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Abstract: The increasing penetration of wind farms in power systems has increased concerns over the 

frequency behaviour and control of synchronous power systems due to a low contribution from modern 

wind turbines to overall system inertia. With this trend of conventional generators being displaced by 

variable speed wind turbines, the contribution from load inertia becomes more significant. The need for 

greater consideration towards load inertia estimation, or even on-line tracking of load inertia, seems to be 

required. A white-box method for estimation of load inertia is examined using system frequency and 

generator output power signals from previous generator forced outages. A grey-box identification method 

is also applied to estimate the inertia of synchronous generators. The impact of sampling rates, time 

shifting and signal averaging on parameter estimation is also considered. The method is shown to be 

robust enough to be applied for load inertia estimation in control centres. 
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1. INTRODUCTION 

One of the main tasks of power system operators is to control 

system frequency excursions from nominal within safety 

margins to ensure reliable and secure operation and supply to 

customers (Kundur, 1994). The sudden loss of a generator 

will lead to excursions from nominal frequency. For such an 

event, the total system inertia determines the initial rate of 

change of frequency (ROCOF) (Chan, et al., 1971). 

Historically, the large rotating mass of thermal power units 

provided the greatest contribution to system inertia; however, 

other sources of inertia such as hydro units, fixed speed 

induction generator FSIG-based wind turbines and load 

inertia also play a role. FSIGs are essentially induction 

machines operating at a slip frequency higher than the system 

nominal frequency, with their response to frequency events 

naturally slower than synchronous generators. This results in 

a lower effective contribution to system inertia during the 

initial phase of a disturbance.  

With a general trend towards lower carbon emissions in 

future, renewable energy sources are gaining more interest in 

electricity markets, with an accelerated growth in wind 

power, especially in Europe. Consequently, thermal power 

plants are being displaced by large numbers of variable speed 

wind turbines with no contribution to overall system stored 

energy. A greater contribution from DC interconnectors is 

also more likely, which don’t naturally contribute to system 

overall inertia. As a result, the ROCOF in a system is likely 

to increase and frequency control strategies could face 

another limiting factor (Doherty, et al., 2010; Kennedy, et al., 

2011). With variable speed wind turbines, the turbine-

generator inertia is decoupled from the power system, thus 

further exacerbating the issue of reduced system inertia 

(Ruttledge and Flynn, 2011). Moreover, in small and/or 

isolated power systems, inertia plays a particularly significant 

role. From the system operational point of view, ensuring 

adequate system stored energy is becoming more important, 

implying a need for better strategies and methods regarding 

precise and fast estimation of generation and load inertia. 

Going forward with increasing wind power penetration 

levels, even real-time load inertia estimation may be required 

to ensure system security.  

The time varying nature of the load inertia and spatial 

distribution of load throughout the system makes the load 

inertia estimation quite challenging. Due to such difficulties, 

as well as a low contribution from load inertia in large power 

systems, it has been customary to assume fixed values for 

load inertia or just to neglect the effect of load in ROCOF 

calculations (Concordia and Ihara, 1982). We will examine in 

this paper a white-box method for load inertia estimation 

through the use of time domain data of system frequency and 

generator output power, taking the power system of Ireland 

as a study case. As the method requires estimates of the 

overall contribution to system inertia from synchronous 

generators, a grey-box estimation of unit inertia is presented 

which can be invoked to verify the turbine-generator inertial 

constants. DC interconnector power as well as inertial 

contribution from FSIG-based wind turbines is taken into 

account. Since it can be difficult to obtain synchronized data 

for all units at sufficient resolution and accuracy, the effects 

of lower sampling rates, time shifting and averaging of data is 

examined and discussed using a simple test system.  

The remainder of this paper is organized as follows. In 

Section 2 principles of system modelling and estimation, and 

applications to load modelling in power systems are 

reviewed. Section 3 presents a white-box estimation method 

for load inertia, while its application to the Irish power 



 

 

     

 

system is presented in Section 4. In Section 5 grey-box 

estimation of generating unit inertia based on time domain 

sampled data is presented. Section 6 considers the effects of 

sampling rate, time shifting and averaging estimation errors. 

Finally, Section 7 concludes this paper.  

