
IEEE Transactions on Sustainable Energy, (In Press 2010) 
 

  
Abstract—Non-physically-firm wind generation connections 

(i.e. those to which curtailment can apply) may be necessary for 

significant wind integration to congested transmission networks. 

A study of factors influencing this associated wind energy 

curtailment is therefore of timely importance. In this paper, the 

wind curtailment estimation effects of natural inter-yearly wind 

profile variability, system demand-profile/fuel-price parameter 

uncertainty, and minimum system inertial constraints are studied 

in detail. Results indicate that curtailment estimation error can be 

reduced by appropriate wind data year-length and sampling-rate 

choice, though a pragmatic consideration of system parameter 

uncertainty should be maintained. Congestion-related wind 

energy curtailment risk due to such parameter uncertainty 

exhibits appreciable inter-locational dependency, suggesting there 

may be scope for effective curtailment risk management. The 

coincidence of wind energy curtailment estimated due to network 

thermal congestion and system-wide inertial-stability issues also 

has commercial significance for systems with very high wind 

energy penetration targets, suggesting there may be appreciable 

interaction between different sources of curtailment in reality.   
 

Index Terms-- power transmission, power generation dispatch, 

power system economics, uncertainty, wind energy. 

I.  INTRODUCTION  

he low capacity factor of wind energy as an alternative 

form of electric power generation has significant 

implications for wind farm transmission access and 

transmission network design criteria [1]. Wind is most 

appropriately considered as a variable energy source in long-

term network integration studies as it rarely reaches nameplate 

capacity production in many locations. If optimal transmission 

system design implies an accommodation of distributed wind 

energy production for most but not all of the time (i.e. it is 

uneconomic to design transmission networks for all of the 

available wind energy [2]), then some level of wind 

curtailment (i.e. a ‘non-firm’ transmission connection) will be 

an obvious consequence. Both the expected value, and equally 

importantly the risk or uncertainty of wind curtailment 

estimates will have considerable relevance for non-firm wind 

capacity investment in deregulated power systems. A detailed 

consideration of the various and somewhat interdependent 

factors influencing curtailment is therefore necessary. 
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 As wind energy is a fluctuating and partially dispatchable 

generation source, curtailment investigation must be 

considered within a probabilistic rather than deterministic 

study context. While advanced wind power time series 

simulation methods have been reported in the literature [3], 

wind production data based on historical  behaviour is often 

the basis for many wind transmission integration studies 

applied in practice [4],[5]. Synchronously recorded historical 

power output data is useful in that it will inherently represent 

any multivariate spatial dependencies, though often there is 

only a limited amount of data available for study. Wind 

profiles may exhibit both significant inter-yearly variation as 

well as appreciable short term intra/inter-hourly variability in 

some areas - important questions arise such as how many years 

of historical data and what data sampling frequency are 

required to accurately estimate respective wind energy 

curtailment indices. Historical wind power data-timeframe 

considerations of this nature have been shown to strongly 

impact wind capacity credit estimation in [6] for example.  

 While such wind profile timeframe modeling issues will no 

doubt influence wind curtailment estimation, long-term 

uncertainty associated with other power system parameters will 

also be of importance. For example the power flow 

implications of future customer demand shaping with smart-

metering and electric transportation, combined with fossil 

fuel/carbon price volatility, are relatively unknown at present, 

and may even fluctuate dynamically as the future system 

evolves in time. Such model parameter uncertainty contributes 

to wind curtailment estimate variation, i.e. curtailment ‘risk’. 

Excessive wind curtailment risk, even for network locations 

where the ‘expected’ curtailment level in itself is quite low, 

will be problematic from an investment security perspective as 

wind capacity is a relatively capital-intensive investment 

option. Given that wind development is usually distributed at 

multiple locations in the power system network however, then 

a study of the co-dependency of wind curtailment estimate 

variations between distinct locations allows an investigation of 

how such long term curtailment uncertainties might possibly 

be overcome from a risk management perspective. Anti-

correlated curtailment risks will be particularly advantageous 

in this respect.    

 At low to medium wind energy penetration levels, network 

congestion will be the principle factor influencing wind 

curtailment values. At very high penetration levels however, 

sometimes the total wind generation available may approach or 

even exceed the total customer load demand in small regional 

or island power system areas. Therefore some wind energy 

may also have to be curtailed for load balancing purposes to 
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keep a minimum number of conventional units online in the 

unit-commitment procedure for related system inertial or 

network dynamic stability reasons [7],[8]. It is presently 

unclear what the coincidence of such concerns with network 

thermal-congestion problems will be, as sufficiently detailed 

studies of these issues are often completed separately [9]. For 

example if there is already wind curtailment required due to 

local network congestion, then the load balancing/inertial-

stability excess in total wind power availability may not occur 

in the first place. Whether the overall net level of wind 

curtailment will be equal to or less than the algebraic addition 

of these separate results is furthermore an issue of considerable 

economic significance for wind farm owners in reality. 

