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 

Abstract—A stochastic mixed integer linear optimization 

scheduling model minimizing system operation costs and treating 

load and wind power production as stochastic inputs is 

presented. The schedules are updated in a rolling manner as 

more up to date information becomes available. This is a 

fundamental change relative to day-ahead unit commitment 

approaches. The need for reserves dependent on forecast horizon 

and share of wind power has been estimated with a statistical 

model combining load and wind power forecast errors with 

scenarios of forced outages. The model is used to study 

operational impacts of future high wind penetrations for the 

island of Ireland. Results show that at least 6000 MW of wind (34 

% of energy demand) can be integrated into the island of Ireland 

without significant curtailment and reliability problems. 

 
Index Terms—Wind power, unit commitment and dispatch, 

reserves, forecast errors, energy policy.  

 

NOMENCLATURE 

Indices:  

i, I Unit, set of units 

rI  Set units in region r 
Stor

rI  Set of electricity storages in region r 
FAST

rI  Set of units with start-up time < 1 hour 

r, r , R Region, neighbouring region. set of regions  

s, S Stochastic scenario , set of scenarios 

t,t
1
, t

End
 ,   T Time step, first time step in optimisation  

period, last time step, set of time steps  

T
Day

 Set of time steps of day-ahead forecast horizon 

Variables:  
Sto

tsiK ,,
 Storage level [MWh] 

Day

tiP ,
 Day-ahead scheduled power generation 

[MWh/h] 
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

tsiP ,,
 Up regulation power generation [MWh/h] 



tsiP ,,
 Down regulation power generation [MWh/h] 

W

tsrP ,

,,

  Wind curtailment [MWh/h] 

RPOnl

tsiP ,

,,
 Replacement reserves by online units [MW] 

RPOff

tsiP ,

,,
 Replacement reserves by offline units [MW] 

WSp

trP ,

,
 Incremental spinning reserves by wind power 

[MW] 
,

,,

Sp

tsiP  Incremental spinning reserves by units [MW] 

,

DAY

r tQ  Slack day-ahead electricity balance [MWh/h] 

INT

tsrQ ,,
 Slack intra-day electricity balance [MWh/h] 

SPIN

tsrQ ,,
 Slack spinning reserve requirements [MW] 

RP

tsrQ ,,
 Slack replacement reserve requirements [MW] 

, ,

Day

r r t
R  Day-ahead scheduled electricity exchange 

[MWh/h] 

, , ,r r s t
R  Up regulation electricity exchange [MWh/h] 

, , ,r r s t
R  Down regulation electricity exchange 

[MWh/h] 

, , ,

RP

r r s t
R  Provision of replacement reserves by 

electricity import [MW] 
Onl

tsiV ,,
 Unit online (binary variable) 

,0

Onl

iV
 

Online status of unit at the beginning of the 

planning period 
Day

tiW ,
 Day-ahead scheduled loading of electricity 

storages [MWh/h] 


tsiW ,,
 Up regulation loading of electricity storages 

[MWh/h] 


tsiW ,,
 Down regulation loading electricity storages 

[MWh/h] 
,

,,

Sp

tsiW  Incremental spinning reserves by storages 

[MW] 
RP

tsiW ,,
 Provision of replacement reserves by storages 

[MW] 

Parameters:  
Sto

i  Storage loading loss 

s  Probability of scenario s 
Loss

rrc ,
 Transmission loss between regions 

Max

icap  Maximal capacity [MW]  
Min

icap  Minimal capacity [MW] 
MaxT

rr
cap ,

,
 Maximal transmission capacity [MW] 
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)(Operation

ic  Operation cost function of unit [€] 

)(Opp

ic  Opportunity cost function for online units and 

storages [Euro] 

)( upStart

ic  Start-up cost function of unit [Euro] 
Exp

trd ,
 Expected electricity load forecast [MWh/h] 

Upd

tsrd ,,
 Updated electricity load forecast [MWh/h] 

,

,,

Sp

tsrd  Demand for incremental spinning reserves 

[MW] 
RP

tsrd ,,
 Demand for replacement reserve [MW] 

l
L 

Penalty slack day-ahead and intraday  

electricity balances [€/MWh] 

l
RP

 Penalty slack replacement reserves [Euro/MW] 

l
Sp

 Penalty slack spinning reserves [Euro/MW] 
ExpW

trp ,
 Expected wind power production forecast 

[MWh/h] 
UpdW

tsrp ,,
 Updated wind power production forecast 

[MWh/h] 

iru  Ramp-up rate of unit i [MWh/h] 

isp  Incremental spinning reserve capability [MW] 

isu  Start-up ramp rate of unit i [MWh/h] 

SU

it  Start-up time of unit i [h] 

0

iu
 

Number of hours the unit i has been online 

prior to the start of the planning period [h] 

iut  Minimum up time of unit i [h] 

 

I. INTRODUCTION 

HE share of wind power capacity installed is increasing 

throughout the world. Wind energy is expected to 

contribute to the emission reduction targets given in the EU 

[1]. It is further expected that there will be a decrease in 

system operation costs i.e. excluding capital costs, because 

less conventional fuel needs to be consumed to cover the 

electrical demand. However, wind power production is subject 

to high variability and limited predictability. Control of wind 

power is limited to curtailing it. Hence, the integration of wind 

power has impacts on the operation of electrical power 

systems. To maintain the reliability of the power system to 

cover the load, conventional units have to be operated more 

flexibly. This implies more frequent part-load operation with 

reduced efficiencies and additional start-ups of conventional 

power plants leading to increased wear and tear [2]. In 

addition, an increased provision and use of reserve power is 

required [3], [4]. Moreover, if wind power is concentrated in 

regions with favorable wind conditions that are remote of load 

centers, increased wind power generation may lead to 

bottlenecks in existing transmission networks [5].  

