) still
holds, averaging oveE(vk) by the fraction assigned to mentors at each rank in
the distribution. Finally, if there is sorting of learnerg &bility, in the manner of
university admissions, with the top few percent assignetthéamost able mentor,
the next few percent to the second most able, and so on; tihgseneontinues to
hold, focusing on each group of learners separately. Thdldeone version of
equation 4) for the top group; another, typically withfiierent values ofi ando-?,
for the second group; and so on.

SMokyr (2002 emphasises the importance of the empirical method tal@m &cience, which
Margolis (1987 traces back to Copernicus, for the development of Europsamology; whileHuff
(2003 argues that the development of autonomous intellectitiions is what gave European
science a resilience absent in Islam and China.



3 A gravity model of knowledge diffusion.

From @) the growth of technical skill under imitation dependsicétly on the size

of the pool of innovatord. The larger is the connected network of innovators, the
greater the chance that a high ability individual in one gatien will have the
opportunity to acquire the skills of a high ability persortlie previous generation.
What determine®\?

We assume that the fllision of technical knowledge reflects the pattern of
trade, and model trade patterns in a standard gravity moiel@ES preferences
(Anderson and van WincogR003.* To derive closed form solutions, we make
things symmetric across sites. There is a fixed nur@befrcities spread at random
on a plain of ared, each with the same population We show that the results
continue to hold with a more realistic distribution of pogiibn in Sectiorb.

Each city specializes in the production of a subset of gobats by symmetry,
we can think of as one good. Each good comes in a range ofigsalit reflecting
the skill of workerk at sitei that produced it. I is the amount of regiongood
of quality k consumed in regior, region j consumers choosegj to maximize

€/(e-1)
[Z @ik Xl-(jsk_ l)/E) (6)

subject to the budget constraipy; pijx Xijx = yj. We suppose that every location

j receives equal quantities of the output of each worker sbthieaprice of each

unit of goodi is proportional to its log qualityijk / piji = ak/a1. Therefore we can

suppose that each region produces a homogeneous good ib§ @yal E(«a;), the

average quality of producers at the site. Goods incur igebests in transit: of one

unit of a good shipped fromto j, a fraction 1- 1/t is lost in transit squjj = tjj p;.
Expenditure on goodat sitej is

t.. \1-€
8 = ( pitij ) Y, )

aiP;]

4Eaton and Kortunf2002) develop a model of gravity and technology, but in their feavork the
technology of each site is drawn from a Frechet distributimependently of its neighbors.



where the price index

1/(1-¢)
l (8)

P; = [Z(pitij/oz)l-f

Market clearing requires that = >;&;. Assuming that transportation costs be-
tween sites are symmetridnderson and van Wincoa2003 show that

P = Z P{ it C)
i
wheren; = vi/ >.i Vi, and derive the gravity equation for the value of goods stpp
fromito |
1-€
YiYj ( tij )
g =— == . 10
' Zivi \PiP (10)

Following Fujita, Krugman and Venablg4999 Chapter 4) we suppose that
producing quantity] of a good requireb= f +cqworkers, and that units are chosen
so that marginal cost= (e —1)/¢, makingp; =w; andq = |; while the zero profit
condition implies that each site with populatinoproduces/ f e varieties of good
(Fujita, Krugman and Venablg$999 p. 54).

The C sites have identical populatiomsand endowments andfiér only in
their technology levely; and transportation costg. Because our concern here
is with the development of technology through time rathemtlthe distribution
of economic activity through space, we will assume thatedtesatial diferences
are negligible: each site has the same technology tevednd the same average

transport cost
1/(1-¢)
T=T= (Ztilj—f] : (11)
i

Equal transport costs require that cities on the edge of uiface face the same
costs as those in the centre. This can be achieved by allav¢he surface to
become unbounded so that every site is equally a centrat ppiby placing the

points to be on a sphere rather than a plain so that, againginbip a central or

edge point.