 This paper presents detailed studies of the effects and 

possible coincidence of these factors which influence overall 

wind energy curtailment patterns in congested transmission 

networks. The characteristics and practical details of the power 

system and related security-constrained optimal power flow 

(SCOPF) routine that form the common basis for each study 

are outlined in Section II. Extensive multi-year historical 

recorded wind power data is then investigated in Section III to 

quantify the impacts of natural inter-yearly wind profile 

variation and data-sampling rate on curtailment estimation. 

With a suitably stable and compact time-frame representation 

of the wind data chosen to negate such inherent wind profile 

variability effects, the influence of power system parameter 

uncertainty and inertial-stability unit commitment constraints 

on wind curtailment risk is subsequently investigated in 

Sections IV and V respectively. Relevant discussions and 

conclusions are then given in Sections VI and VII.   
 

II.   TEST POWER SYSTEM AND SCOPF IMPLEMENTATION  

A.  Power System Network, Generation and Wind Data     

The test system used in the analyses of this paper is illustrated 

in Fig.1. This has a 35-bus, 54-line network, denoted as ‘Area 

1’ (based on a very simplified model of the Irish ‘All-Island’ 

220/275/400kV high-voltage transmission system). It contains 

a mixture of base-load and mid-merit fossil-fuel (coal and 

peat) steam turbine generation, combined-heat-and-power gas 

plants (CHP), combined-cycle gas turbines (CCGTs), higher-

efficiency aero-derivative gas turbines (ADGTs), lower-

efficiency open-cycle gas turbines (OCGTs), as well as a few 

gas/oil-distillate ‘peaking’ units, amounting to 10.4GW 

conventional plant capacity overall. 500MW of HVDC 

interconnection capacity to a much larger separate power 

system denoted as ‘Area 2’ (based on an approximate model of 

the Great Britain generation portfolio) is available at both 

buses 12 and 34, denoted as IC-1 and IC-2 in Fig.1. 

Conventional plants in Area 2 are grouped approximately into 

multiple generation capacity blocks of similar plant-type, all 

connected at a single transmission node. Conventional plant 

performance data, seasonal natural gas fuel price variations, 

load profile, load magnitude (accounting for projected load 

growth to a maximum peak value of 9.61GW), and the  

 
Fig.1 – the test power system under investigation. 

 

assumed load geographic distribution are consistent with [5]. 

Load profile information for Area 2 was sourced from [10]. 

Additional information on the test network branch reactance 

and thermal capacity parameters (chosen so that no congestion 

occurs at the zero wind penetration level), the assumed system 

geographical load spread, and the conventional generation 

portfolio network locations as applied in this investigation, are 

given in the Appendix.  

Synchronously recorded historical multivariate wind power 

data from multiple geographically distributed existing wind 

farms on the Irish power system, recorded over varying 

numbers of years and at 15-minute sampling resolution, was 

used as the database for the wind energy curtailment studies of 

this paper. This multivariate power output data was linearly re-

scaled to model different installed wind capacity levels 

positioned at various locations on the test system network, as 

appropriate for each study – further information is detailed as 

necessary in Sections III, IV and V below. Coincident 15-min 

resolution load time series data was taken from the Irish power 

system for use with the test power system of Fig.1, with inter-

year normalization by peak-load applied to remove any 

demand-growth patterns present. 

B.  Network Congestion Study Implementation Assumptions  

Application of multi-year, high-frequency data to wind energy 

curtailment investigation, under a wide number of power 

system parameter sensitivity analyses, is a very 

computationally demanding task. Many hundreds of thousands 

of individual optimisation solver routines are performed in the 

test system analyses of this paper for example. A judiciously 

simplified model is therefore useful to make the curtailment 

studies of this paper tractable so that general trends and 

concepts can be established. In real power system applications 

where precision is more critical, use of a fully rigorous model 

would of course be necessary. When considering the specific 

sensitivity influence of any individual parameter, its’ salient 

features should be retained, while other issues (whose 

particular effects may already be somewhat understood) can 
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justifiably be simplified in some ways. This pragmatic 

approach forms the basis of the network congestion modelling 

outlined in this paper – the historical wind data sampling 

effects in Section III are first resolved to a more compact 

representation prior to the more general parameter uncertainty 

investigation in Section IV, for example.  

A lossless linear DC security-constrained optimal-power-

flow dispatch model was used for the curtailment sensitivity-

analysis context of the three studies outlined in Sections III, IV 

and V. This relatively simple linear-programming model 

applied any single network or generation ‘N-1’ contingency of 

the test system as the operational security criteria to be 

satisfied by the generation dispatch solution at each time-step. 

Conventional generators were dispatched on the basis of 

single-cost energy bids, and wind power marginal costs were 

taken as zero. All model development was carried out in 

MATLAB [11] and GAMS [12], using the MATLAB/GAMS 

interface available at [13].  

