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Abstract. We study the existence and shape preserving properties of a generalized
Bernstein operator Bn fixing a strictly positive function f0, and a second function f1 such
that f1/f0 is strictly increasing, within the framework of extended Chebyshev spaces Un.
The first main result gives an inductive criterion for existence: suppose there exists a
Bernstein operator Bn : C[a, b] → Un with strictly increasing nodes, fixing f0, f1 ∈ Un.
If Un ⊂ Un+1 and Un+1 has a non-negative Bernstein basis, then there exists a Bernstein
operator Bn+1 : C[a, b] → Un+1 with strictly increasing nodes, fixing f0 and f1. In
particular, if f0, f1, ..., fn is a basis of Un such that the linear span of f0, .., fk is an
extended Chebyshev space over [a, b] for each k = 0, ..., n, then there exists a Bernstein
operator Bn with increasing nodes fixing f0 and f1. The second main result says that
under the above assumptions the following inequalities hold

Bnf ≥ Bn+1f ≥ f

for all (f0, f1)-convex functions f ∈ C [a, b] . Furthermore, Bnf is (f0, f1)-convex for all
(f0, f1)-convex functions f ∈ C [a, b] .

1. Introduction

Given n ∈ N, the space of polynomials generated by {1, x, . . . , xn} on [a, b] is basic
in approximation theory and numerical analysis, so generalizations and modifications
abound. However, from a numerical point of view it is a well known fact that the Bernstein
bases functions pn,k = xk (1− x)n−k behave much better and provide optimal stability,
see [13]. The associated Bernstein operator Bn : C [0, 1] → Un, defined by

(1) Bnf (x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k

has been the object of intensive research. As is well known, the polynomials Bnf converge
to f uniformly although the convergence might be very slow. More important is the fact
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that the Bernstein operator Bn reduces the variation and preserves the shape of f . In
particular, if f is increasing then Bnf is increasing, while if f is convex then Bnf is convex,
see e.g. [12]. And the derivative of Bnf of a function of class C1 converges uniformly
to f ′, cf. [20], pg. 25. For this reason Bernstein bases and operators are fundamental
notions.

In Computer Aided Geometric Design (CADG) one is often interested, for instance, in
rendering circumferences and other shapes not given by polynomial functions. It is thus
natural to try to extend the preceding theory to more general spaces, containing not only
1, x, . . . , xn, but also, say, sine and cosine functions, while keeping as many of the good
properties of Bernstein bases and operators as possible. If one generalizes the space of
polynomials of degree at most n by retaining the bound on the number of zeros, one is
lead to the notion of an extended Chebyshev space (or system) Un of dimension n + 1
over the interval [a, b]: Un is an n + 1 dimensional subspace of Cn ([a, b]) such that each
f ∈ Un has at most n zeros in [a, b], counting multiplicities, unless f vanishes identically.
Recently, a rich mathematical literature has emerged concerning generalized Bernstein
bases in the framework of extended Chebyshev spaces, see [8], [9], [10], [11], [21], [22],
[23], [24], [25], [26], [27], [28], [30].

It is well-known that extended Chebyshev spaces possess non-negative Bernstein bases,
i.e. collections of non-negative functions pn,k, k = 0, ..., n, in Un, such that each pn,k has
a zero of order k at a and a zero of order n − k at b, for k = 0, ..., n. Assuming that Un

has a non-negative Bernstein basis pn,k, k = 0, ..., n over the interval [a, b], it is natural to
ask whether one may associate a Bernstein operator Bn : C [a, b] → Un with properties
analogous to the classical operator defined in (1). We consider operators Bn of the form

(2) Bn (f) =
n∑

k=0

f (tn,k)αn,kpn,k

where the nodes tn,0, ..., tn,n belong to the interval [a, b], and the weights αn,0, ..., αn,n are
positive. But it is not obvious how the nodes and weights should be defined. Recall
that the classical Bernstein operator reproduces the constant function 1 and the identity
function x. We mimic this feature by requiring that Bn fix two functions f0, f1 ∈ Un, i.e.
that

(3) Bn (f0) = f0 and Bn (f1) = f1,

where throughout the paper it is assumed that f0 > 0 and that f1/f0 is strictly increasing,
unless we explicitly state otherwise. We show in Section 2 that after choosing f0 and f1

in Un, the requirements Bn (f0) = f0 and Bn (f1) = f1, if they can be satisfied, uniquely
determine the location of the nodes and the values of the coefficients; in other words,
there is at most one Bernstein operator Bn of the form (2) satisfying (3).