The evaluation of the impacts of increasing wind power on 

costs and system performance is important to assist policy 

makers and industry in setting wind power targets. Therefore, 

the optimal unit commitment and dispatch of conventional 

power plants, explicitly taking into account the variable and 

partly predictable characteristics of wind power generation, 

needs to be determined. The standard approach to determining 

the optimal power plant unit commitment and dispatch is 

represented by mixed-integer optimization models minimizing 

the operational costs of a power system subject to constraints 

[6]. Due to the stochastic nature of the wind power, this 

standard approach is not sufficient here. The approaches 

described for example in [7] - [9] are only capable of assessing 

the operational impacts of wind power variability. Yet, for 

systems with high wind power penetration, the analysis has to 

further account for the uncertainness of wind power 

production due to forecast errors in an optimal manner. In 

[10], the expected value of wind power forecasts is 

considered. The methodology in [11] calculates the wind 

power generation “at risk”, which estimates the wind power 

production with a confidence interval. A more appropriate 

approach to account for the uncertain forecast error and its 

distribution is the application of stochastic programming [12], 

[13]. 

Results obtained with stochastic programming are robust 

with respect to multiple possible realizations of wind power, 

not only for the expected value. This is crucial since the 

necessary inclusion of inter-temporal constraints into power 

plant scheduling models, for example describing start-up 

times, requires the determination of the unit commitment 

before the exact realization of the uncertain wind power 

becomes known. Hence, the importance of stochastic 

optimization increases with the presence of inter-temporal 

constraints. Stochastic modelling has been used in the past for 

unit commitment models to consider the uncertainty of 

parameters like fuel and electricity market prices, hydro 

inflow or demand. The reviews in [14], [15] give a broad 

overview of existing approaches and applications. Recently, 

stochastic programming was applied to the joint optimization 

of pumped-storage units and wind generation for bidding into 

electricity markets [16]. However, this approach does not take 

into account the impacts on the conventional power system. A 

short-term forward electricity market-clearing problem with 

stochastic security taking wind power generation into account 

is presented in [17]. In [18] an algorithm for calculating a day-

ahead unit commitment schedule is presented taking 

iteratively network constraints into account and being robust 

towards wind power forecasts errors. 

In this paper a stochastic mixed integer linear optimization 

scheduling model treating wind power forecasts and load 

forecasts as uncertain parameters is used to study the 

operational impacts of high wind penetrations on the power 

system of the island of Ireland. The model is unique in its 

combination of a scenario generation methodology, treatment 

of reserves and a rolling stochastic unit commitment and 

dispatch driven by updated forecasts. Compared to [17] and, 

[18] the unit commitment algorithm presented in this paper 

allows different unit commitment schedules for each set of 

wind power, load and replacement reserves forecasts as long 

as unit restrictions concerning such as start-up times are 

respected. More fundamentally, the unit commitment 

schedules are updated in a rolling manner as more up to date 

forecasts become available [19]. In section II the different 

parts of the planning tool are described. Section III describes 

the study model. Section IV presents the results and discussion 

T 
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and Section V concludes. 

II. THE PLANNING TOOL 

On the island of Ireland (Northern Ireland (NI) and 

Republic of Ireland (RoI)), a particularly favorable regime for 

wind generation can be identified. To understand the technical 

and economic impacts of high levels of installed renewable 

generation, the governments of NI and RoI commissioned in 

cooperation with the Irish transmission system operators and 

energy regulators the All Island Grid Study analyzing wind 

power integration issues for the study year 2020.  

The All Island power system (the power systems in RoI and 

NI) comprises a single synchronous power system with a 

present peak demand of approximately 7000 MW and 500 

MW interconnection to the power system in Great Britain 

(GB). The modeling of the operation of this nearly isolated 

power system with high penetrations of wind power requires a 

detailed representation of the unit commitment including 

provision of reserves and forced and planned outages. The unit 

commitment and dispatch model which has been developed in 

the Willmar project [20], has many of the characteristics 

required. However, the model was extended and enhanced to 

conduct one of the work streams in the All Island Grid Study. 

In particular the integer decisions (on/off status of power 

plants) are modeled (i.e. mixed-integer-programming) and a 

detailed representation of reserves as a function of wind power 

is included. Furthermore in addition to wind uncertainty, load 

uncertainty and forced outages of power plants have also been 

modeled. Below a description of the extended Wilmar 

planning tool is given, which consists of two main 

components, the Scenario Tree Tool (STT) and the Scheduling 

Model (SM) [20]. 

 

A. Scenario Tree Tool 

In order to schedule power plant operation, decisions have 

to be taken that consider both parameters known with certainty 

as well as the distribution of uncertain parameters for future 

hours. To represent the uncertainty, multi-stage scenario trees 

are applied, Fig. 1, generated by the STT. Future wind power 

and load outcomes and associated demand for replacement 

reserves (see Section II.C for treatment of individual reserve 

categories) are described with given probabilities of 

occurrence for the different paths of the scenario tree. The 

values within the root node (corresponding to the first three 

hours in every scenario tree in Fig. 1) of a scenario tree are 

assumed to be known with certainty. Furthermore the STT 

generates time series describing forced outages of 

conventional power plants.  

The main input data for the Scenario Tree Tool is wind 

speed and/or wind power production data, electricity demand 

data, and data of outages and the mean time to repair of power 

plants. In order to consider the spatial distribution of future 

wind power capacity and the correlation of wind power 

production, the All Island power system is subdivided into 11 

onshore and 10 offshore zones described with respective wind 

time series. Wind correlation effects within one zone are 

considered by smoothing out the given wind time series 

according to [21]. The required set of scenarios is generated 

by Monte-Carlo-simulations of wind speed and load forecast 

error based on Auto Regressive Moving Average (1,1) 

(ARMA(1,1)) time series models [22]. They are applied to 

represent the statistical characteristics of wind speed and load 

forecast errors of the All Island power system, in particular the 

standard deviation in dependence of the forecast horizon [23]. 