In this symmetric case, fron®) every site has price level
P = C1/2(E—1)T1/2 (12)
and producer price and wage fro®) Ef
p= &Cl/Z(E—l)T—l/Z. (13)

Nominal income at each siteys= npand each site has a shage=y;/>;yi =1/C
of world income. The quantity of goods shipped frano j, x; = &;/pitij is

therefore
n __
Xij =1 i (14)
If sitesi and j are a distancel;; apart, we suppose that transport costs between

them aretj; = 0d;; for j # i andtj = 6dy wheredp > 0, so that

n —€
Xl] = Q_Dl_f dlj (15)

whereD; = (ZI dﬁ_f)l/(l_f)_

4 Knowledge networks.

C cities are spread at random on a surface of &ega/ing a settlement density of
6 = C/R. The probability that technological knowledge flows dihgttetween two
citiesi and j is an increasing function of the volume of trade between thgm
h(x;j), so from @5) mjj = g(n/6,d;j) which is increasing in the ratio of population
to transport cost/# and diminishing in distance;.

Take an arbitrary site and label it as the origin. For any iofite at location
y € R2, the probability that they are connectedy{®/6,doy). The number of sites
connected directly to the origin is a Poisson process withrpater

v=45 f 9(n/6. doy) dy. (16)
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Figure 1. A technological network in the case where each oiygresented by a
dot, shares knowledge with all neighbours in a fixed radius.

The probability that each site connects directlktather sites is

ey

ki

Pk = (17)

To rule out trivial behaviour, we assume<Q < co.

For example, suppose each site shares knowledge dire¢hyallvother sites in
acircle of radiug: this network is illustrated in Figurgon pagell. Thenh(x;j) =
1 for x;j > xand 0 otherwise; ang(n/6,r) = 1 forr < p wherep = (n/(eb?Dl‘f))l/E,
and 0 otherwise. The average number of knowledge links perisi = 5mp?.
Alternatively, if h(x;) = (1+exp(>qj1/f))‘1 the probability of linkage depends lo-

gistically on distance
1

6.0) = —————
g(n/ s |J) 1+exp(c_l/6dij)

(18)

wherec = n/6D1¢ is the volume of trade between sites that are a unit distance
apart. The average number of neighbours linked to eachssiteny = §¢%<n3/6.

Each city is linked directly to other cities, that are linkedurn to other cities,
giving rise to a connected network of cities through whicbhtdcal knowledge
can difuse. It is obvious that the larger is the connectivity par@me the larger
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will be the resulting knowledge networks. What is less imratdy obvious is that
the size of connected clusters rises discontinuously witheester and Rqy1996
Theorem 6.1):

Proposition 2. For the number of sites C large there is a critical valuefor v.
For v <v*, an infinitely large connected cluster of sites exists witbpbility zero;
for v > v*, an infinite cluster exists with probability one.

The intuition for the result is that asrises at first, small connected islands
first appear and grow slowly. As these islands continue tavgraritical stage is
reached when, instead of swallowing up isolated points #ilestart to bump into
each other and coalesce into a large continent. This sutddeshibld behaviour is
generic for random graph86llobas and Thomasi986).

In consequence the size of networks of potential imitalbchanges suddenly
as the volume of trade rises. In economies with low volumetsaafe due to low
populationn or high transport cost, the average number of knowledge links per
city v is small, and the economy is split into small isolated clissté communicat-
ing cities. This limits the possibility that highly talewdténdividuals in one gener-
ation will be matched with highly talented individuals iretprevious generation.
As the critical number of connection$ is reached, these isolated knowledge net-
works rapidly coalesce into a single network that spans sites in the economy,
increasing the pool of innovators who can learn from the rtadehted producer in
the previous generation.

It is not necessary to assume that knowledgeudes without friction across
connected networks. The important point is that there isdalen increase in net-
work size so that, even if information flows imperfectly, thare still many more
innovators in each generation being matched together.

Figure2 shows a simulation witll = 1024 sites spread at random on ax®&2
square so settlement densify= R/C = 1. The connection probability declines
logistically with distance 18). Figure 2 plots the fraction of sites that are in the
largest cluster against the volume of trade between twe sitgnit distance apart,
assuming an elasticity of substitutier= 1. As the volume of trade rises from 0.5
to 0.7, the fraction of sites in the largest cluster risegffal to 0.8. Increasing the
elasticity e reduces the average number of connectiofa a given trade volume
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Figure 2. Proportion of sites in largest connected clustaswys trade volume.
Trade volume is measured between two sites at distance @ig apsuming an
elasticity of substitutiore = 1.