The question of existence of a Bernstein operator in the above sense is studied in [1]
and [2]. Here we present a new, inductive criterion for the existence of Bn, making this
paper for the most part self-contained. Let f0, ..., fn ∈ Cn [a, b] and assume that for each



SHAPE PRESERVING PROPERTIES 3

k = 0, ..., n, the linear space Uk := 〈f0, ..., fk〉, generated by f0, ..., fk, is an extended
Chebyshev space of dimension k+1. Then, for every k = 1, ..., n, there exists a Bernstein
operator Bk : C [a, b] → Uk fixing f0 and f1, whose sequence of nodes is strictly increasing
and interlaces with the nodes of Bk−1, cf. Corollary 7.

Sections 3 and 4 deal with the shape preserving properties of the generalized Bernstein
operator Bn. We shall utilize a generalized notion of convexity, (f0, f1)-convexity, which,
according to [16], p. 376, is originally due to Hopf, in 1926, and was later extensively
developed by Popoviciu, specially in the context of Chebyshev spaces. Ordinary convexity
corresponds to (1, x)-convexity.

Assume there exists a Bernstein operator Bn : C[a, b] → Un fixing f0 and f1. We shall
show that if f ∈ C [a, b] is (f0, f1)-convex, then

Bnf ≥ f,

thus generalizing the same inequality for the standard polynomial Bernstein operator
acting on convex functions. Assume next that Bn has strictly increasing nodes, that
Un ⊂ Un+1, and that the latter space has a non-negative Bernstein basis. From the
results in Section 2 we know that there exists a Bernstein operator Bn+1 : C[a, b] → Un+1

fixing f0 and f1. In Section 3 we show that

Bnf ≥ Bn+1f ≥ f

for all (f0, f1)-convex functions f ∈ C [a, b] , generalizing once more the corresponding
result for the standard polynomial Bernstein operator. And in Section 4 we prove that
under the preceding hypotheses, Bn preserves (f0, f1)-convexity, i.e., Bnf is (f0, f1)-convex
for all (f0, f1)-convex functions f ∈ C [a, b]. A similar result is obtained for so-called f0-
monotone functions f. For the last results we shall employ general results from the theory
of totally positive bases and their shape preserving properties.

In Section 5 we present an example showing that even in extended Chebyshev spaces
with a totally positive normalized Bernstein basis it might not be possible to define a
Bernstein operator in the above sense. The example also shows that the assumption of
increasing nodes is needed for the preservation of convexity.

This paper is essentially self-contained. For simplicity, we consider only real valued
functions.

2. Bernstein operators for Extended Chebyshev Spaces.

We now introduce the concept of a Bernstein basis and of a non-negative Bernstein basis
for a linear subspace Un ⊂ Cn [a, b] of dimension n+ 1. In the literature, the expressions
“Bernstein like basis” or “B-basis” are often used instead of “Bernstein basis”.

Definition 1. Let Un ⊂ Cn [a, b] be a linear subspace of dimension n + 1. A Bernstein
basis (resp. non-negative Bernstein basis) for Un is a collection of functions (resp. non-
negative functions) pn,k, k = 0, ..., n, in Un, such that each pn,k has a zero of exact order
k at a and a zero of exact order n− k at b, for k = 0, ..., n.
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It is easy to verify that a Bernstein basis is indeed a basis of the linear space Un,
and that the basis functions are unique up to a non-zero factor, see e.g. Lemma 19 and
Proposition 20 in [19].