It is assumed that the distribution of the wind speed error 

follows a Gaussian distribution [24].  Concerning wind speed 

forecast scenarios, spatial correlations of wind power forecast 

errors as observed in the All Island power system are 

explicitly taken into account. With decreasing distance 

between two wind power production sites, the correlation 

between wind power forecast errors increases. Additionally, 

the correlation increases with increasing forecast horizon. The 

representation of these characteristics is based on a Cholesky 

decomposition of the correlated Gaussian matrix considered 

by multidimensional ARMA time series [23].    

 

 
Fig. 1. Scenario trees and rolling planning covering half a day. 

 

Many randomly drawn sample paths of the ARMA series 

represent multiple possible outcomes of forecasting errors. 

These sample paths of wind power prediction errors and load 

forecasts errors are added to historical time series of 

respectively wind power production and load time series 

scaled to match 2020 yearly wind power production and load 
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to generate wind power production and load scenarios. In 

order to describe the obtained distribution of these wind power 

and load scenarios with a reduced number of scenarios, a 

scenario reduction approach consisting of two steps following 

[25] is used. The number of scenarios is reduced by firstly 

determining the Euclidean distances between the individual 

forecast scenarios. One scenario of the scenario pair with the 

smallest Euclidean distance is deleted and the sum of the 

probabilities of both scenarios is allocated to the remaining 

scenario. This procedure is repeated until a predefined number 

of scenarios is achieved. Afterwards, based on the remaining 

scenarios that still form a one-stage tree, a multi-stage 

scenario tree is constructed by deleting inner forecasts and 

creating branching within the scenario tree. 

Planned and forced outages are described for each 

individual power plant with an hourly time resolution. The 

occurrence of forced outages in a certain hour is simulated 

with Semi-Markov chains describing the alternating process 

between the availability and the unavailability state of a power 

plant [26], [27]. Failure and repair rates are thereby expressed 

with the mean time to failure and the mean time to repair [28]. 

 

B. Scheduling model 

The scheduling problem is solved by minimizing the 

expected operational costs of meeting load and reserve 

demands subject to all modeled constraints taking into account 

all different paths of the scenario tree. The problem is 

formulated as a stochastic, mixed integer linear optimization 

problem eq. 1-19. In the root node of the tree, so-called here-

and-now decisions have to be taken. For subsequent stages, a 

wait-and-see approach is applied for the decisions following 

one of the individual paths [12], [13]. The simultaneous 

anticipation of the several different possible outcomes at later 

stages has an impact on power plant scheduling in the earlier 

stages – e.g. more capacity with longer start-up times might be 

started up earlier to be able to cope in later stages with wind 

production below expectations. 

To analyze system operation with large wind penetrations, it 

is important to use repeated, rolling planning to account for 

rescheduling when updated information becomes available, 

(e.g. new wind forecasts).  In the first planning period starting 

at noon an optimal schedule is produced based on the most up 

to date forecast information, as generated with the Scenario 

Tree Tool, for the 36 hours from noon to the end of the 

following day. In the following planning periods, rescheduling 

is done intraday based on updated forecast information and 

existing schedules. Rescheduling is determined by recourse 

decisions that result in up- or down-regulation of the power 

plant dispatch and changes in the unit commitment planned in 

previous planning loops [29]. Fig. 1 shows the resulting 

planning process, with scenario trees for four planning loops, 

each three hours apart, covering half a day. Planning more 

often (e.g. every hour) would be favourable however this 

would dramatically increase the computation time. The final 

realized operation of the power system is represented by the 

values of the decision variables in stage 1 of every planning 

period (see Fig. 1), i.e. they represent the final outcome of the 

rolling planning process. 
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where gi is the number of initial time periods in each planning 

period that the unit has to be online. It is given by: 
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The objective function of the model (eq. 1) includes 

operational costs consisting of fuel costs and costs of 

consuming CO2 emission permits (line 1 in eq. 1), start-up 

costs including fuel consumption used for start-ups (line 2 in 

eq. 1), opportunity values of having online units and positive 

storage levels at the final time step of the scenario tree (line 3 

in eq. 1), penalty costs of not fulfilling the electricity demand 

in the intra-day scheduling and the demand for spinning and 

replacement reserve (line 4 in eq. 1), and penalty costs of not 

fulfilling the demand in the day-ahead scheduling. Fuel 

consumption is calculated using piecewise linear fuel 

consumption curves. The opportunity value of online units at 

midnight (as the planning loops always ends at midnight) is 

set equal to the start-up costs of the unit. The opportunity 

value of having electricity stored at midnight is set equal to the 

marginal value of the balance equation of electricity storage at 

midnight in the previous planning loop. 

System level constraints consist of regional electricity 

balance equations for day-ahead scheduling (eq. 2) using the 

average values of wind power and load in the scenario tree as 

the expected value forecasts of wind power and load, intra-day 

electricity balancing equations (eq. 3) where up and down 

regulation of power plants are used to cover deviations 

between average values and wind power and load forecasts in 

each path of the scenario tree, system spinning reserve 

requirements (eq. 4), replacement reserve requirements (eq. 5). 