The unit-commitment problem for real power systems with 

high wind penetration levels influences the power generation 

schedule for two main reasons. Firstly, for some extreme (but 

typically low-probability) operational-timeframe scenarios, 

wind energy may have to be curtailed to ensure that adequate 

conventional generation flexibility is maintained online with 

regard to operational wind variability and forecast uncertainty 

effects. This is an indirect result of conventional generation 

start-up times, minimum up- and minimum down-times, ramp-

rate limits etc. Stochastic mixed integer optimisation models of 

such operational wind management tasks have already been 

outlined in detail with the studies of [14], [15], [16] and their 

context in longer-term power system planning models 

furthermore considered in [17]. As such models are highly 

computationally demanding, and as sequential wind variability 

effects are not primarily influential with respect to 

understanding the three sensitivities considered in this paper, 

they are not included in the analyses of Sections III and IV.    

On the other hand, in real power systems the system 

operator must make sure that a minimum number of 

conventional units are kept committed online at all times for 

system dynamic stability etc – wind curtailment may also 

occur for this reason, particularly if high wind power output 

coincides with low demand level. At high wind penetration 

level, the contribution of this effect to overall wind curtailment 

levels is likely to be more influential than the sequential 

variability management problem, as might be suggested by the 

results of [17]. A good approximation of the contribution of 

this unit-commitment effect to wind curtailment is therefore 

indeed included in this paper (albeit using a rounded-

relaxation linear programming based approximation of a 

mixed integer approach), and is outlined in detail in Section V. 

III.   HISTORICAL DATA TIMEFRAME MODELING  

A.  Case Study Details  

Eight consecutive years of recorded historical wind power 

output data was available at 15-minute sampling frequency 

from 4 separate existing wind farms located on the Irish power 

system (wind data from the other sites was available with 

lesser timeframe length). This wind data was linearly re-scaled 

to arbitrary 750MW capacity wind farms connected to buses 9, 

11, 13 and 17 on the test power system in Fig.1. In total 

therefore, ~ 280,320 individual linear programming based 

SCOPF analyses were carried out to model the wind energy 

curtailment at each respective wind farm over the entire 

historical time series dataset. The SCOPF results were 

subsequently filtered at 15-min, 30-min, 1-hourly, 2-hourly, 4-

hourly, 8-hourly, 12-hourly and 24-hourly sequential time-

segment resolution to investigate data sampling frequency 

impacts on the wind energy curtailment estimation. To 

preserve any diurnal characteristics in the wind data, the low 

frequency samplings were carried out randomly in each 

respective sequential data segment. The SCOPF results were 

also filtered for various year-length timeframes from 1 year of 

data alone to the full 8 year dataset – for example there are 28 

(
8
C2) possible ways to select any two years of data from the 

original 8-year set. This timeframe-filtering of the SCOPF 

results allows an investigation of the wind energy curtailment 

estimation error associated with a limited historical data 

timeframe at low sample resolution, when compared to the 

original 8-year 15-min dataset.  

Two separate SCOPF sensitivity analyses were also carried 

out with respect to conventional generation gas fuel price and 

the customer load demand profile for the 8-year, 15-min 

historical database. Gas price was arbitrarily increased by 25% 

from the base case scenario and the total system demand 

profile was reduced to 95% of its base case pattern. Observing 

the curtailment uncertainty effects of these limited sensitivity 

analyses puts the historical data inter-yearly/sample-rate 

curtailment estimate variations in context of typical power 

system parameter uncertainty effects, allowing a prudent 

choice of the number of historical data samples to retain for 

subsequent investigations in Sections IV and V.  

B.  Case Study Results 

A sample illustration of the effect of limited data timeframe 

length on the estimation of wind energy curtailment at Farm-9 

is given in Fig.2, with the vertical columns representing all the 

various possible individual data-year combinations (each 

applied with 15-min data sample resolution). Depending on the 

year in question, if only 1 year of study data was available for 

example, the estimated wind energy curtailment could vary 

anything from 1.4% to 2.4% of total available energy, 

compared to the full 8-year dataset value of 1.86%. Analogous 

to the wind capacity credit studies in [6], more years of data 

available progressively reduces the variance of the curtailment 

estimation error. The corresponding effect of limited data year-

length on the estimated Farm-11 wind energy curtailment is 

illustrated in Fig.3. Similar effects are evident for the wind 

farms at buses 13 and 17.  

The mean absolute value of the wind energy curtailment 

percentage error, averaged over the four wind farms in the 

system, is summarized in Fig.4 for all such possible historical  
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Fig.2 – variations in wind energy curtailment at Farm-9 with respect to 

number of years of data (15-minute sample resolution). 
 

