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Abstract—Driven by a trend towards renewable forms of gener-
ation, in particular wind, the nature of power system operation is
changing. With respect to wind power, the uncertainty of the wind
becomes an issue which must be considered. Through the use of
wind forecasting, this uncertainty may be managed. The error
inherent in forecasting will impact system reliability and cost as
will inaccuracies in assumptions about the forecast error. This
paper presents the methodology adopted for use in a Scenario
Tree Tool constructed to allow for closer examination of the effect
of forecast error assumptions and properties in unit commitment
scheduling models.

Index Terms—Wind power generation, Forecast error, Stochas-
tic Unit Commitment

I. INTRODUCTION

THE nature of power system operation is changing world-
wide. Plans are in place to increase the proportion of

demand met through wind power throughout the European
Continent [1], Ireland [2], Great Britain [3] and the United
States [4]. In Europe, for example, this change is driven
by EU policy which aims to reduce CO2 emissions and
dependency on imported fuel. Primarily this policy encourages
the growth of renewable generation including wind power
[5]. It is expected that this increase in renewable generation
will displace conventional generation - causing a decrease in
system operation costs as less conventional fuel is consumed
in meeting system demand.

However, displacing conventional generation with non-
synchronous renewable generation is creating new system
operation challenges. Wind is by its nature variable. It is of
limited predictability and control of the resource is limited to
curtailment. As wind cannot be forecast with perfect accuracy,
additional reserve must be carried and conventional units must
be operated in a more flexible, adaptable manner - leading to
reduced efficiency through partial loading and an increase in
the number of start-ups required for conventional power plants
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Fig. 1. Illustration of rolling planning Scenario Trees

[6]. While the effects of this uncertainty can be disregarded
for low wind penetrations, with high wind penetrations the
uncertainty associated with wind forecasting error will impact
upon the reliability, efficiency and economic performance of
unit commitment [7].

While stochastic treatments of wind uncertainty have previ-
ously been investigated, the contribution to solution quality of
specific statistical properties of forecast error have not been
considered. These properties are available from analysis of
the error between historical forecasts and realised data. In
ideal circumstances, a system operator will have the necessary
information prioritised in the form best suited for decision
making. In practice, and in many prior studies quantification
of forecast error has often been limited to simple statistical
properties such as variance and mean error and an assumed
Gaussian distribution [9].

The WILMAR project developed a stochastic unit com-
mitment scheduling model to analyse the integration of
wind power in a large liberalised electricity system [8]. The
WILMAR scheduling model uses a rolling sequence of sce-
nario tree forecasts to model the impact of error information
(see Fig.1) This model has previously been used to study



the benefits of stochastic treatment of wind uncertainty over
deterministic treatments as well as the impact of accounting
for more of the wind uncertainty by increasing the frequency
of rolling planning [7].

This paper presents the methodology adopted for use in
a Scenario Tree Tool (STT) constructed to allow for closer
examination of the effect of forecast error assumptions and
properties when combined with a suitable unit commitment
model such as WILMAR. Due to the requirement for direct
control of the statistical properties in several areas of inter-
est, ARMA series/scenario reduction methodologies were not
considered suitable for this tool. A new STT was designed
using a methodology based upon a moment matching tech-
nique where each time period, within a tree, has a defined
variance, skewness and kurtosis. These statistics together with
the autocorrelations of the scenario determine the values of
the scenarios at that time period. While alternative heuristic
methodologies have been proposed for deriving a scenario tree
that matches specific moments [10], the methodology used
in this tool is based upon a nonlinear optimisation moment
matching method [11], [12].

Section II describes the methodologies related to the STT.
It Details the program structure and methodologies (moment
matching and scenario grouping) used to generate wind and
load scenarios within the current STT as well as the method
used to account for diurnal/seasonal variations. In addition to
describing the new methodology, it also briefly describes the
preceding scenario reduction/ARMA series method which was
used by older versions of the STT.

Section III covers the methodologies used for calculating
the replacement reserve, the amount of reserve required to
be available after a short delay, from these trees as well as
detailing, for completeness, the assumptions about spinning
reserve, the amount of reserve required to be available from
online generators at a given time, and the semi markov chain
methodology used to simulate forced outages as required by
the replacement reserve methodology.