¢, shifting the curve to the right. Figuigives two snapshots of the system when
trade between sites one unit apart is 0.55 and 0.6. It candretbat adding extra
linkages causes clusters of sites to link into a single elustat goes right across
the economy. As the number of sites in the network rises, dkedf becomes
more sudden.

Market expansion does not limit economies to just one tékadwuman cap-
ital accumulation. Repeated takBsocan be modelled in two ways. First, a new
round of development can occur where points that have coaéato a large net-
work can be thought of as being fused together into a singi®pound point, and
get to join with other compound points in a second round. Téeetbpment of
internal markets through canals and railways in the firstdiahe nineteenth cen-
tury linked cities in individual countries into nationalta@rks, that can be treated
as individual economies. The development of steamshipglaettic telegraphs in
the second half of the nineteenth century joined thesenatigrarticulated national
economies into an international network.

Alternatively, diferent levels of technology may haveffdrent connectivity
functionsh. Simple technologies can have high probabilities of cotioec at
low volumes of tradex allowing a global network to appear early; whereas more
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Figure 3: Connections between 1024 cities, when trade legtsites one unit apart
equals 0.55 and 0.6.

advanced technologies have lowe, and require higher populations and lower
transportation costs for a connected network to appear.

5 Distribution of settlements.

There are two, complementary approaches to analysing lefroities in economies:
as nodes in commercial networks, and as central placesysogervices to sur-
rounding areasHohenberg and Lee4995 47-73). So far, to make the equations
of the gravity model tractable through symmetry, we havei$ec on cities as trade
nodes, assuming that there was a fixed nun@bef cities with an equal population
n. We now allow each city to function also as a central placeninrdan hierarchy,
with its own satellite villages and towns. We suppose thatiex) settlements give
rise to new settlements at a constant rate, and that akbsedtits grow at a constant
rate. This simple process causes population to be disddoatross settlements ac-
cording to a truncated power law.

In an interval of length tleach existing city gives rise to a new city with proba-
bility Adt. Starting with one settlement at time 0, there will be an etg@number
expAT after timeT has elapsed. The initial size of each cityniswhich we nor-
malize to unity.
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Following Gibrat’s law Gabaix 1999 Mitzenmacher2002), settlements grow
at a constant multiplicative rate settlements develop independently of each other,
and Malthusian pressures and overcrowding do not impedegtavth. The Ap-
pendix generalizes the growth process to geometric Brawmiation. Integrating
the distribution function we have immediately

Proposition 3. At time T after the first settlement is established, the priiba
distribution of population n across settlements is

FnNN=K@A-n*) 1<n<el (19)

where K= (1-expAT))™L.

In other words, population follows a truncated Pareto iigtion or power
law. When new cities emerge at the same rate that populatmmsgwve have an
exponent of minus one: Zipf's law.
Proposition3 generalizes the standard result that an exponentiallyiggppro-
cess observed at exponentially distributed times has ad_distribution Johnson, Kotz and Balakrishnan
1994 608;Reed 2001 by allowing time to have a finite beginning. This rules out
the usual tail of unboundedly large cities and gives exjukcity size a finite value

B = 5 -1+ exp-)T]. (20)
Trade is described by the same model of SecBoNow that sites have fier-
ent populationsy; the gravity equation for expenditur&@) continues to hold but
the pricep; of each region’s output is weighted by the number of varseti¢Fe
it produces; and the price index in larger sites will be loweflecting the smaller
share of goods that incur transport costs. While closed Botutions are no longer
possible, the volume of trade between two sites will be iasirgg in their popula-
tions, and diminishing in the cost of transport. It follovist the probability that a
city at the origin with populatiomn will communicate with a city of populatiof at
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locationy is zijj = g(6,Y.i, j) so the probability that a city at the origin communicates
with a city at locatiory is

expyT expyT
0(6. doy) = fl fl 06 doy. 1. J) (1) F(j) dj (21)

wheref is the density of city sizes corresponding to the distrinutiunction (9).
The analysis of network size then goes through as in Sedtion

6 Technological retrogression.

The concern so far has been with explaining technologicagness under learning
by imitation. However, our basic equation for the changekiti §4) also implies
that technology can regress if population falls.