 
Fig.3 – variations in wind energy curtailment at Farm-11 with respect to 

number of years of data (15-minute sample resolution). 
 

data year-length and sampling frequency combinations. For 

example, 4-years of wind data sampled at 8-hourly resolution 

give a system-averaged expected curtailment error of approx 

8%. From the slope of different segments of the graph in Fig.4, 

the incremental value of acquiring additional data to wind 

energy curtailment modeling is clearly relative to how much is 

available already. Wind data timeframe modeling issues will 

have an effect on estimated wind capacity factor also. The 

corresponding mean absolute value of the wind energy 

capacity factor error, again averaged over the four wind farms, 

is given in Fig.5. Interestingly the capacity factor error reduces 

linearly with respect to timeframe yearly length across all parts 

of the surface, and sampling resolution has much less of an 

influence when compared to the wind farm curtailment error in 

Fig.4. Wind power output rarely reaches maximum rated 

capacity over extended time periods of study, and thus wind 

curtailment estimation accuracy will effectively be based on 

much fewer occurrences compared to wind farm capacity 

factor estimation. 

The variation in the wind energy curtailments for the 

different power system sensitivity analyses is given in Table-I. 

The wind energy curtailment estimate variation for these wind 

farms due to power system parameter uncertainty is of the 

order of 5-10% of the base case values. Comparing this 

parameter uncertainty effect with the natural inter-yearly wind 

profile and sampling frequency variations illustrated in Fig.4 

allows a pragmatic consideration of the value of additional 

sample data in wind energy curtailment estimation studies. For 

this test system example, 4-years of wind data sampled at 8-

hourly frequency gives curtailment accuracy (on average, 

though outliers will exist) comparable to that associated with 

typical uncertainty in the test power system model itself – 

therefore the value of additional wind timeframe sampling 

inclusion in excess of a suitable level must be considered with 

regard to the additional computational burden. This is 

especially important in wind power transmission optimization 

applications where repeated multi-year wind time series 

SCOPF routines are often sub-problem steps of iterative 

decomposition schemes [19] – even if many years of high-

frequency data was available for study it may not be 

computationally sensible or even necessary to use all of it to 

get suitably good model solutions for such problems.  

On the justification of these historical data timeframe study 

results, wind power output profiles in this test system were 

subsequently modeled using 4 years of multivariate wind 

power data sampled at 8-hourly period, giving 4380 samples in 

total for the analyses outlined in Sections IV and V. 

 
Fig.4 – system-averaged mean absolute wind energy curtailment error with 

respect to number of years of data and data sampling resolution. 
 

 
Fig.5 – system-averaged mean absolute wind capacity factor error with 

respect to number of years of data and data sampling resolution. 
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TABLE-I 

WIND ENERGY CURTAILMENT % - EFFECT OF SENSITIVITY ANALYSIS  

 Farm 9 Farm 11 Farm 13 Farm 17 

Base Case 1.86 16.05 1.8 18.27 

95% Load Profile 1.66 16.33 1.7 18.19 

125% Fuel Price 1.87 15.21 1.95 20.51 
 

 

 

IV.   INTER-LOCATIONAL CURTAILMENT RISK DEPENDENCY   

A.  Case Study Details  

The impact of future power system model parameter 

uncertainty on the network congestion related wind energy 

curtailment indices was illustrated with Table-I, for two simple 

sensitivity analyses. This type of wind curtailment model 

uncertainty constitutes a direct risk to wind farm investment.  

However, the columns of Table-I illustrate that the impacts of 

load profile reduction and gas price increase had opposite 

impacts on the individual curtailments of wind farms at buses 

11, 13 and 17. Interestingly, the rows of Table-I also illustrate 

that the wind energy curtailment at buses 13 and 17 increased 

in the high gas price scenario with respect to the base case, 

while the curtailment at bus 11 simultaneously decreased. 

Table-I therefore underlines the possible variations of wind 

energy curtailment estimation at each bus for alternative 

parameter uncertainty scenarios, and indeed curtailment 

variation inter-dependencies for wind plants installed at 

different network locations – this curtailment risk diversity 

characteristic is worthy of more significant investigation with a 

detailed case study in this Section. 

In this particular case study, to investigate wind curtailment 

risk dependency across a suitably large number of network 

locations, 10 distinct wind farm installations were assumed 

connected at buses 3, 5, 7, 9, 11, 13, 15, 17, 25 and 33. On the 

justification of the historical data timeframe study as outlined 

in Section III, wind power output profiles were modeled using 

the appropriate 4-year data-length and 8-hour sampling rate 

choice with 4380 samples overall. Instead of an arbitrary wind 

capacity allocation assumed connected to each location as 

applied in Section III, this particular study proceeds from the 

basis of an optimal non-firm wind capacity investment solution 

determined by the methodology of [19]. This methodology 

uses the base-case load-profile/fuel-price parameter values, 

determining a least-cost distributed wind capacity placement 

for a given total-system wind capacity connection target. The 

optimal wind capacity placement results therefore implicitly 

specify a least-cost wind curtailment basis to which sensitivity 

analysis perturbation is applied in this case-study. A selection 

of optimal wind capacity allocation solutions are given in 

Table-II for this test-system, for different total wind capacity 

target levels. The wind energy curtailment risk of the optimal 

6GW total wind capacity solution was investigated in this 

case-study, corresponding to a reasonably high ~ 29.7% total 

wind energy penetration.  