Transmission losses between regions are allocated to the 

importing region as shown in eq. 2 and 3. Transmission and 

distribution losses within a region are assumed included in the 

electricity load. The demand for replacement reserve is 

reduced with the up-regulation already carried out by intra-day 

rescheduling (line 3 in eq. 5). Only input parameters are 

included in the max function hence usage of this function 

avoids non-linearity. Constraints on unit operation using 

binary variables following the approach of [30] and extended 

to covering the stochastic optimization case have been 

included into the Wilmar planning tool. These constraints 

cover minimum and maximum stable operation levels (eq. 6) 

and (eq. 7), ramp-up and start-up ramp rates (eq. 8), minimum 

up times (eq. 9-11) and capability of providing spinning 

reserve (eq. 12). Eq. 9 ensures that a unit started up in a 

previous planning period stays online during the remaining 

hours of its minimum up time. Eq. 10 ensures that the 

minimum up time constraint is satisfied during all the possible 

sets of consecutive periods of size uti, and eq. 11 ensures that 

if a unit is started up uti hours or less before the planning 

period ends, it remains online until the end of the time span. A 

similar equation as eq. 7 constrains the ramp-down rate and 

similar equations as eq. 9-11 ensure minimum shut down 

times. Transmission restrictions between the Irish island and 

GB apply (eq. 13). Eqs. 14, 15 and 16 restrict the day-ahead 

quantities of respectively power production, loading of 

electricity storage and transmission to available capacities. 

Planned wind curtailment can not be larger than wind power 

forecasts (eq. 17).  

Start-up times imply that the capacity online status of a 

unit in the first hours of a planning loop has to be decided in 

the previous planning loop, and therefore cannot be bigger 

than the capacity online found in the previous planning loop 

for the same hours. Furthermore assuming that the start-up 

process of a unit can not be interrupted, it is only possible to 

change unit commitment as a result of realisation of a certain 

load and wind power production scenario after the start-up 

time of the unit has passed (eq. 18). The modelling of unit 

start-up times is not as comprehensive as the model proposed 

in [31]. Restrictions ensuring energy balance in pumped hydro 

storage (eq. 19) and all units either pumping or generating are 

included (see [32] for full details). The scheduling model is 

implemented in General Algebraic Modeling System (GAMS) 

and solved using the CPLEX mixed integer programming 

(MIP) solver [33]. For a planning loop covering 36 hours, 

using scenario trees with 6 branches as shown in Fig. 1 and 

power plant portfolio 5 (see section III.A), the model consists 

of 137119 equations, 94873 continuous variables and 11487 

discrete variables. It takes on average 1½ minute to be solved 

using a computer with an Intel Core2 Duo 3.0 GHz processor 

with 8GB of RAM running Microsoft Windows XP with 64 

bit and the CPLEX MIP solver with a relative optimality 

criterion of 0.5.  

C. Treatment of reserves 

The demand for different categories of reserves as well as 

the provision of these reserves by suitable power plants has to 

be considered. In the grid code of the Republic of Ireland a 

number of reserve categories are defined [34]. These reserve 

categories may be subdivided into two groups: (a) spinning 

reserves with short activation times that can be provided 

typically by synchronised i.e. spinning units or tripping of 

pumps in a pumped storage station and (b) slower, 

replacement reserves which can be provided by both 

synchronised and offline units. The scheduling model 

considers these two types of reserve, spinning and replacement 

in eq. 4 and 5 respectively. Spinning reserves are modelled by 

one reserve category corresponding to tertiary operating 
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reserve band 1 (TR1) as defined in the Irish grid code [34] 

with a time frame of 90 seconds to five minutes. The demand 

for spinning reserves in the model is equal to the largest 

production plus spinning reserve provision from a single unit 

as planned in the previous planning loop, in combination with 

an additional demand to cover fast decreases of the current 

wind power production over the TR1 time frame as described 

in [3]. 

Reserve categories with activation times longer than five 

minutes are represented by replacement reserves. They can be 

provided by online power plants and offline power plants that 

are able to start up in time to provide the reserves in the hour 

in question. For a given forecast horizon specific distributions 

of wind power forecasts, load forecasts and forecast of forced 

outages will result in a specific demand for reserves needed to 

handle the estimated possible deviation. Therefore for each 

scenario and for each hour in the planning horizon there are 

replacement reserve targets. The targets are determined with 

the Scenario Tree Tool on the basis of a comparison of the 

hourly power balance considering perfect forecasts and no 

forced outages with the power balance considering scenarios 

of wind and load forecast errors as well as forced outages. A 

percentile of the deviation between the compared power 

balances has to be covered by replacement reserves, see 

section V. 

The contribution from an individual power plant to reserve 

is restricted by its technical capability within the time frame of 

interest and its planned dispatch. By curtailment of the current 

wind power production, wind power plants are also able to 

contribute to positive spinning reserves. The model includes 

this possibility in the optimization by a variable determining 

the percentage of the lowest wind power production forecast 

being dispatched down to provide reserve from the wind 

turbines (see eq. 3 and 4). This variable is reoptimised in every 

planning loop, so the realized spinning reserves from wind 

power are based on up to 3 hour ahead wind power forecasts. 

The lowest wind power forecast in combination with 

reoptimisation every 3 hours is chosen to ensure that the wind 

power plants should be able to provide the amount of reserve. 

It was included in the model to analyse how often it was 

optimal to use such a strategy, however it would need to be 

tested via field tests to ensure its validity. 

Demand for negative reserves (down regulation 

capabilities) is caused by wind productions being higher 

and/or load being lower than expected. Negative reserves can 

be provided by all power plants, including wind generators, 

subject to current unit commitment, dispatch and the technical 

capabilities. 

Penalties for not fulfilling load and reserve demands are 

such that load is met before the demand for spinning reserves, 

and the demand for spinning reserve is met before the demand 

for replacement reserves, i.e. l
L
>l

SP
>l

RP
 in eq. 1. 

III. THE MODEL 

A. The Irish model 

Three different levels of renewable power production are 

represented in five power plant portfolios enabling analysis of 

the economic and technical impacts of increasing the share of 

renewable energy (mainly wind) in the All Island power 

system for the study year of 2020.     