 

2. SYSTEM IDENTIFICATION AND PARAMETER 

ESTIMATION: LOAD MODELLING IN POWER 

SYSTEMS 

Load modelling methods in power systems generally involve 

the application of system identification and parameter 

estimation concepts, based on three high level approaches 

(Sjöberg, et al., 1995). A white-box approach starting from 

the basic physical equations governing the system under 

study, while potentially very complicated, has the ability to 

achieve precise and informative analysis. A grey-box 

identification procedure assumes a particular structure for the 

system potentially based on an understanding of underlying 

physical principles and adopts an input-output approach for 

parameter estimation. Based on knowledge of the system 

being analysed, a criterion, usually the mean square error, 

measures the ‘goodness’ of parameter estimation and/or 

model structure fitness. The grey-box approach does not 

consider the detailed internal physics of the system but can be 

straightforward to apply. The available data for the system 

being identified tends to drive selection of the estimation 

method. If detailed data is available for system components, 

or the modelling is intended to be a higher level estimation, a 

white box approach will be chosen. When the data available 

is partially structural and input-output measurements are 

available, a grey-box estimate may be more appropriate. The 

third approach, which is the black-box identification 

procedure, assumes a high level model structure, which is not 

essentially similar to the internal structure of the system and 

attempts to find a best fit from the input-output perspective 

(Ljung, 1999).  

System identification and modelling of load parameters in 

power systems has been a challenging area for many years. 

The difficulties typically encountered are the composite and 

time varying nature of the load, as well as frequency and 

voltage variations across the system. Consequently it can be 

difficult to develop a simple model for overall behaviour with 

the complication and expense inherent in load parameter 

measurements. Due to the type of studies which are usually 

important in power systems, the load is normally represented 

by a combination of constant impedance, constant current, 

constant power and induction machine models (Welfonder, et 

al., 1989; IEEE Task Force, 1993). To estimate the load 

model parameters, it is required to analyse the load’s active 

and reactive power sensitivity to voltage and frequency 

variation. In particular, the load power sensitivity to 

frequency, which links to load inertia, is important for system 

overall frequency response simulation. The white-box 

approach has been applied in different areas of power system 

modelling as well as load modelling (Bank Tavakoli, et al., 

2009; Inoue, et al., 1997). The grey-box approach is widely 

used in power system load modelling as well (Welfonder, et 

al., 1989; O’Sullivan and O’Malley, 1996). Black-box studies 

for load modelling in power systems also exist; however, the 

complexities in translating the physical meaning of the 

estimated values mean that there are limited opportunities to 

employ pure black-box approaches (He and Shelli, 2009). 

Most load modelling approaches consider loads which are 

connected to a coupling point in the system and estimate the 

parameters using a grey-box approach. From a power system 

operator point of view, estimation of total system load inertia 

is considerably more informative. As load inertia estimation 

assumes a higher level single node presentation of the entire 

system, a white-box approach is applied for estimation. 

 

3. WHITE-BOX LOAD INERTIA ESTIMATION 

The overall behaviour of power systems, regarding sensitivity 

to frequency variations and power balance can be simply 

represented by a single rotating mass. The dynamic equations 

governing the system can be written as:  

 JTTT Dem  (1) 

   eemmD PTPTDT  ;;π2 0  (2) 

2
02 bSHJ   (3) 

where Tm and Pm are the mechanical torque and power, Te and 

Pe are the electrical torque and power and TD is the damping 

torque. J represents the combined moment of inertia of the 

system,  is the system angular speed, f0 is the pre-event 

frequency, 0=2f0 is the pre-event angular speed, H and D 

are the equivalent inertial constant and mechanical damping 

coefficient of the combined system, Sb is the cumulative 

apparent power of all online generators, and  represents the 

system angular acceleration. Assuming that the system is 

operating close to nominal, equation (1) can be rewritten as: 

PfD
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where P is the power mismatch. Under steady-state 

operation, the frequency deviation is zero. After a 

disturbance, say a generator outage, the power imbalance 

causes the system to move from the previous operating point 

and accelerate at a rate dependent on the power imbalance. 

The system overall inertial constant can be estimated from 

time domain frequency mismatches by:  
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where Esys is the overall system estimated stored energy at the 

time when the event occurred, i.e. t=t0. Esys simply indicates 

the overall system inertia available at the start of the event 

and thus includes those synchronous generators, fixed speed 

wind turbines, loads and any other rotating masses connected 

to the system. Using a precise method of system frequency 

tracking makes it possible to extract the load inertia at that 

particular time from the system overall stored energy by 

subtracting the contribution from online synchronous 

generators and FSIGs:  

windgensysload EEEE   (6) 



 

 

     

 

where Eload is the load stored energy, Egen is the total 

synchronous generator stored energy and Ewind is the FSIG 

wind turbine contributions to stored energy. Only fixed speed 

wind turbines are assumed to have an inertial contribution; 

however, this trend may change in future with new designs of 

variable speed wind turbines (Miller and Clark, 2010).  