Distributed system load profile, coal/gas/peat conventional 

plant fuel-price and carbon-price were the uncertain system  
 

TABLE-II 

OPTIMAL NON-FIRM WIND CAPACITY ALLOCATIONS, (MW) 

 

System 

Node 

 

3 5 7 9 11 13 15 17 25 33 

Total Wind 

Target (GW) 
 

6 508 812 637 0 372 651 854 397 717 1051 

7 1145 854 639 60 334 683 889 442 812 1140 

8 1371 905 723 167 415 742 990 475 935 1277 

9 1520 987 790 266 484 804 1117 522 1067 1444 
 

parameters allowed to vary in the curtailment risk analysis. 

100 different samples were taken from the system parameter 

uncertainty model to set-up 100 distinct background power 

system scenarios, to each of which a separate 4380-sample 

SCOPF time-series wind curtailment investigation was then 

applied. The choice of how to model fuel-price/load-profile 

uncertainty is generally subjective to some extent (i.e. it may 

be difficult to objectively justify any particular fuel price 

probability model for example), so therefore the curtailment 

risk impacts of two distinct system parameter uncertainty 

models were investigated: 
 

� Case I – Fuel and carbon prices were allowed to vary 

independently of each other with uniform distributions 

chosen to be centred around the original base-case 

deterministic values as follows – gas (75-125% of base-

case value), coal (90-110% of base-case value), peat 

(90-110% of base-case value) and carbon (80-120% of 

base-case value). The individual system bus load 

growth uncertainties were assumed to vary with 

uniform distributions, independently of each other and 

also independent of the fuel/carbon prices, with a 

linear-scaling parameter spread around 90-102.5% of 

their original base-case values.  
 

� Case II – In the second parameter uncertainty model, 

the fuel and carbon price statistical representation was 

kept the same as Case I, but the individual network bus 

load growth uncertainties were instead assumed to have 

a correlated Gaussian statistical dependency. The bus 

loads were assumed to have a mean uncertainty value of 

96.25% of their base case values, a standard-deviation 

of 3.125% of their base case values, and an inter-

locational correlation coefficient of 0.7.  
 

B.  Case Study Results 

The mean wind energy curtailment percentages for the 

different wind farms, with respect to the two alternative system 

parameter uncertainty model sample sets described in Section 

IV-A, are presented in Table-III. No curtailment occurred for 

the farms at buses 3 and 9. The scatter plots of wind energy 

curtailment risk dependency between Farms 5 and 11, and 

Farms 13 and 15 are illustrated in Fig.6 and Fig.7 respectively 

for the Case I parameter uncertainty model. The spread of 

curtailment risk in each wind farm due to model parameter 

uncertainty again puts the inherent wind profile variability 

related curtailment error characteristics of Fig.4 in perspective. 
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TABLE-III 

MEAN WIND ENERGY CURTAILMENTS, (%) 

 

Wind Farm 

 

3 5 7 9 11 13 15 17 25 33 

Case I - 0.87 0.3 - 2.44 2.83 4.45 6.53 3.09 4.11 

Case II - 0.89 0.32 - 2.53 3.02 4.47 6.72 3.1 4.07 

 

 
Fig.6 – Wind curtailment risk dependency for Farms 5 and 11 (Case I). 

 
Fig.7 – Wind curtailment risk dependency for Farms 13 and 15 (Case II). 

 

TABLE-IV 

DISTRIBUTED WIND ENERGY CURTAILMENT RISK CORRELATIONS – CASE I 

 

WIND 

FARM 

 

5 7 11 13 15 17 25 33 
SYSTEM 

TOTAL 

5 1 0.17 0.49 0.14 0.90 0.20 0.03 
-    

0.04 
0.37 

7 0.17 1 0.38 0.33 0.12 0.47 0.23 
-    

0.20 
0.51 

11 0.49 0.38 1 0.27 
-    

0.01 
0.32 0.14 

-    

0.17 
0.39 

13 0.14 0.33 0.27 1 
-    

0.69 
0.76 0.64 

-    

0.85 
0.36 

15 0.09 0.12 
-

0.01 

-

0.69 
1 

-

0.44 

-

0.44 
0.74 0.20 

17 0.20 0.47 0.32 0.76 
-    

0.44 
1 0.58 

-    

0.56 
0.61 

25 0.03 0.23 0.14 0.64 
-    

0.44 
0.58 1 

-    

0.55 
0.64 

33 
-

0.04 

-

0.20 

-

0.17 

-

0.84 
0.74 

-

0.56 

-

0.54 
1 -0.01 

 