From @) there is a critical population needed to maintain the agstevel of

technology
1 (A N Cl)z
cZ\ota

2
This critical population increases rapidly with thdfdiulty of imitating the tech-
nology given by the inverse of the daeient of variationu/o. For u/o = 3,
N* = 395; for u/o- =5, N* = 1.8 million. Consequently, if imitation dficulty

N* = exp (22)

rises with the level of technology, a fall in population wiuse technological ret-
rogressiorf

6.1 Locational choice.

To understand societal collapse, we now allow each houdehelchoice between
engaging in market activity, which allows the consumptiétradeable goods but
requires tax to be paid, and a rural, subsistence existdrategives reservation

5The retrogression of technology to simpler forms, togethizh a fall in the quality and ho-
mogeneity of artifacts, are features common to the collagserban societies such as Harappa,
Mesopotamia, Mycenae, and the Western Roman empire in @h&\Oild; and the Maya, Olmec,
Chacoans, and Hohokam in the NeTainter, 1988 20).

SHenrich (2002 argues that this process can explain the loss of basic aémfies among the
aboriginal Tasmanians
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utility J,-. We suppose for concreteness that there is the same poteopiaation
n at each of th& sites in the economy.
A household in a city divides expenditure to maximize uwtilit

U; = AMPELA (23)

whereM is a basket of manufactured goods with Dixit-Stiglitz ilgiven by ©)
and price indeXP (8); andF represents food and fuel coming from the agricultural
sector. The parameté represents inherent utility of city life and varies randgml
across households: this ensures that not everyone ddsexgyt simultaneously.
Agricultural goods cospg and the household pays a fractioof its income in
tax to the government. Each unit of agricultural goods nexgli units of labour to
produce s@r = I[gpw and, from the zero profit condition, household incovhe w.
As before, quantities are normalized so that p. The household receives indirect
utility from (12) and (3)

@a-ny

U = APL-p s —

AP Ty (24)

Welfare is increasing in technology, and diminishing in tax rates, the labour
requirement of agriculturg-, and the cost of transportation

Households will desert the city if utility falls below the tarky thresholdU.
This threshold utility has a distribution function acrossukeholds of(U) with
associated densityU). If a city has potential population of its actual population
reflects the fraction of households whose utility lies abtinvethreshold for urban
living L = nfOU h(U)dU. L now replaces as the relevant population term for the
volume of trade and network size in Sectidand4.

Any factor that reduces the return to market activiéf)(can induce a civiliza-
tional collapse if it drives urban populatidnbelow the value needed to maintain
the critical number of knowledge linkages. Once the threshold is passed the
economy splits into local knowledge networks with small glations belowN*,
causing technological knowledge to regress, and furthduaiag the utility of ur-
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ban livingU. We focus on two causes of urban collapse that have receaid
ular attention: ecological decline, and increasing taxatn response to military
pressure.

Deteriorations in climate and ecology increase the labequirement of agri-
culturelg, reducing the payd to market activity 24).” The impact will be more
immediate if utility @3) is generalized to a Geary-Stone foth= MA(F — F)1#
whereF is the subsistence quantity of agricultural goods, so thiallan agri-
cultural productivity that drive$: F above households’ labour endowments causes
cities to be abandoned immediately.

6.2 Political factors.

When not a vector of epidemic disease, the destructive pofvere-industrial
armies was limited, and thefects of military conflict are principally through tax-
ation and geographical disunity. Military conquest cartdmlowledge networks,
causing regression in isolated clusters such as the citi#gestern Europe after
the disintegration of the western Roman empire. Even withailitary collapse,
the taxes needed to maintain dfieetive army can lead to a flight of population
from cities, causing urban networks to collapse.

We suppose that the government uses tax revenue to recraitrgnof sizeS.
Suppose that a force &; directly engages an enemy force of sige It inflicts
casualties on the enemy at a risgewhile the enemy inflicts casualties at rdge
Si = —keEj, E = —ksS;, so that the loss rate relative to the enemyd&? /ksS?.
This is the Lanchester square law: theetive forces, defined in terms of relative
casualty rates, on each side &S? andkgE?.