Section IV displays example graphical outputs from the
preceding sections.

A conclusion is presented in Section V.

II. DEVELOPMENT AND METHODOLOGY OF THE
SCENARIO TREE TOOL

In power plant scheduling, decisions must be made on both
information known with certainty and uncertain information
which must be forecasted. In stochastic unit commitments,
wind forecasts, demand forecasts and their forecast error can
be accounted for by representative branching trees consisting
of probability weighed scenarios for available wind generation
(Fig. 1). The number of scenarios has been restricted to min-
imise dimensionality in the unit commitment solution, while
retaining accuracy in the specified statistical information. For
computational reasons, the first stage of these trees is assumed
to be known with perfect certainty.

Each scenario in the tree consists of an assigned probability
and two time series values - one for load and one for wind.

Fig. 2. Structure of the Scenario Tree Tool.

Each of these time series can be represented as a forecast time
series, common to all scenarios within the tree, and an error
time series which, together with the error time series of the
other scenarios, represents the error distribution of the forecast.

In the All Island Grid Study (AIGS), these scenario trees
were generated by an STT using a methodology based upon
scenario reduction of ARMA series [14]. In brief, Scenario
Reduction aims to take an initially large number of scenarios
and then remove scenarios until only the desired number
remain while maintaining as close a representation of the
original distribution as possible according to the methodology
given here in brief:

1) Generate 1000 36 period Wind Speed scenarios using
Arma (1,1) Series of equal probability.

2) Calculate the Kantorovich distance between each pair of
scenarios.

3) Merge the probability of the scenarios with the lowest
Kantorovich distance and delete the scenario of smaller
probability.

4) Repeat steps 2 and 3 until the desired number of
scenarios is achieved.

5) To create the branching scenario tree, this process is
repeated omitting the hours in the third stage to reduce
the scenarios further.

6) These remaining scenarios are added to the wind speed
forecast and converted to wind power scenarios using
the aggregated wind power curve.

Due to the requirement for direct control of the statistical
properties in several areas of interest, ARMA series/scenario
reduction methodologies were not considered suitable for



this tool. A new STT was designed using a methodology
based upon a moment matching technique where each time
period, within a tree, has a defined variance, skewness and
kurtosis. These statistics together with the autocorrelations of
the scenario determine the values of the scenarios at that time
period. While alternative heuristic methodologies have been
proposed for deriving a scenario tree that matches specific
moments [10], the methodology used in this tool is based upon
a nonlinear optimisation moment matching method [11], [12].

The overall structure of the Scenario Tree Tool (STT) can be
seen in Fig.2 where W is wind scenarios, L is load scenarios
and P is the probability of each scenario. Each functional
box represents a separate module or submodule in the STT
which will be covered in the subsequent sections. Entries on
the same level represent parallel operations which can be run
simultaneously. The steps in brief follow and can be seen
graphically in Fig.3:

1) Set initial parameters and begin from the final stage of
the tree

2) Generate the scenarios for the current stage of the tree
using moment matching. (II.A)

3) Calculate the degree of similarity between each subset
(size determined by the ratio of branching) in terms of
Kantorovich distance and autocorrelations. (II.B)

4) Generate an optimal branching structure between the
current stage and its predecessor using the subsets
which minimise the disparity between merging scenario
branches.

5) Repeat the preceding steps for the earlier stages using
the branching structure and scenario values as further
inputs into the objective function (1).

A. Moment Matching

For each stage in the tree, a nonlinear optimization was
used to produce a matrix of scenarios consisting of wind,
demand and probability values matching the specified statistics
as closely as possible. In addition, stages which have already
been determined are used to provide additional autocorrelation
information for subsequent stages.

In each stage, the optimisation acts to minimize the follow-
ing objective function (1) while meeting the constraints (4, 5,
6) given the stages and branch connections that have already
been defined:

S∑
n=1

Wn(fn(xt, Pt) −Sn)2 (1)

S is the set of statistical properties under consideration. Wn

is the optimisation weight assigned to the statistical property.
Sn are the components of the set S (mean, variance, kurtosis,
skewness, first four autocorrelations). xt,j is the set of values
for scenario j during the given time step t. Pt are the
probabilities assigned to the scenarios in time step t.