 

TABLE-V 

DISTRIBUTED WIND ENERGY CURTAILMENT RISK CORRELATIONS – CASE II 

 

WIND 

FARM 

 

5 7 11 13 15 17 25 33 
SYSTEM 

TOTAL 

5 1 0.76 0.88 0.39 0.71 0.42 
-

0.00 
0.59 0.83 

7 0.78 1 0.91 0.49 0.71 0.62 0.10 0.57 0.93 

11 0.88 0.91 1 0.47 0.77 0.47 0.04 0.64 0.93 

13 0.39 0.49 0.47 1 
-

0.14 
0.81 0.79 

-

0.30 
0.60 

15 0.71 0.71 0.77 
-

0.14 
1 0.03 

-

0.48 
0.94 0.67 

17 0.42 0.62 0.47 0.81 0.03 1 0.66 
-

0.13 
0.69 

25 
-

0.00 
0.10 0.04 0.79 

-

0.48 
0.66 1 

-

0.57 
0.28 

33 0.59 0.57 0.64 
-

0.30 
0.94 

-

0.13 

-

0.57 
1 0.54 

 

Trends in Fig.6 and Fig.7 also indicate that the curtailment risk 

is clearly locational in nature – Farms 5 and 11 have a slightly 

correlated curtailment risk (that is they both tend to be 

over/under curtailed together), while the curtailment risks at 

Farms 13 and 15 are anti-correlated (when either is curtailed 

more than expected, the other is curtailed less). Wind 

curtailment risks that are independent or as anti-correlated as 

possible may be useful from a collective risk sharing 

perspective – for example the total wind curtailment risk 

across both Farms 13 and 15 is much lower than that across 

Farms 5 and 11 considered together, as Farms 13 and 15 will 

generally compensate one another.  

 The overall curtailment risk dependencies are summarized 

with linear correlation metrics in Table-IV and Table-V 

respectively for the Case I and Case II system parameter 

uncertainty assumptions. The right-hand column gives the 

curtailment risk correlation of each individual wind farm with 

variation in the total curtailed wind energy in the system as a 

whole. For the Case I uncertainty model in Table-IV there are 

quite a number of anti-correlated inter-locational risk 

dependencies, due to adjacent network locations or proximity 

to conventional plants of particular fuel-types. Wind energy 

curtailment risk at Farm 33 in particular is anti-correlated to 

some extent with almost every other wind farm location. The 

risk dependency of each individual site with the system-total 

wind energy curtailed is also quite low on average, indicating 

that if the Case I uncertainty model were accurate (which 

assumes all parameter uncertainties are independent) then both 

effective inter-locational and system-wide curtailment risk 

sharing mechanisms might be conceptually feasible through an 

intelligent wind plant portfolio location choice.  
Table-V illustrates the strong impact of the uncertainty 

modeling assumptions on the overall risk dependency 

estimation process however. The Case II correlated Gaussian 

load uncertainty case causes much greater positive dependency 

in the curtailment risk estimates. For example curtailment risks 

at buses 5, 7 and 11 are much more dependent than in Case I, 

though Farms 25 and 33 are still somewhat independent of the 

general system-wide wind energy curtailment pattern. The 

standard deviation of the system total wind energy curtailment 

risk in Case II is also double that of Case I, as the variance of a 

sum of strongly correlated risks will always be greater than the 

variance of a sum of independent/anti-correlated risks. 

Effective system-wide risk sharing will thus be more difficult 

if Case II is an accurate model of the power system parameter 

uncertainties, though for each wind farm there is still at least 

one other location that has low or even negative curtailment 

risk dependence, as evident in Table-V.  

V.   INERTIAL/CONGESTION CURTAILMENT DEPENDENCY  

A.  Case Study Details  

The 7, 8 and 9GW optimal non-firm wind capacity solutions in 

Table-II (corresponding to ~ 35-40% total wind energy 

penetration levels) were used as the system configuration basis 
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for this particular case-study. With this approach applied (as in 

Section IV) the initial network congestion related curtailment 

levels have a minimum-cost justification [19]. To model power 

system minimum generation commitment levels (which are 

really integer decisions) within the linear programming 

SCOPF analyses, a simple inertial constraint approximation of 

the true mixed-integer representation was implemented using a 

rounded-relaxation procedure. From the optimal solution of 

the SCOPF model, iteratively constraining the next-least-cost 

unit above its minimum generation level and then re-solving 

ensured that the equivalent of more than 5 large-scale 

synchronous conventional units is maintained online at all 

times. For example, four large CCGT generators and two 

smaller peat generators, or three large coal generators and two 

CCGTs would be sufficient, depending on the least-cost 

decisions with respect to energy and congestion costs. Any 

wind generation causing the net-load to drop below this critical 

minimum conventional generation level would have to be 

curtailed. Using the same 4380-sample historical data year-

length and sampling rate choice as justified by the wind profile 

variability analysis of Section III, three separate case study 

investigations were implemented for each of the 7, 8, 9GW 

wind capacity levels:     

� Case A – In this case, the minimum inertial constraint 

was applied without including SCOPF network 

constraints – this models curtailment from detailed 

dynamic studies without network limits included [7].  