By combining scenarios for forced outages of plants, wind 

power production and load, the LOLE (Loss of load 

expectation) of each portfolio is calculated. The capacity 

balances of the portfolios were calibrated to give a LOLE of 8 

hours per year. Table I gives details of installed capacities for 

each portfolio. 

Portfolio 1 (P1) has 2000 MW of wind power, portfolio 2, 3 

& 4 (P2, P3 & P4) each have 4000 MW of wind power but 

with different thermal plant mixes and portfolio 5 (P5) has 

6000 MW of wind power.  Therefore the portfolios facilitated 

the study of increasing levels of wind power (i.e. P1, P2-P4, 

P5) and of different thermal plant mixes (i.e. P2, P3 & P4).  

Power plant portfolio P4 has a high share of base load plants 

(coal fired thermal plants and natural gas fired Combined 

Cycle Gas Turbines (CCGTs)), P3 has a high share of more 

flexible plants Open Cycle Gas Turbines (OCGTs) and Aero 

Derivative Gas Turbines (ADGTs)) and P2 a mix of CCGT, 

OCGT and ADGT. Thus, comparing portfolios P2, P3 and P4 

allows evaluation of the impact of the structure of 

conventional power plant portfolio when renewable energy is 

integrated.  

Apart from power exchange with Great Britain (GB), 

network issues were not taken into account. 

 
TABLE I 

INSTALLED CAPACITIES OF POWER PLANTS [MW] IN EACH PORTFOLIO. 

 P1 P2 P3 P4 P5 

Coal 1257 1257 1257 2420 1257 

Peat 346 346 346 346 346 

OCGTs 1838 1217 2356 699 1217 

ADGTs 89 535 535 0 111 

CCGTs 4424 4330 3130 4330 4330 

Hydropower 216 216 216 216 216 

Pumped hydro 292 292 292 292 292 

Base Renewables 182 182 182 182 360 

Tidal stream 72 72 72 72 200 

Wind power 2000 4000 4000 4000 6000 

Installed capacity 

excl. wind & tidal 
8644 8374 8314 8484 8128 

Peak load 9619 9619 9619 9619 9619 

 

B. The GB model 

The interconnectors between the island of Ireland and GB 

will influence both the day-ahead scheduling and the provision 

of reserve power in the island of Ireland.  Consistent with 

existing and planned interconnection 1000 MW (two 500 MW 

HVDC) of transmission capacity is assumed, which due to the 

small size of the All-Island power system will have a 
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significant impact on scheduling of Irish units. The GB power 

system is represented in an aggregated way by seven groups of 

power plants shown in Table II. The conventional plants are 

not subject to any inter-temporal restrictions. This 

representation underestimates the costs connected to providing 

flexibility in the GB system. Hence to avoid overestimating 

the capability of the interconnectors to handle wind power 

variability and unpredictability, the usage of the transmission 

capacity was assumed to be determined in the day-ahead 

scheduling process, i.e. no rescheduling of the power 

transmission due to wind power forecast errors or outages was 

allowed (R
+
 and R

-
 fixed to zero in eq. 3 and 13). It was 

assumed that the interconnectors provide 50MW each of 

spinning reserve in every hour during the year.  This is 

consistent with the present-day usage of the existing 500MW 

Moyle interconnector between Northern Ireland and Scotland. 

Consequently the import capability into the All Island power 

system was reduced to 900 MW.  

The wind power production in GB is deterministic and 

follows a fixed hourly time series taken from historical data 

for the Irish wind power production shifted one hour in time. 

The one hour time lag is based on the average distance 

between Northern Ireland and Scotland and average wind 

speeds in Ireland. By using correlated time series for wind 

power production in the All Island power system and GB, it is 

to some extent taken into account that export possibilities in 

high wind situations in the All Island power system probably 

will be limited by also having high wind situations in GB at 

the same time.  

 
TABLE II 

INSTALLED CAPACITIES OF PLANT TYPES IN GB. 

Plant type 
Nuc-

lear 
Coal CCGT OCGT Oil Hydro Wind 

Capacity 

[MW] 
9556 28865 35800 589 2990 1166 14000 

 

C. CO2 and fuel price assumptions 

 
TABLE III 

FUEL PRICES [€/GJ] 

Fuel Great 

Britain 

Northern 

Ireland 

Republic 

of Ireland 

Coal 1.75 2.11 1.75 

Gas oil 9.64 8.33 9.64 

Light oil 5.22 4.83 5.22 

Natural gas base load 5.62 5.91 5.91 

Natural gas mid-merit 5.81 6.12 6.12 

Nuclear 0.4 - - 

Peat - 3.71 3.71 

 

A CO2 price of 30 €/Ton was assumed and fuel price 

assumptions are given in Table III.  The study used a monthly 

varying natural gas price with Table III giving the yearly 

average price. The natural gas price is slightly higher for 

power plants having lower utilization times (named mid-merit) 

in comparison to base load plants. 

D. Data sources 

Technology data for Irish power plants have been provided 

by the All Island Grid Study working group for existing power 

plants and by [9] for new plants. Historical wind time series 

and electricity load time series, appropriately scaled for the 

study year 2020 were provided by the Transmission System 

Operators of the RoI (EirGrid) and NI (SONI). The main 

source of GB data was [35]. Full details of data input can be 

found in [32]. To illustrate the flexibility of Irish thermal 

power plants, Table IV presents the range of unit data for the 

main plant types. 

IV. RESULTS 

Yearly simulation runs using the Wilmar planning tool were 

performed for the five portfolios with hourly resolution and 

rolling every three hours. To establish the credibility of the 

Wilmar planning tool, a comparison with the Irish industry 

standard deterministic unit commitment and dispatch tool, 

PLEXOS [36] was conducted. In order to compare, the 

Wilmar Planning tool was run using perfect foresight about 

wind power production and load i.e. not using stochastic 

optimisation. This is done by having only one scenario s in eq. 