As we indicated in the introduction, extended Chebyshev spaces always have non-
negative Bernstein bases. To make this paper as self-contained as possible, we briefly
indicate the reason: Let {h0, ..., hn} be a basis for Un. To obtain a nonzero function pn,k

with (at least) k zeros at a and (at least) n− k zeros at b, write pn,k := a0h0 + ...+ anhn.
We impose the condition of having k zeros at a (which leads to k equations) and n − k
zeros at b (which gives n−k additional equations). Having n+1 variables at our disposal,
there is always a non-trivial solution. The assumption that Un is an extended Chebyshev
space guarantees that pn,k has no more than n zeros, so it has exactly k zeros at a and
n− k zeros at b. In particular, pn,k is either strictly positive or strictly negative on (a, b).
Multiplying by −1 if needed, we obtain a non-negative pn,k.

In Proposition 3.2 in [24] it is shown that Un ⊂ Cn [a, b] possesses a Bernstein basis
pn,k, k = 0, ..., n if and only if every non-zero f ∈ Un vanishes at most n times on the set
{a, b} (and not on the interval [a, b]).

The existence of a Bernstein basis in a space Un ⊂ Cn [a, b] is a rather weak property;
e.g. it does not imply the non-negativity of the basis functions pn,k, k = 0, ..., n, nor the
existence of Bernstein bases on subintervals [α, β] of [a, b] , cf. the proof of Theorem 24
in Section 5.

The next two results are essential tools and standard techniques in CAGD in the context
of degree elevation.

Proposition 2. Assume that the linear subspaces Un ⊂ Un+1 ⊂ Cn+1 [a, b] possess Bern-
stein bases pn,k, k = 0, ..., n, and pn+1,k, k = 0, ..., n+ 1. Then

(4) pn,k =
p

(k)
n,k (a)

p
(k)
n+1,k (a)

pn+1,k +
p

(n−k)
n,k (b)

p
(n−k)
n+1,k+1 (b)

pn+1,k+1

for each k = 0, ..., n.

Proof. Since pn,k ∈ Un+1, the function pn,k is a linear combination of the basis functions
pn+1,k, k = 0, ..., n+1. Using the fact that pn,k has exactly k zeros at a and n−k zeros at b,

we see that pn,k = αpn+1,k +βpn+1,k+1 for some α, β ∈ R. Then p
(k)
n,k = αp

(k)
n+1,k +βp

(k)
n+1,k+1

and inserting x = a yields

α =
p

(k)
n,k (a)

p
(k)
n+1,k (a)

.

Similarly, p
(n−k)
n,k = αp

(n−k)
n+1,k + βp

(n−k)
n+1,k+1 and inserting x = b implies that

β =
p

(n−k)
n,k (b)

p
(n−k)
n+1,k+1 (b)

.



SHAPE PRESERVING PROPERTIES 5

�

Lemma 3. Under the hypotheses of the preceding proposition, assume additionally that
the functions in the Bernstein bases are non-negative. Then

(5)
p

(k)
n,k (a)

p
(k)
n+1,k (a)

> 0 and
p

(n−k)
n,k (b)

p
(n−k)
n+1,k+1 (b)

> 0

for each k = 0, ..., n.

Proof. If k = 0 or k = n the assertion is obvious. If 1 ≤ k ≤ n, then the first inequality
in (5) can be obtained from (4): Divide both sides by pn+1,k(x), and then let x ↓ a. The
second inequality follows in an analogous way. Alternatively, (5) can be derived, without
using (4), from the well known and elementary fact that if f ∈ C(k)(I) has a zero of order
k at c, then

(6) k! · lim
x→c

f (x)

(x− c)k
= f (k) (c) .