� Case B – In this case, the SCOPF network constraints 

were included but no inertial constraint was applied – 

this models the results from network analyses that do 

not consider practical unit commitment inertial 

problems with instantaneously high wind output.  

� Case C – In this case, both the inertial and SCOPF 

network constraints were included together, modeling 

the least-cost operational patterns and overall wind 

curtailment likely to occur in reality. 
 

B.  Case Study Results 

The system-total wind energy curtailment results for Cases A, 

B and C at the 7, 8, and 9GW installed wind capacity levels 

are given in Table VI as percentages of the respective total 

available wind energy. At the high levels of installed wind 

capacity under investigation, Case A illustrates that some level 

of inertial-constraint related wind curtailment is necessary at 

very high instantaneous wind power output. However the 

negligible differences between the system-total wind 

curtailment results for Cases B and C (for all three wind 

capacity installation levels) indicate that the inertial constraint 

wind curtailment instances identified by Case A are almost 

entirely contained as a subset of the network congestion 

related wind curtailment instances in Case B. A typical scatter-

plot of the Case A and Case B curtailment instances is given in 

Fig.8 for the 8GW installed wind capacity level, with the 

corresponding time series plot given in Fig.9. These 

illustrations further underline the coincidence of the 

curtailments identified by the two separate analyses.  

TABLE-VI 

WIND ENERGY NETWORK/INERTIAL CURTAILMENT VALUES, (%) 
 

Wind Level 

 

7 GW 
 

8 GW 
 

9 GW 
 

Case Study 
 

 

A 0.375 1.1819 2.5129 
 

B 6.8628 11.0409 15.4934 
 

C 6.8599 11.0436 15.4964 
 

 
Fig.8 – Scatter plot of inertial/network-congestion curtailment –8GW wind. 

 

 
Fig.9 – Time series of inertial/network-congestion curtailments –8GW wind. 

VI.  DISCUSSION 

Non-physically-firm wind farm connections will allow the 

harvesting of much more wind energy from a given 

transmission network investment. Wind farm development is 

very capital-intensive, with revenue pay-back over a long 

timeframe. Effective curtailment risk management schemes in 

deregulated power systems will be a key enabling factor in 

supporting non-firm wind investment therefore. Using a 

relatively simple SCOPF model, this paper has identified the 

physical existence of inter-locational and system-wide 

curtailment risk diversity, though how such characteristics are 

exploited with respect to financial or regulatory mechanisms is 

equally important. Curtailment is not the only risk to wind 

development of course – if wind farm operators compete freely 

as price-makers in the market [20] (as opposed to depending 

purely on renewable support schemes [21]) then the effect of 

fuel or demand uncertainties on the basic energy price 

revenues may overshadow any energy volume curtailment 

risks. Curtailment levels could also be influenced by wind 

generators using negative bidding in the market. The 

significant differences in market remuneration and support 

schemes for renewable energy in many power systems 

preclude a universal conclusion on such issues in this paper – 

only curtailment volume risk due to network congestion and/or 

inertial stability as outlined in Sections IV and V has been 

considered in this analysis.  
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 Previous studies have identified the avoidance of 

curtailment due to excess system-wide wind power availability 

and minimum system inertial constraints as a key factor 

improving the cost-effectiveness of very-large-scale energy 

storage investment [18]. However, the results of this paper, 

Section V in particular, indicate that in a transmission system 

with a non-physically-firm wind connection strategy, a study of 

the economics of such centralized storage services may be 

much more complex than determined by such a generation 

production-costing study alone. Wind is typically distributed in 

nature, so therefore the excess instantaneous wind energy, that 

appears to be available for storage and usage later, may not be 

transferable to large centralized storage units if most economic 

dimensioning of transmission infrastructure for wind energy 

sources is applied. Further study is required to investigate this 

issue in greater detail. Other factors of influence not included 

in this paper’s analysis such as ramp-rate unit commitment 

limits and voltage stability may also affect the overall 

curtailment estimates, and could be considered in future works.  

 Many of the issues raised in this paper will become most 

apparent at medium to high wind penetration levels. With 

large-scale wind investment, transmission expansion will 

alleviate wind energy curtailment due to network congestion, 

and greater interconnection may reduce excess wind 

availability above the load-balancing requirement – the 

tradeoff between the factors discussed in Section V will be 

dependent on such investment decisions. Active network 

management with remedial action schemes managing 

congestion may also reduce wind curtailment in the short term 

until long-term investment projects materialize [22].  