 

4. LOAD INERTIA ESTIMATION OF IRISH POWER 

SYSTEM 

The combined power system of Ireland and Northern Ireland 

currently has a peak demand of approximately 6950 MW, 

and incorporates conventional generation, comprising 

predominantly steam, OCGT and combined cycle gas turbine 

(CCGT) generators, a HVDC interconnector with Great 

Britain and approximately 1800 MW of wind generation. The 

largest generator on the system is 480 MW against a 

minimum demand of approximately 2500 MW (EirGrid, 

2011). Static sources of reserve include pumped storage, 

HVDC interconnection, interruptible load and load shedding. 

To estimate the system and load stored energy, six generator 

outage events were selected for the all-island power system, 

as summarised in Table 1. The system frequency 

measurement is determined at the system control centre 

where time stamped synchronous data of the output power of 

generators is also available. The ROCOF following a 

contingency event, which is required for system inertia 

estimation in (5), can be extracted from the original 

frequency signal using a polynomial curve fitting procedure. 

A polynomial order of 6-12 tends to provide the best fit. 

Using the curve fitting approach and proper selection of the 

polynomial function order, unwanted inter-area frequency 

oscillations can be effectively filtered (Inoue, et. al., 1997). 

The system pre-event stored energy is balanced to the system 

nominal frequency, i.e. 

2
0

2
)()( 0

ffEE nfsysfsys n
  (7) 

where fn is the nominal system frequency. 15-min resolution 

data of actual power from each wind farm is used to identify 

the online wind farms for a particular event and estimate the 

number of online FSIGs. An assumed inertial constant of 3 

MWs/MVA is applied for FSIGs, which have essentially a 

slower response to frequency decline compared with 

synchronous generators (Kennedy, et al., 2011). The per unit 

base for the overall system inertial constant is the sum of the 

apparent power of all online generators for each event, while 

the load inertial constant is based on the all-island system 

demand. The results of the proposed white-box load inertia 

estimation are depicted in Figs. 1-3. 

 

Table 1. Six events for load inertia estimation 

 Day (Time) Wind Generation (MW) 

A Fri. (10:37) 216 

B Fri. (10:59) 344 

C Thu. (12:41) 171 

D Sun. (21:34) 149 

E Mon. (11:41) 387 

F Sun. (12:25) 1087 

 
Fig. 1. System inertia with respect to system demand  

 
Fig. 2. Load inertia with respect to system demand  

 
Fig. 3. Load inertia with respect to system inertia 

 

For a system with low wind penetration, increasing demand 

usually implies more synchronous generators online and 

higher system inertia; however, in a system with high wind 

penetration, the demand may be supplied by significant wind 

power with a low inertia contribution, if any. From Fig. 1 it is 

obvious that the usual interpretation that higher demand 

implies higher system stored energy is not directly applicable 

(Inoue, et al., 1997). Moreover, the operational policy of the 

system ensures a minimum system stored energy of  

~25000 MWs from synchronous generators which limits the 

minimum system inertial constant in Fig. 1 (EirGrid, 2011). 

Consequently, at low loads, additional units may be kept on-

line to provide inertial support and reactive power control.  

The increasing penetration of wind power suggests that the 

natural inertial value will essentially decrease in future 

reaching the limiting level of system stored energy required 

for secure operation applied by the system operator. Load 

inertia estimation is required to obtain the correct 

representation of system stored energy, as part of further 

decisions regarding wind curtailment or rescheduling of 

generating units. Moreover, representing the load inertial 

contribution should result in any system-related inertial 

constraint becoming binding less often.  