1-19 with load and wind power forecasts being perfect i.e. 

equal to realised values. Results from the two models were in 

good agreement. Calculation time for a yearly stochastic run 

of P5 consisting of 2924 planning periods and using a 

computer with an Intel Core2 Duo 3.0 GHz processor with 

8GB of RAM running Microsoft Windows XP with 64 bit and 

the CPLEX MIP solver with a relative optimality criterion of 

0.5% was 43 hours.  

 
TABLE IV 

RANGE OF VALUES USED FOR THERMAL POWER PLANTS IN IRELAND. 

 Coal Peat 
OCGT/

ADGT 
CCGT 

Start-up time when 

hot [h] 
2-5 1-4 0 1-2 

Min. up time [h] 6-8 4-12 0-1 1-10 

Min. down time [h] 4-8 0-2 0-1 1-8 

Min. power output 

/Max. power output 

0.32-

0.5 

0.34-

0.44 
0.1-0.17 

0.48-

0.58 

Ramp rates up [% 

of max. power 

output per minute] 

1.5-

3.2 

0.5-

2.2 
10.0-16.7 1.7-5.0 

Eff. at min. power 

output/Max. eff. 

0.81-

0.95 

0.89-

0.93 
0.41-0.43 

0.84-

0.93 

 

A. Net load and demands for reserves 

To illustrate the operational challenges posed by increased 

amounts of wind power production, the development of the 

net load and the demands for reserves is presented. The net 

load is defined as the realised electricity consumption minus 

the realised wind power production.   
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Fig. 2. Duration curves of the net load (load minus wind power production) 

in the All Island power system for all portfolios.  

 

Fig. 2 shows the duration curves of the net load in the All 

Island power system. With increasing installed wind power 

capacity, the net load is generally decreased. In portfolio P5, 

the net load becomes negative for 48 hours. 

Fig. 3 shows the effect of the power exchange with GB and 

usage of pumped hydro storage on the load to be covered by 

production from conventional plants in the All Island power 

system for P5. As the marginal production costs in GB are on 

average smaller than in the Irish power system, power imports 

dominate decreasing the net load in 6330 hours during the 

year. Power exports to GB and pumping are used in hours 

with low net load to avoid wind curtailment. 
 

 
Fig. 3. Duration curves for P5 of the net load (NetLoad), net load minus 

net import (NetLoadEx), net load minus net import including usage of 

pumped hydro storage (NetLoadExPump) in the All Island power system. 

 

A measure for the variability in the net load is the change in 

the net load from one hour to the next (here named delta net 

load). Table V gives statistical properties of delta net load with 

values expressed as a fraction of the peak load. Delta net load 

increases with increasing wind power capacity installed, 

thereby requiring more flexible operation from conventional 

power plants.  

The demand for spinning reserves depends on the largest 

unit online and the wind power forecasts errors. The 

differences in the spinning reserve requirements between 

portfolios are relatively small with an average demand in the 

order of 475 MW and a variation between portfolios of 

approximately 50 MW. This is due to the largest online unit 

having approximately the same size in all portfolios, and the 

influence of wind power forecast errors on spinning reserve 

requirements being small [3]. 

 
TABLE V 

STATISTICAL PROPERTIES OF DELTA NET LOAD AS A RATIO OF PEAK LOAD.  

 

P1 

[%] 

P2, P3, P4 

[%] 

P5 

[%] 

Maximum 17 19 27 

Minimum -17 -25 -35 

90% percentile 6 6 6 

10% percentile -5 -5 -6 

 

 

Before determination of the demand for replacement 

reserves for power plant portfolios P1 – P5, the appropriate 

percentile of the total forecast error (wind, load & forced 

outages) to be covered by replacement reserves had to be 

determined. This was done by comparing different percentiles 

of total forecast error in the present Irish power system with 

the present requirements for replacement reserves. It was 

found that the 90
th

 percentile corresponded to existing practice 

and this was used for the determination of the demand for 

replacement reserves.  

The resulting average demand for replacement reserves 

dependent on the forecast hours for portfolios P1 – P5 is 

shown in Fig. 4. The demand for replacement reserves 

increases with increasing wind power capacity and forecast 

horizon. For longer forecast horizons of 16 hours and above, 

the demand for replacement reserves becomes approximately 

constant corresponding to wind power forecast errors not 

increasing for these forecast horizons.  

 

 
Fig. 4. Average demand for replacement reserves dependent on the forecast 

horizon for all portfolios given in MW. Demands for replacement reserves in 

portfolios P2, P3 and P4 are very similar due to the same wind power capacity 

considered. 

B. Operational costs and CO2 emissions 

The share of the renewable power production (mainly wind 

power) of the yearly electricity demand in the All Island 

power system rises from 16 % (11 % wind) in portfolio P1 to 

42 % (34 % wind) in portfolio P5 (see Table VI). With 

increasing wind power capacity installed, yearly operation 

costs of the All Island power system are reduced for portfolios 

P1 – P5. P5 is the best portfolio in terms of operational costs 
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and CO2 emissions. Comparing those portfolios with an equal 

wind power capacity installed (portfolio P2, P3, P4), portfolio 

P4 shows the lowest (base load gas and coal) and portfolio P3 

(OCGT) the highest total operation costs.  

The CO2 emissions in the All Island power system tend to 

decrease with increasing wind power installed. However, 

portfolio P4 shows the highest sum of CO2 emissions caused 

by the large share of coal plants in P4 relatively to the other 

portfolios. P2 with more base load gas (CCGTs) has lower 

CO2 emissions than P3 with more mid merit gas (OCGTs).  