VII.  CONCLUSIONS 

This paper has illustrated the influence of wind power data 

historical timeframe modeling, power system parameter 

uncertainty, and minimum system inertial unit commitment 

constraints on the curtailment indices of distributed wind 

energy. There can be appreciable inter-yearly variation in 

estimated wind energy curtailment due to natural wind profile 

variations, and very low data recording frequency will also 

lead to equally significant sampling error. Additional data 

availability will reduce the estimation error appropriately, but 

curtailment study dimensionality selection should always be 

framed within the context of inherent power system load-

profile and fuel-price uncertainties, among other variable 

parameters. Their influence on curtailment estimate risk may 

be equally if not more pronounced. There may be appreciable 

network congestion related curtailment risk dependency 

between different power system locations, potentially giving 

scope for effective risk management strategies. Precise 

evaluation of inter-locational curtailment risk dependency is 

heavily influenced by the power system uncertainty modeling 

strategy though. Interaction between different sources of wind 

curtailment will be important to study – for example wind 

curtailment estimates due to inertial constraints may be a 

somewhat overlapping subset of curtailments already caused 

by network congestion, and thus the net effect on wind farm 

investment profitability may not be as extreme as if they were 

totally independent. 

VIII.  APPENDIX  

TABLE A-I 

TEST POWER SYSTEM NETWORK BRANCH INFORMATION 

FROM-TO 

BUS 

XL 

(100 MVA 

BASE) 

CAPACITY 

(MW) 

FROM-TO 

BUS 

XL 

(100 MVA 

BASE) 

CAPACITY 

(MW) 

1-2 0.02 376.2 18-21 0.044 178.5 

1-3 0.02 428.2 19-20 0.01 599.8 

2-3 0.011 428.2 19-22 0.01 499.8 

3-4 0.039 394.12 20-21 0.01 558.1 

3-5 0.075 465.7 20-22 0.01 570.1 

3-10 0.073 490.1 21-24 0.02 519.4 

4-7 0.084 483.4 21-26 0.038 872.8 

5-6 0.02 775.1 22-23 0.003 520.8 

6-11 0.06 389.7 23-24 0.008 476.7 

6-12 0.076 454.9 24-27 0.053 897.3 

7-8 0.007 954.1 25-27 0.095 430.6 

7-10 0.061 405.3 25-29 0.025 746.4 

8-9 0.042 533 26-27 0.03 649.1 

8-15 0.077 544.4 27-28 0.025 746.4 

9-13 0.023 546.2 28-29 0.011 332.8 

9-17 0.079 510 28-31 0.0185 244.4 

10-16 0.08 454.8 28-34 0.036 489.3 

11-17 0.051 399.6 29-30 0.011 270.1 

12-19 0.046 414.6 29-33 0.0135 334.2 

13-14 0.04 417 29-35 0.0282 160.3 

13-24 0.046 518.1 30-33 0.02 270.1 

14-15 0.029 649.2 31-32 0.005 285 

15-25 0.076 570.6 31-34 0.0294 579.5 

16-21 0.094 347.9 31-35 0.02 286.7 

17-18 0.022 178.5 32-35 0.0196 288.7 

17-19 0.036 278.4 33-34 0.0065 782.4 

17-21 0.016 413.9 33-35 0.0198 311.5 
 

 

 

 

 

 

 

 

TABLE A-II 

MAXIMUM BUS LOAD VALUES 

Bus 
Load 

(MW) 
Bus 

Load 

(MW) 
1 312.9 19 621.2 

2 013.8 20 618.1 

3 400.3 21 408.0 

4 108.9 22 1010.8 

5 392.7 23 107.4 

6 050.5 24 0 

7 196.3 25 432.5 

8 0 26 400.3 

9 131.9 27 391.1 

10 339.0 28 521.5 

11 155.4 29 184.1 

12 257.7 30 457.1 

13 026.8 31 397.3 

14 0 32 306.8 

15 480.1 33 222.4 

16 335.9 34 0 

17 092.0 35 247.0 

18 0   
 

 

 

 

TABLE A-III 

CONVENTIONAL GENERATION PORTFOLIO INFORMATION 

Unit Type 
Number of 

Units 

Bus 

Locations 

Avg. Fuel 

price (€/GJ) 

Total 

Capacity 

(MW) 

COAL 5 9, 34 1.75 1257 

PEAT 3 11 3.71 345 

BASE 

RENEWABLES 
1 16 2.78 182 

CCGT 11 
8, 14, 19, 22, 23, 

24, 30 
5.91 5890 

CHP 2 10 5.91 166 

ADGT 7 1, 6, 8 6.46 735 

OCGT 14 
2, 15, 21, 22, 30, 

32, 34, 35 
6.46 1442 

PEAKERS 8 11, 25 8.33 383 
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