Of course, the same formula holds for one side limits. �

Let Un ⊂ Cn [a, b] be a linear subspace of dimension n + 1 possessing a non-negative
Bernstein basis pn,k, k = 0, ..., n. Unless otherwise stated, we assume that f0 ∈ Un is
strictly positive on [a, b] (i.e., f0 (x) > 0 for all x ∈ [a, b] , or more concisely, f0 > 0) and
that f1 ∈ Un is such that the function f1/f0 is strictly increasing on [a, b]. The terms
increasing and decreasing are understood in the non-strict sense. For a constant c positive
means c > 0, while for a function f it means f ≥ 0. We now introduce the concept of a
Bernstein operator:

Definition 4. We say that a Bernstein operator Bn : C [a, b] → Un exists for the pair
(f0, f1) if there are points tn,0, ..., tn,n ∈ [a, b] and coefficients αn,0, ..., αn,n > 0 such that
the operator Bn : C [a, b] → Un defined by

(7) Bnf =
n∑

k=0

f (tn,k)αn,kpn,k

has the property that

(8) Bnf0 = f0 and Bnf1 = f1.

We say that the nodes tn,0, ..., tn,n ∈ [a, b] are strictly increasing if

tn,0 < tn,1 < ... < tn,n.

Observe that the preceding notion of a Bernstein operator imposes no restrictions on
the nodes (save that they belong to [a, b]). For a natural example of a Bernstein operator
without strictly increasing nodes, see Example 10 below. On the other hand, the strict
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positivity of the coefficients αn,k for k = 0, ..., n, is included in our definition of Bernstein
operator.

Two natural questions arise: when is the existence of a Bernstein operator guaranteed?
and, is the Bernstein operator unique? It turns out that existence depends on additional
properties of the space Un, while uniqueness is easy to establish.

We will consistently use the following notation. Assume that pj,k, k = 0, ..., j, is a
Bernstein basis of the space Uj, then given f0, f1 ∈ Uj there exist coefficients βj,0, ..., βj,j

and γj,0, ..., γj,j such that

(9) f0 (x) =

j∑
k=0

βj,kpj,k (x) and f1 (x) =

j∑
k=0

γj,kpj,k (x) .

The next lemma answers the question of uniqueness positively. Remember that f0 is taken
to be strictly positive on [a, b], and f1/f0, strictly increasing.

Lemma 5. Suppose that the linear subspace Un ⊂ Cn [a, b], where n ≥ 1, possesses
a non-negative Bernstein basis {pn,k}n

k=0. Let βn,k, k = 0 . . . , n, be the coefficients of
the expansion of f0 in terms of the basis {pn,k}n

k=0, and let γn,k, k = 0 . . . , n be the
corresponding coefficients for f1. If there exists a Bernstein operator Bn : C [a, b] → Un

fixing the functions f0, f1 ∈ Un, then βn,k > 0 for all k = 0 . . . , n. Moreover, the nodes
of Bn are defined, for k = 0 and k = n, by tn,0 = a and tn,n = b, and in general, for
k = 0 . . . , n, by

(10) tn,k :=

(
f1

f0

)−1(
γn,k

βn,k

)
.

Furthermore, the coefficients of Bn are defined, for k = 0 . . . , n, by

(11) αn,k :=
βn,k

f0(tn,k)
.

In particular,

(12) αn,0 =
1

pn,0(a)
and αn,n =

1

pn,n(b)
.

Proof. Since Bn(f0) = f0 and

(13) f0 (x) =
n∑

k=0

βn,kpn,k (x) ,

we have
n∑

k=0

f0 (tn,k)αkpn,k =
n∑

k=0

βn,kpn,k.
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This entails that f0 (tn,k)αn,k = βn,k, since {pn,k}n
k=0 is a basis, and now (11) follows.

Similarly, from Bnf1 = f1 and

(14) f1 (x) =
n∑

k=0

γkpn,k (x)

we obtain f1 (tn,k)αk = γn,k. Using f0 > 0 and αn,k > 0 we see that βn,k > 0. Dividing by
f0 (tn,k)αn,k = βn,k, we find that tn,k satisfies