The estimated load inertia with respect to the system demand 

for the selected events is shown in Fig 2. The load inertia is 
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generally less than 1 second, but experiences significant 

variation with regard to system demand, indicating the time 

varying nature of system load behaviour. The load inertia is 

also a function of the connected load and demand 

requirements, time of day, weekday/weekend and time of 

year. From Fig. 2, weekdays seem to present higher value of 

load inertia, with similar days and times showing relatively 

similar values of load inertia while load inertia is lower at 

weekends. Another interesting case is the load inertia at night 

when system inertia reduces further due to low 

industrial/commercial activities. System load inertia, 

however, tends to increase with respect to the overall system 

inertial constant, as illustrated in Fig. 3. The base load units 

of the system are predominantly coal-fired power plants with 

the next power plants scheduled to come into operation being 

CCGTs with higher inertial constants and this leads to higher 

system inertia as depicted in Fig. 3. 

The time varying nature of the load inertia requires as many 

events as possible to draw an overall picture of system load 

inertia. The selected events illustrate only 6 sample load 

inertia points for the white-box estimation procedure. 

Keeping in mind that new electrical loads connecting to the 

system may have different behaviour regarding their inertial 

contribution, it is recommended to establish an event 

database and update system inertia estimates for each event to 

cover load inertia variation across the year. It is also required 

to revisit load inertia estimation over time to track changes in 

load types and behaviour.  

 

5. GREY-BOX TURBINE-GENERATOR INERTIA 

ESTIMATION 

The load inertia estimation procedure in Section 3 requires 

that the inertia of all generating units be known in advance. 

Usually, a single figure is given for a multi-mass system and 

the sum of the inertia of all rotating masses is assumed to 

contribute to system stored energy. However, there are many 

units in practice whose data are not available or may be 

unreliable. It is possible to analyse the output power signal of 

power plants after a generator outage to estimate the online 

inertial constant based on a grey-box approach. The output 

power signal after a frequency decline comprises the natural 

response of the rotating mass to the fall of frequency, which 

is essentially a function of the inertial constant, and the 

governor action to increase mechanical input power (Fox, et 

al., 2007). Utilizing a standard dynamic model for the 

governor and including the inertial response of the unit, it is 

possible to “simulate” the output power of the unit utilizing 

the actual frequency trace fed into the model. It is now a 

question of optimization to determine which parameter set 

best fits the measured output (grey-box estimation). 

Moreover, steam, hydro, CCGT, OCGT and pumped storage 

power plants essentially comprise different governor dynamic 

models. It is therefore required to implement a suitable model 

for each operating unit. The primary parameters to be tuned 

are the inertial constant, governor droop and forward loop 

time constants e.g. servomotor time constant, reheater or 

turbine discharge delay. Nevertheless, the estimation 

procedure requires caution due to two potential sources of 

error during the optimization procedure. Due to variations in 

load and frequency in the system and the action of load and 

frequency control loops in the power plant, the power output 

signal of the generator may not be smooth. Quantisation and 

sampling make the situation worse, such that deviations in 

input data may cause the algorithm to track non-necessarily 

good fits. Moreover, to estimate the unit inertia, the 

governor’s natural response should be recognised, otherwise 

the obtained value will be overestimated. To overcome the 

above mentioned problems, a weighted mean square error is 

proposed as the optimization goal function:  

      dtetEtE
TW

MSE
TW

Tt
meassim  


2

0

1
 (8) 

where Esim(t) is the simulated output energy of the generating 

unit, i.e. the integral of the output power versus time, Emeas(t) 

is the output energy of the unit computed from the measured 

output power signal, T is the time constant set to compensate 

the governor response and TW is the overall processing 

window. Using the energy output as the goal function 

minimizes the effect of noise and disturbances on the 

optimization process. However, if high quality, high 

resolution data is available, mismatch errors of the power 

signal can be used as well. Implementing the above 

mentioned procedure for a coal-fired steam unit is shown in 

Fig. 4. The estimated generator inertia agrees well with 

manufacturer data in test simulations. It is worth mentioning 

that applying the goal function of (8) ensures that the first 

few seconds of the measured data have the dominant effect 

on the optimization procedure, i.e. the inertial constant 

changes are weighted by the optimization cost. Thus the 

curves in Fig. 4 acceptably diverge for later simulation times. 

This procedure can also be extended to confirm governor 

response and so obtain agreement with grid code and/or other 

generator performance requirements.  
 