While the outcome of an engagement on part of a battlefielu fieese equa-
tions is deterministic, the outcome of a campaign refleatitiathal factors such as
skill and luck in concentrating forces, disease, hungeather, and other fortunes
of war. In a campaign where an army of total s&daces a total enemy force of

"While there are few civilizations whose decline has not batributed to climatic change
(Tainter, 1988 44-51), strong evidence implicates prolonged droughtércobllapse of the Akkadian
and classical Maya, states and the Chacoan pueblo cuitelkéenocal2001); while salinization due
to irrigation has been blamed for the abandonment of Mesopiain cities Postgate1995 181); and
deforestation appears central to the collapse of EastardgBrander and Taylqrl998).
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sizeE, we suppose that the probability of victory is proportioteéffective forces
Piy = kSSZ/(kSSZ+kEE2). The value of winning i3 which will generally be
greater for a defensive war than afiemsive one.

There areN taxpayers with incom@. Each soldier costss > 1 so the di-
rect cost of the army issS. Given national income o p we suppose that the
perceived cost to the government of raising each denarusxpayer discontent
and defections, is proportional to the share of militaryrajieg in national income
c.CsS/pN, so the cost of spendingS on an army isC(S) = ¢.c2S?/pN.

The government’s problem is to chooSeto maximize Pi,V — C(S) which

implies that
1/2
S= (max(E NLSSELLSE ) OD . (25)
Cs Cr

This is positive and increasing in the number of enerietheir dfectivenese,
populationN, and the payfd to victory V, as long as the first term is positive which
will be the case so long as the number of taxpayers is very rfarger than the
effective enemy force.

The tax rate is = csS/pN. From 5) it follows that the tax rate is of the order
N-3/4. Tax rates rise rapidly as population falls. As a consegeiean epidemic
induced decline in population accompanied by increaseitiamyilpressure, such as
occurred in third century Rome and seventh century Byzantitan set ff a cycle
where rising taxes induce urban flight, increasing the taxldau on the remaining
population.

7 Conclusions.

Since Adam Smith’s observation that the division of labaUimited by the extent
of the market, economics has been aware of the close linkgeket technologi-
cal skill and trade. The goal of this paper was to use thisalijgkto provide a set
of explicit microfoundations for the production functioarftechnology. Whereas
existing models assume that all technical knowledge idaaito all researchers
(requiring that technical knowledge can be stored, tratiethiand retrieved loss-
lessly and costlessly), this paper began with the premesetéichnical knowledge
has a large tacit component that must be transmitted bytgisxsonal contact.
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It showed that under such learning by imitation the rate dft@logical progress,
or regress, depended on the size of the population of inam/aharing the same
knowledge network. If knowledge networks reflect trade—gheater the volume
of trade between sites, the greater the probability thatlypwers at one site have
knowledge of the technology at the other site—we demorstratthreshold in the
size of knowledge networks. As the volume of trade rises tdteal volume be-
cause of rising population or lower transport costs, the sfZnowledge networks
suddenly rise, leading to a jump in the rate of technical @ss}

Appendix: Population distribution under geometric Brow-
nian motion.

Suppose that settlement size evolves as geometric Browmidion
dn(t) = yn(t) + cn(t) B(t)
so that the population of settlements of adgelognormally distributed
logn(t) ~ N ((y - g‘z) t, gzt).

The age of settlements is exponentially distributed wittapgeter 1 and maxi-
mumT so the density of settlement sizes is

2

T 1 1 (logn-(y-¢?)t)
fn)= | 1et—— = exp- dt.
") 0 \2ng2t n P 262t

Substitutingu? = t

1 [2 VT
f(n)=Z<4/=n*t1 f exp(—au2 - bu‘z) du
[ 0
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wherea = 1+ (y - ¢2) /252 andb = (logn)® /262. Solving the integral

_ A a1 2vap _\/@_\/ﬁ)c %)
f(n)_g@n 1 {e @(\/ﬁ T) & <I>( 2aT + T)}

where® is the standard normal distribution afid = 1 - ®. Expanding the Vab
terms

ﬁ {na‘”‘l‘dQ( \2aT - \/é) - na‘”‘“d(bc( 2aT + \/?)} n>1
f(n) =
ﬁi {na‘i‘“dd)( V2aT - \/é) - na‘*‘l‘ddf'( 2aT + \/é)} n<1

whered = V2a/s. ForT large and logn small relative toT, the® term is close to
1 and thed° term is close to zero. This gives a densiin) that is again close to a
power law, with diferent distributions on either side of the initial city siZelo
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