(15)
f1 (tn,k)

f0 (tn,k)
=
γn,k

βn,k

,

and now, since f1/f0 is injective, its inverse exists and we get (10). Next, inserting x = a
in (13) and in (14) we obtain f0 (a) = β0pn,0 (a) and f1 (a) = γ0pn,0 (a). Thus

f1 (a)

f0 (a)
=
γn,0

βn,0

,

and it follows by injectivity that tn,0 = a. An entirely analogous argument shows
that tn,n = b. Since f0(a) = βn,0pn,0(a) = f0(a)αn,0pn,0(a) and f0(b) = βn,npn,n(b) =
f0(b)αn,npn,n(b), (12) follows. �

Lemma 5 tells us that to obtain a Bernstein operator Bn fixing f0 and f1, the nodes
tn,k must be the ones given by equation (10), and the coefficients αn,k by (11). A simple
algebraic manipulation then shows that Bn does fix f0 and f1. The difficulty to construct
Bn lies in showing that for k = 0, ..., n, the numbers

γn,k

βn,k

belong to the image of [a, b] under f1/f0, so that we can define at all the corresponding
node tn,k. Even if this is the case, it does not follow in general that the nodes are increasing,
cf. Theorem 24 in Section 5. It seems to be a non-trivial task to characterize those spaces
Un ⊂ Cn [a, b] such that there exists a Bernstein operator for given f0, f1 ∈ Un, cf. [2].

It is not our aim to promote the idea that Bernstein operators with non-increasing
nodes are of special interest. To the contrary, we prefer simple conditions guaranteeing
the existence of Bernstein operators with increasing nodes as we shall do in Corollary 7
below. However, it should be noted that the assumption of an extended Chebyshev space
over an interval [a, b] is not sufficient for the existence of Bernstein operators, cf. Section
5.

From a proof-technical point of view the following new criterion depending on an induc-
tive argument is very useful: Existence at level n with increasing nodes entails existence
at level n + 1 with increasing nodes, and as a by-product we obtain strict interlacing
property of the nodes at level n+ 1 and n.
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Theorem 6. Suppose that the linear subspaces Un ⊂ Un+1 ⊂ Cn+1 [a, b], where n ≥
1, possess non-negative Bernstein bases pn,k, k = 0, ..., n, and pn+1,k, k = 0, ..., n + 1
respectively. If there exists a Bernstein operator Bn : C [a, b] → Un fixing the functions
f0, f1 ∈ Un, with strictly increasing nodes a = tn,0 < tn,1 < ... < tn,n = b, then there
exists a Bernstein operator Bn+1 : C [a, b] → Un+1 fixing f0, f1, with strictly increasing
and strictly interlacing nodes tn+1,0, ..., tn+1,n+1, that is,

(16) a = tn+1,0 = tn,0 < tn+1,1 < tn,1 < tn+1,2 < tn,2 < .... < tn+1,n < tn,n = tn+1,n+1 = b.

Proof. Let us write f0 =
∑n+1

k=0 βn+1,kpn+1,k and f1 =
∑n+1

k=0 γn+1,kpn+1,k. By the preceding
lemma, if the Bernstein operator Bn+1 : C [a, b] → Un+1 for (f0, f1) exists, then it has the
form

Bn+1f :=
n+1∑
k=0

f (tn+1,k)αn+1,kpn+1,k,

where the positive coefficients αn+1,k are given by (11) (with n+ 1 replacing n), and the
increasing nodes tn+1,k, are given by tn+1,0 = a, by tn+1,n+1 = b, and in general, by (10)
when k = 0 . . . , n+ 1. Thus, we need to show, first, that βn+1,0, ..., βn+1,n+1 > 0, in order
to get the positivity of the coefficients αn+1,k, and second, that

(17)
γn,k−1

βn,k−1

<
γn+1,k

βn+1,k

<
γn,k

βn,k

for k = 1, ..., n,

to obtain the (strict) interlacing property of nodes; note that γn,0/βn,0 = γn+1,0/βn+1,0,
since both quantities equal f1(a)/f0(a), and similarly γn,n/βn,n = γn+1,n+1/βn+1,n+1 (since
both quantities equal f1(b)/f0(b)).

At level n, by assumption the Bernstein operator is defined via the coefficients αn,k > 0.
Now the argument runs as follows: From the numbers αn,k we obtain the βn,k, and from
these the βn+1,k, which in turn give us the αn+1,k.