(a)    

(b)  

Fig. 4. Simulated and measured signals, (a) power, and (b) 

energy 
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6. SAMPLING RATE, TIME SHIFTING AND 

AVERAGING EFFECTS 

Load inertia estimation in Section 3 and generator inertia 

estimation in Section 5 both require time sampled data from 

actual events. While high resolution, i.e. high sampling 

frequency, is desirable to increase precision, it increases the 

data volume as well. The available resolution for data 

samples may be in the range 1 to 10 Hz, although it is 

possible to achieve higher sampling rates in the range of 

some kHz using digital fault recorders. However, recording 

equipment, communication requirements and storage 

limitations usually limit the availability of high resolution 

data. Any data recorder implements a processing window 

with a predefined width. When the device is triggered to 

record data, samples within the window will be recorded and 

made available. Depending on the exact time that an event 

occurs and the triggering moment, different samples of the 

original signal may be available in the processing window, 

the time shifting effect. Moreover, moving average based 

filters may be employed to smooth or down-sample the 

recorded data. To investigate the above mentioned effects 

with regard to inertia estimation, an event is considered to 

generate noise-free frequency and power signals with a high 

sampling rate, i.e. 100 Hz. The frequency signal is then fed 

into the white-box and grey-box estimators to generate the 

ideal values for load inertia and generating unit inertia. Next, 

the original frequency signal is intentionally down sampled, 

time shifted and filtered by averaging and is again fed to the 

white-box and grey-box estimators. Comparison is made 

between the results using the original frequency and power 

signals and those using down-sampled, shifted and averaged 

signals.  

Fig. 5 shows the effects of sampling rate, time shifting and 

averaging on the original frequency signal. The processing 

window is 3 seconds in (a) and (b) while in (c) the processing 

window is variable in the range of 0.5-1 s. In the first two 

cases, the time shifting and sampling effect were investigated 

which are essentially independent from the processing 

window. Case (c) just shows the effect of averaging on 

processing window when the processing window length is 

changed with the longer window length being less precise. 

The error between the estimate using the original and 

manipulated frequency signals for load inertia estimation 

(white-box estimator) and unit inertia estimation (grey-box 

estimator) are depicted in Fig. 6 and Fig. 7. As can be seen, 

the moving average approach introduces the largest error; 

however, averaging is usually avoided after signal sampling. 

Time shifting does not cause significant errors at high 

sampling rates. Nevertheless, at lower sampling rates time 

shifting may be noticeable. Fig. 6 and Fig. 7 show the effect 

of time shifting for a sampling period of 0.5 s (i.e. 2 Hz 

sampling rate). Thus, if the sampling rate is low, the actual 

sampling window length is important. The best solution is to 

keep the sampling rate rather high, i.e. 8 Hz and more. A 

higher sampling rate is, of course, desirable, but the error 

obtained is acceptable for lower sampling rates, even up to 1 

Hz, if averaging doesn’t occur, as illustrated in Fig. 6. In 

contrast to grey-box estimation, the error in white-box load 

inertia estimation is not acceptable for lower sampling rates 

relative to the actual values obtained, see Fig. 7. Utilizing 

data with a time resolution of 0.1 second or more is usually 

available in power system communication facilities and thus 

the errors in white and grey-box estimation procedures 

should be low.  

(a)    

(b)    

(c)  

Fig. 5. (a) Sampling rate effect, (b) time shifting effect, and 

(c) averaging effect on original frequency signal 
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Fig. 6. Sampling rate, time shifting (at sampling rate 0.5 s) 

and averaging effects on load inertia estimation 
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Fig. 7. Sampling rate and time shifting (at sampling rate 0.5 

s) effect on generator inertia estimation 

 

7. CONCLUSION 

By increasing wind power penetration and displacing 

conventional thermal power plant, the system overall inertia 

will decrease. It is now more probable that system inertia will 

be a limiting factor for system operation. Consequently, it is 

more desirable to obtain a proper estimation of load inertia as 

a contributor to the system overall frequency response. A 

white-box estimation approach was presented for load 

estimation utilizing post-event data sampled and concentrated 

in a processing centre. A grey-box estimation method was 

also introduced for generating unit inertia estimation to 

estimate the stored energy of generating units. The sensitivity 

of the results to sampling rate, time shifting and averaging 

was also investigated. The general outcome of the procedures 

indicates that the methods yield promising results for load 

inertia estimation. A load inertia database can be developed 

to estimate the time varying load contribution to stored 

energy of the overall system and will help to define the 

minimum stored energy required for secure system operation. 

Creating a comprehensive load inertia database is a long term 

plan and requires data from all available events to be 

analysed and validated. Updating this database should lead to 

a detailed picture of load inertia for different operating 

conditions which could be used ultimately in drawing a more 

realistic picture of real system operating states.  
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