The individual components (fn(x)) of the objective function
(1) are calculated using the following formulas for the moment

Fig. 3. Structure of the Scenario generation

(2) and autocorrelation (3):

Ml =

s∑
j=1

Pj(xj,t − µt)
l (2)

ACτ,j =

N−τ∑
j=1

(Yi − µj)(Yi+τ − µj)
N∑
j=1

(Yi − µj)2
(3)

Ml is the lth Moment at time t. ACτ,j is the autocorrelation
at timelag τ for scenario j. µt is the mean of the scenario set
at time t. µk is the mean of the scenario k and τ the time lag
of the autocorrelation. k is the index of a given scenario. jk
are the indices of the scenarios which branch from scenario
k.

In order to ensure probability remains consistent across
scenarios and time periods, the constraints upon the objective
function are as follows:∑

Pjk,t = Pk,t−1 (4)∑
Pt = 1 (5)

Pjk,t > 0 (6)

B. Scenario Grouping

The scenario stages produced by moment matching are
divided into groupings according to the branching of the
scenario tree and the similarity of their autocorrelations. This
is done to ensure that when joined to the relevant scenario in
the preceding stage the autocorrelation of each branch of the
tree is consistent across the stage boundaries. This prevents
the creation of suboptimal scenario branching as a result of



joining two disparate scenarios. Scenario ordering is deter-
mined by finding the ordering which minimises the difference
in autocorrelation and the Euclidean distance between the short
term (stage II) values of each scenario .

D(j1, j2) =

T∑
t=1

(xj1,t − xl,t)
2

(xj2,t)
2

+

τ∑
z=1

(ACτ,j1 −ACτ,j2)2

(ACτ,j1)2

(7)
These groupings and scenarios are then used in the optimi-

sation of any subsequent moment matching steps to provide
consistent autocorrelations for each scenario throughout the
tree stages.

C. Diurnal and Seasonal variation

Wind and load forecasts exhibit different behaviour at
different times of the year and day. In order to account for
seasonal and diurnal variation, the error trees can be altered
before being added to the individual forecasts by the addition
of a mean error adjustment time series,µ(j) to each scenario
and the use of a scaling constant ε.

The values of µ(j) and ε are chosen through fitting the
general forecast error to the forecast error of each seasonal
period and time period within the day. This is achieved by sub-
dividing the known forecast information by seasonal period,
calculating the same metrics as the main data and deriving
the necessary adjustments from the proportional difference in
standard deviation and mean between the general case and the
specific case. This process is repeated for the starting hour of
the forecast to derive the adjustment for time of day.

III. REPLACEMENT RESERVE AND FORCED OUTAGES

A. Replacement Reserve

Replacement reserve is estimated for each individual
scenario branch of wind and demand within the tree and is
calculated using a similar methodology to that presented in
the AIGS [14]. However, the AIGS used methods assuming
prior scenario reduction, which calculate reserve from the
90th percentile of the unreduced set of scenarios used to
generate the scenario tree. This method can therefore not
be used with the new STT as the new methodology uses
moment matching and does not generate the large initial
number of scenarios required by the AIGS methodology.
Instead, the reserve is calculated from the 90th percentile of
a distribution based upon the variation of wind and demand
error represented by those scenarios (8) according to the
following method:

The n scenario combinations are mapped onto the wind
scenario s from which they came and the reserve is taken to
be the 90th percentile of the difference between the reference
power balance PRef (9) and the forecasted power balance, P ,
for the scenario combinations n at each wind scenario s (10):

∆P (t0, f, s) = PRef (t) − P (t0, f, s) (8)

Fig. 4. Algorithm for forced outage calculation

The power balance PRef at time t is calculated for the re-
alised values of wind WR, load LR and available conventional
capacity C:

PRef (t) =
∑
gεG

C(g) +WR(t) − LR(t) (9)

The power balance P of each combination of wind and
load scenarios n is calculated for the scenario Wind WE

and Load LE as well as the forced outages. and time t
is calculated for the realised values of wind WR, load and
available conventional capacity C:

P (r, t0, f, n) =
∑
gεG

C(g)Y (g, t)+WE(t0, f, n)−LE(t0, f, n)

(10)



Fig. 5. Example autocorrelated scenario, thin line, imposed onto scenario
tree points. Deterministic forecast is shown by the thick line, realised value
is shown by the thick dashed line.