Since βn,k = f0(tn,k)αn,k, it follows that βn,k > 0. From f0(a) = βn+1,0pn+1,0(a) and
f0(b) = βn+1,n+1pn+1,n+1(b) we see that βn+1,0 > 0 and βn+1,n+1 > 0. We show next that
for k = 1, . . . , n,

(18) βn+1,k = βn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

+ βn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

,

from which the positivity of βn+1,1, . . . , βn+1,n follows by Lemma 3. Applying the index
raising formula given by Proposition 2 to f0 =

∑n
k=0 βn,kpn,k, we see that

f0 = βn,0
pn,k (a)

pn+1,k (a)
pn+1,0 +

n∑
k=1

[
βn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

+ βn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

]
pn+1,k

+βn,n
pn,n (b)

pn+1,n+1 (b)
pn+1,n+1,
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and we obtain (18).
Regarding the interlacing property of nodes, another application of the index raising

formula from Proposition 2, this time to f1 =
∑n

k=0 γn,kpn,k, yields

(19) γn+1,k = γn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

+ γn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

for k = 1, ..., n. To show that
γn,k−1

βn,k−1
<

γn+1,k

βn+1,k
, or equivalently, that γn,k−1βn+1,k <

γn+1,kβn,k−1, we use formulas (18) and (19) to rewrite the latter inequality as
(20)

γn,k−1

(
βn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

+ βn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

)
<

(
γn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

+ γn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

)
βn,k−1.

Simplifying and using
p
(k)
n,k(a)

p
(k)
n+1,k(a)

> 0 (by Lemma 3), inequality (20) is easily seen to be

equivalent to
γn,k−1

βn,k−1
<

βn,k

γn,k
, which is true by (10) together with the assumptions that

f1/f0 is increasing and that tn,k−1 < tn,k.
Inequality

γn+1,k

βn+1,k
<

γn,k

βn,k
is proven in the same way. �

For the next corollary we do not a priori assume that f0 > 0 and f1/f0 is strictly
increasing, since multiplying by −1 if needed, these properties can be obtained from the
other assumptions.

Corollary 7. Let f0, ..., fn ∈ Cn [a, b], and assume that the linear spaces Uk generated
by f0, ..., fk are extended Chebyshev spaces of dimension k + 1 for k = 0, ..., n. Then for
every k = 1, ..., n, there exists a Bernstein operator Bk : C [a, b] → Uk fixing f0 and f1,
with strictly increasing nodes and strictly interlacing with those of Bk−1.

Proof. Since U0 is an extended Chebyshev space over [a, b], the function f0 has no zeros.
Multiplying by −1 if needed, we may assume that f0 > 0. Since U1 = 〈f0, f1〉 is an
extended Chebyshev space over [a, b] it is easy to see that that f1/f0 is either strictly
increasing or strictly decreasing. By multiplying f1 by −1 if needed one may assume that
f1/f0 is strictly increasing. Let {p1,0, p1,1} be a non-negative Bernstein basis for U1. We
define

(21) B1f := α1,0f (a) p1,0 + α1,1f (b) p1,1,

where α1,0 = 1/p1,0(a) and α1,1 = 1/p1,1(b). Since both functions (B1f0 − f0) ∈ U1 and
(B1f1−f1) ∈ U1 have a zero at a and another zero at b, and U1 is an extended Chebyshev
space we see that these functions are zero, so B1 fixes f0 and f1. And now the result follows
by inductively applying Theorem 6 to each Uk+1 in the chain U1 ⊂ U2 ⊂ ... ⊂ Un. �

It is well known that given an extended Chebyshev space Un, one can find functions
f0, ..., fn ∈ Cn [a, b] such that the linear spaces Uk generated by f0, ..., fk are extended
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Chebyshev spaces of dimension k + 1 for k = 0, ..., n, see e.g. Proposition 2.8 of [24] (cf.
also Definition 2.4 in [24]). The functions f0, ..., fn can be constructed in the following
way: at first one shows that there exists a strictly larger interval [a, β] ⊃ [a, b] such that
Un is an extended Chebyshev system over [a, β] (cf. [24, p. 351]). Take now n different
points ξ1, ..., ξn in the open interval (b, β). For each k = 0, ..., n define a non-zero function
fk ∈ Un which vanishes on ξ1, ..., ξn−k. Then the linear spaces Uk generated by f0, ..., fk

are extended Chebyshev spaces over [a, b] . The disadvantage of this procedure is that the
choice of the functions f0 and f1 does depend on the space Un.