The net import into the All Island power system is 

significantly smaller in P4 relatively to P1, i.e. the effect of 

decreasing CO2 emissions due to increased wind power 

production in P4 relatively to P1 is offset by the increased 

share of domestic power production in P4 on base load coal 

plants relatively to P1. Comparing P2, P3 and P4 with respect 

both to operational costs and CO2 emissions, it is preferable to 

have a high share of base loaded gas units with low variable 

costs in the portfolio (i.e. P2) relative to many peak units (P3) 

or many coal units (P4). 

 

 
TABLE VI 

RENEWABLE ENERGY PRODUCTION, OPERATIONAL COSTS AND CO2 

EMISSIONS IN EACH PORTFOLIO FOR ALL ISLAND. COSTS AND CO2 EMISSIONS 

RELATIVE TO P1 SHOWN IN PARANTHESIS. 

 P1 P2 P3 P4 P5 

Wind prod/yearly 

demand [%] 
11 23 23 23 34 

Renewable production 

/ yearly demand [%] 
16 27 27 27 42 

Operational costs incl. 

payments related to 

power exchange with 

GB [MEuro] 

2335 

(1.00) 

2003 

(0.86) 

2105 

(0.90) 

1897 

(0.81) 

1622 

(0.69) 

Resulting sum of CO2 

emissions [Mton] 

20.1 

(1.00) 

17.6 

(0.88) 

18.4 

(0.92)  

21.8 

(1.08) 

15.4 

(0.76) 

 

C. Reliability in the All-Island power system 

The comparison of the installed capacity in the All Island 

power system excluding the non-dispatchable power sources, 

wind and tidal, with the peak load shows that all portfolios 

require import from GB and/or production from non-

dispatchable power sources in order to meet the load in peak 

load hours (see Table I).  

 
TABLE VII 

NUMBER OF HOURS WHERE LOAD, DEMAND FOR SPINNING RESERVE AND 

REPLACEMENT RESERVES ARE NOT MET. 

Portfolio Hours 

where 

load is 

not met 

Hours where 

demand for 

spinning  reserve 

is not met 

Hours where demand 

for replacement reserve 

is not met due to lack of 

capacity 

P1 0 5 95 

P2 2 6 94 

P3 0 0 98 

P4 1 5 102 

P5 1 3 82 

Table VII shows the number of hours where load, demand 

for spinning reserves and demand for replacement reserves are 

not met in the model runs, i.e. number of hours where the 

slack variables in eq. 1, 2, 3, 4 were used. All portfolios show 

a higher reliability than the calculated LOLE of 8 hours. The 

small number of hours where load and spinning reserves are 

not met in P1-P5 indicates that the inclusion of replacement 

reserves in the model results in production plans being robust 

towards forecast errors and forced outages. Table VII further 

shows that in all portfolios the demand for replacement 

reserves is not fulfilled in approximately 100 hours per year 

due to lack of capacity. Hence, the power system would not be 

able to cover the 90
th

 percentile of the total forecast errors that 

may occur during these hours. Demand for spinning reserves 

is fulfilled in nearly all hours during the year. P2 and P4 are 

slightly less reliable than P3 although they have a bit more 

dispatchable capacity installed (see Table I). This is due to P3 

having a larger share of dispatchable capacity as fast 

responding and flexible OCGTs and ADGTs than P2 and P4. 

 

D. Provision of reserves 

One of the main sources of positive spinning reserve is 

pumped hydro storage which provides 70 MW from each 

pump unit when pumping. Coal fired units and newer CCGTs 

are other main sources of positive spinning reserves. The part 

load efficiencies of these units are high resulting in rather low 

costs of operating below rated output capacity. ADGTs also 

have high part-load efficiencies and are used especially in P3 

due to the fewer base load units in this portfolio. Wind power 

is used more frequently to provide spinning reserve as wind 

power production increases (see Table VIII). P3 has a higher 

provision of spinning reserve from wind power than P2 and 

P4. Because curtailment of wind power is a relatively 

expensive way of providing spinning reserve, this indicates 

that providing spinning reserves is most costly in portfolio P3 

with many OCGTs compared to portfolio P2 with CCGTs and 

portfolio P4 with CCGTs and coal power plants. 

 
TABLE VIII 

NUMBER OF HOURS WITH WIND POWER PROVIDING SPINNING RESERVE AND 

THE AVERAGE PROVISION OF SPINNING RESERVE FROM WIND POWER. 

  P1 P2 P3 P4 P5 

Duration [h] 0 17 62 4 239 

Average/installed 

wind capacity [%] 0 0.4 0.4 0.1 0.4 

 

Nearly the whole demand for replacement reserves is 

provided with offline units (mainly OCGTs and ADGTs) in all 

portfolios. In most hours the availability of replacement 

reserves is significantly higher than the demand for 

replacement reserves indicating that the marginal costs of 

providing replacement reserves are equal to zero in these 

hours. This is due to the OCGTs and ADGTs in many hours 

being offline irrespective of the demand for replacement 

reserves, because of their high marginal production costs.   
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E. Dispatch of thermal power plants 

Fig. 5 shows the yearly electricity production by fuel type 

for the All Island power system. Generally, the bigger part of 

the electricity production in the All Island power system from 

conventional power plants is borne by coal fired plants and 

CCGTs. This is also reflected in comparable high capacity 

factors of these units. As expected P4 has a high production on 

coal compared to P2 and P3, and P3 has a relatively high 

production from OCGTs and ADGTs using mid-merit-gas. P2 

has higher production on base-load-gas than P3 and P4 due to 

less coal than P4 and more CCGTs than P3. OCGTs and 

ADGTs generally show a small contribution to the electricity 

production.  

 
Fig. 5 Yearly electricity production distributed on fuel type for all 

portfolios in the All Island power system. 

 

Fig. 6 shows that increased wind power production in P2, 

P4 and P5 relatively to P1 results in decreased production 

from conventional plants, and decreased net import from GB 

caused by the lower marginal production costs in Ireland.  P3 

with a high number of OCGTs has a higher marginal 

production cost and hence a slight increase in net import from 

GB. 