Fig. 6. Scenario tree with inverted skewness. Note the tree is skewed to the
opposite side of the deterministic forecast.

In addition to this, required spinning reserve is estimated
from the largest infeed to the system and forecasted wind using
the methodology presented in the AIGS [9].

B. Forced Outages

While no new changes have been made to this methodology,
it is included here for completeness as it is necessary for the
reserve calculations as well as being a required input for the
unit commitments it is currently in use with. Within the model,
distinction is drawn between two types of outage (forced out-
ages and scheduled outages). As scheduled outages are defined
by the user and by the test system, the STT simulates forced
outages from the information provided about the test system
including the information provided on scheduled outages.

The time series of forced outages for each conventional unit
are simulated using semi-markov chains [13], where the failure
and repair rates are expressed by the mean time to failure and
the mean time to repair. The methodology used in the STT
is derived from that presented in the All Island Grid Study
(AIGS) [14] and is detailed in brief below.

PAvailable =
MTTF

MTTR+MTTF
(11)

PAvailable is the probability that a plant will be available
derived from the Mean Time to Failure (MTTF ) and Mean

Fig. 7. Example un-autocorrelated scenario, thin line, imposed onto scenario
tree points. Deterministic forecast is shown by the thick line, realised value
is shown by the thick dashed line.

Fig. 8. Scenario tree with increased kurtosis. Note the increase in points
clustered at the mean and at the extremes

time to Repair (MTTR) for each plant.

PUnavailable =
MTTR

MTTR+MTTF
= FOR (12)

PUnavailable is the probability that a plant will be unavailable
and is equivalent to the Forced Outage Rate (FOR).

FOR =
tfo
t

(13)

tfo is the total number of hours the plant is unavailable and t
is the total time period.

Fig. 4 shows the structure of the forced outages algorithm.
The initial state of the unit is determined by drawing a
random number from a uniform distribution and comparing
it to the Full outage percentage (FOP ) calculated according
to equation 14.

FOP =
FOR

MTTR
(14)

The result of this determines whether or not the model will
draw a time to repair (TTR) or a time to failure (TTF ) from
the Weibull distribution.

f(t, µ, k) =
k

µ
(
t

µ
)k−1 · e−( tµ )

k

(15)

Where the shape factor k = 1 is used for the TTF (as time
to failure is captured by an exponential distribution), k = 5 is
used for the TTR (time to failure represented by a bell shaped



Fig. 9. Scenario tree with decreased kurtosis. Note the reduction in clustering
and the more even spread of points

distribution) and µ is calculated from MTTF and MTTR
respectively.

IV. RESULTS

This section presents example scenario tree outputs from
the STT to demonstrate the impact of altering statistics.

Fig. 5 gives an example of the points contained in a
statistically accurate scenario tree overlayed upon the realised
and forecasted values (thick dashed line and line respectively).
In addition, a single scenario is shown (thin line with squared
points) to demonstrate the impact of including autocorrelation
in the optimisation.

Fig. 7 presents a tree constructed from identical information
without autocorrelation considered. Due to this, the included
scenario in this version contains considerably more sharp
changes than the reality entails. As a result, despite the
statistics of each individual time period being correct, the
grouped scenarios do not present useful information.

Fig. 6 presents the same tree with inverted skewness. While
it is is similar in shape to Fig. 5, its shape appears transposed
around the forecast as its skewness is of the opposite sign.
The scenario tree constructed in this fashion assumes the
opposite trend in terms of overestimating or underestimating
the forecast.

Fig. 8 demonstrates the effect of reducing kurtosis - a tree
which is clustered closer to the forecast with an increased
number of extreme values.

In contrast Fig. 9 demonstrates the effect of reducing kur-
tosis - a tree which is comparatively evenly spread throughout
the distribution.

V. CONCLUSION

This paper presented the methodology of the Scenario Tree
Tool based upon moment matching. Example output demon-
strating some of the converted to a graphical format were
also included. This tool is under development to examine the
impact of wind forecast error statistics upon unit commitment
for high wind penetration test systems.
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