Thus, Corollary 7 implies the next result:

Corollary 8. Let n ≥ 1 and let Un be an extended Chebyshev space over [a, b]. Then it is
possible to find functions f0, f1 ∈ Un (with f0 strictly positive and f1/f0 strictly increasing)
and a Bernstein operator Bn : C [a, b] → Un with strictly increasing nodes, such that Bn

fixes f0 and f1.

Remark 9. Observe that the hypothesis of Corollary 8 is weaker than that of Corollary 7,
and so is the conclusion, since f0 and f1 are chosen a posteriori, cf. also the discussion
at the beginning of Section 5.

We finish this section with an example illustrating our methods. The article [18] exhibits
a sequence of positive linear operators converging to the identity on C[0, 1] and fixing 1
and x2. This sequence is obtained by replacing x in (1) with a suitably chosen function
rn(x) such that limn rn(x) = x. It is also possible to fix 1 and x2 by using the generalized
Bernstein operators considered here. As a matter of fact, it is possible to fix f0(x) = 1
and f1(x) = xj for any j ≥ 1 we wish (of course j = 1 gives the classical case). From
Lemma 5 we know how to determine the nodes and the coefficients, i.e., how Bn must be
constructed.

On the other hand, we cannot use Corollary 7 to conclude that such a Bernstein operator
Bn,0,j exists (the subscripts 0 and j refer to the exponents of the functions being fixed)
since whenever j > 1, the space U1 = 〈1, xj〉 is not an extended Chebyshev space over
the closed interval [0, 1]: xj has a zero of order j. And unlike the situation considered in
Theorem 6, the sequence of nodes we obtain is not strictly increasing: As noted below,
given 1 < j ≤ n, we get tn,0 = · · · = tn,j−1 = 0 by counting zeros at a = 0.

Example 10. Fix j > 1, and let Un be the space of polynomials over [0, 1] of degree at
most n. For every n ≥ j, there exists a Bernstein operator Bn,0,j : C[0, 1] → Un that fixes
1 and xj, and converges in the strong operator topology to the identity, as n → ∞. The
operator Bn,0,j is explicitly given by

Bn,0,jf(x) =
n∑

k=0

f

([
k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)

]1/j
)(

n

k

)
xk(1− x)n−k.

Proof. For the purposes of this argument we set pn,k(x) :=
(

n
k

)
xk(1 − x)n−k (this differs

from the notation used in the introduction for the classical Bernstein polynomials, but
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it is more convenient here). The condition 1 = Bn,0,j1(x) =
∑n

k=0 αn,kpn,k entails that
αn,k = 1 for all n, k. We use the equality xj = Bn,0,jx

j to determine the nodes tn,k.

Writing xj =
∑n

k=0 γn,kpn,k, by (10) we have tn,k = γ
1/j
n,k . It is immediate, from the order

of the zeros at a = 0, that γi = 0 whenever 0 ≤ i < j. Computing a few more coefficients
leads to the conjecture that

(22) γn,k =
k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)
.

Instead of proving (22) by explicitly solving the general equation, it is easier to verify by
substitution that these are the correct coefficients:

n∑
k=0

γn,kpn,k =
n∑

k=j

k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)

(
n

k

)
xk(1− x)n−k =

n∑
k=j

(
n− j

k − j

)
xk(1− x)n−k

= xj

n−j∑
k=0

(
n− j

k

)
xk(1− x)n−j−k = xj(x+ 1− x)n−j = xj.