 

 
Fig. 6. Change in yearly production from thermal power plants in Ireland, 

net import from GB and wind power production for P2-P5 relatively to P1. 
 

The average production efficiency for Irish power plants 

using the same type of fuel has been calculated for P2 and P5. 

The decrease in average production efficiency when 

increasing wind power from P2 to P5 is 8% for gasoil and 

mid-merit-gas and below 0.5% for coal, base-load-gas and 

peat, which corresponds to an additional fuel consumption of 

332 GWh. The increased fuel consumption due to increased 

part-load operation is therefore much smaller than the fuel 

savings due to increased wind power (6167 GWh). 

Coal fired units and new CCGTs have low number of start-

ups and high number of online hours during the year for 

portfolios P1 to P5 (see Fig. 7). The number of start-ups of 

these units increases in P2, P4 and P5 relatively to P1 due to 

increased wind power production. The large number of 

flexible OCGT units in P3 allows the coal units to operate 

with relatively low number of start-ups. 

 

 
Fig. 7. Average yearly number of start-ups for new CCGTs and coal units 

in P1-P5. P3 does not have new CCGTs. 

 

F. Wind curtailment 

There is negligible wind curtailment for all wind power 

capacities (P1-P5). Curtailment occurs when there is too much 

wind and it is the most cost effective option to maintain supply 

demand balance (P
-,W

 for wind in eq. 3). Wind is also curtailed 

in a limited number of cases to provide spinning reserves 

(P
Sp,W

 in eq. 3 and 4). Operationally there may be a need to 

commit additional conventional power plants [37], [38] to 

provide reactive power and/or inertial response. These 

constraints, not implemented in this study, would increase the 

wind curtailment reported in this study due to the minimum 

stable operational limits.  

G. Usage of pumped hydro storage 

When analysing the yearly electricity production and 

consumption of the pump storage facility distributed on the 

hours during the day, it can be seen that pumping generally 

takes place during night and generation takes place during the 

peak load hours in the morning (hours 08-12) and in the 

afternoon (hours 16-19). No general change in the daily 

pattern of pumping and generation as a result of increasing 

wind power installed can be observed. This indicates that for 

the portfolios studied additional storage capacity may not be 

beneficial. 

H. Improved wind and load forecasting 

The economical benefits of improving the accuracy of wind 

power and load forecasts are identified by comparison of 

stochastic model runs treating wind power production and 

load as stochastic input parameters and of model runs treating 

wind power production and load as perfectly predictable. The 
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realised load and wind power production is the same both in 

stochastic and perfect forecast model runs. Determining the 

difference between the system operation costs gives the 

benefits of perfect forecasting (Table IX). 

  
TABLE IX 

COST REDUCTIONS DUE TO PERFECT FORECASTS OF WIND POWER AND 

LOAD. 

  P1 P2 P3 P4 P5 

Absolute cost reductions 

perfect forecast [MEuro] 
1.0 7.3 4.3 11.3 18.5 

Cost reductions relatively to 

Irish costs perfect forecast 

[%] 

0.05 0.4 0.2 0.6 1.2 

 

As the stochastic model takes updated wind and load 

forecasts into account every third hour, the cost reductions of 

going to perfect forecasts are small compared to the overall 

sum of operational costs, but still may account to several 

million Euros and increases with wind penetration. This is 

consistent with results reported in other studies [39]. The 

significant higher value of perfect foresight in P4 compared to 

P2, and the significant lower value of P3 compared to P2, 

shows the higher costs of rescheduling in the portfolio with 

relatively high share of base load plants, and likewise the 

lower rescheduling costs in portfolio with many OCGTs and 

ADGTs.  

 

I. Further work  

The stochastic, mixed integer optimization model developed 

takes a comprehensive approach to modeling wind integration. 

Several important issues that could impact on the results 

reported here have not been studied. Notably an improved 

consideration of grid constraints e.g. within the power network 

of the Irish island through the integration of load flow 

restrictions and voltage control is desirable. Additionally, the 

restrictions on the minimum number of conventional plants 

online, dynamics and operational issues at time resolutions 

smaller than one hour need further study. The cost impact of 

the cycling and additional starts of conventional plants and the 

impact on market prices and modeling of the GB system (in 

particular the wind correlation) are important topics that also 

need detailed analysis.     

V. CONCLUSIONS 

The article has presented a stochastic, mixed integer 

optimization model calculating cost efficient unit commitment 

and dispatch of power plants taking the demand for electricity 

and for power reserves into account. The model is unique in 

its combination of a short-term forecast scenario generation 

methodology, treatment of reserves and a rolling stochastic 

unit commitment and dispatch driven by updated forecasts.   

The model has been used to study thoroughly the 

operational impacts of increased wind power production in the 

All Island power system. Five power plant portfolios in 2020 

with three levels of wind power penetration have been 

investigated and results show that up to 6000 MW (Portfolio 

5) of wind can be integrated into the island of Ireland system 

with no significant wind power curtailment and reliability 

problems occurring. Increased wind power production leads to 

less and more variable production on thermal power plants and 

increased power export to GB. Additional storage appears not 

to give any additional benefits. Improved forecasting leads to 

relatively small savings in system costs on a percentage basis 

but may still account for several million Euros. As expected 

the portfolio (P5) with highest amounts of wind has the lowest 

operational costs and CO2 emissions of all portfolios while not 

impairing reliability. Comparing the portfolios with equal 

amounts of wind (4000 MW), with respect to operational costs 

it is preferable to have many coal units (P4) in the system, yet 

with respect to flexibility and CO2 emissions it is 

advantageous to have a high share of base loaded gas units 

with low variable costs in the portfolio, i.e. P2 relative to 

many peak units (P3) or many coal units (P4). 
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