For l = 1, . . . j − 1, the inequalities

k − j + 1

n
<
k − l

n− l
<
k

n

can be checked by simplifying and inspection. It follows that ((k − j + 1)/n)j < tjn,k =

γn,k < (k/n)j, or equivalently, that 0 < k/n− tn,k < (j − 1)/n. Thus, Bn,0,jx
m converges

uniformly to xm for m = 0, 1, 2, and by Korovkin’s Theorem, Bn,0,jf → f uniformly for
all f ∈ C[0, 1]. �

3. Generalized convexity

Let Bn denote the classical Bernstein operator defined in (1). W.B. Temple showed in
[29] that for a convex function f the following monotonicity property

(23) Bnf (x) ≥ Bn+1f (x)

holds for all x ∈ [0, 1] . In [3] O. Aramă proved that

Bnf (x)−Bn+1f (x) =
x (1− x)

n (n+ 1)

n−1∑
k=0

[
k

n
,
k + 1

n+ 1
,
k + 1

n

]
(f) ·

(
n− 1

k

)
xk (1− x)n−1−k

where
[

k
n
, k+1

n+1
, k+1

n

]
(f) is the divided difference of second order, thus providing a simple

proof of Temple’s result. A similar formula (see Theorem 7.5 in [17]) is due to Aver-
bach. We obtain analogous results for the generalized Bernstein operators considered
here. These generalized Bernstein operators Bn fix f0 and f1 instead of 1 and x, so rather
than (1, x)-convexity, which is equivalent to standard convexity, the adequate notion for
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our purposes is (f0, f1)-convexity, to be defined next. We shall see that for (f0, f1)-convex
functions f , the following holds: Bnf ≥ Bn+1f ≥ f .

Definition 11. ([17, p. 280]) Let E ⊂ R. A function f : E → R is called convex on E
with respect to (g0, g1) if for all x0, x1, x2 in E with x0 < x1 < x2, the determinant

(24) Dx0,x1,x2 (f) := det

 g0 (x0) g0 (x1) g0 (x2)
g1 (x0) g1 (x1) g1 (x2)
f (x0) f (x1) f (x2)


is non-negative. We shall also use the shorter expression “(g0, g1)-convex”. Likewise, we
say that f is (g0, g1)-concave if −f is (g0, g1)-convex, and (g0, g1)-affine if f ∈ 〈g0, g1〉.
Remark 12. Note that the condition Dx0,x1,x2 (f) ≥ 0 for all x0, x1, x2 in E with x0 <
x1 < x2 is equivalent to the same requirement but with x0 ≤ x1 ≤ x2. Of course, in the
degenerate case xi = xi+1 the determinant is zero, so it makes no difference whether or
not this possibility is included in the definition. In other words, only the ordering of the
points x0, x1, x2 actually matters.

One of the standard definitions of convexity stipulates that the graph of f must lie
below the segment joining any two given points on the graph. It is well known that an
analogous characterization holds for (f0, f1)-convex functions, but with affine functions
being replaced by (f0, f1)-affine functions. More precisely,

Proposition 13. Denote by ψf
x0,x2

the unique function in U1 := 〈f0, f1〉 that interpolates

f at the points x0 < x2, x0, x2 ∈ [a, b], i.e., ψf
x0,x2

(x0) = f (x0) and ψf
x0,x2

(x2) = f (x2).
Then f is (f0, f1)-convex if and only if for all x0, x, x2 such that a ≤ x0 < x < x2 ≤ b,

(25) f (x) ≤ ψf
x0,x2

(x) ,

and in this case, for all y ∈ [a, b] \ [x0, x2],

(26) f (y) ≥ ψf
x0,x2

(y) .

Proof. Let Dx0,x,x2 (f) be as defined in (24). Observe that

Dx0,x,x2 (f) = Dx0,x,x2

(
f − ψf

x0,x2

)
= −

(
f (x)− ψf

x0,x2
(x)
)
(f1 (x2) f0 (x0)− f0 (x2) f1 (x0)) .

Since f1/f0 is strictly increasing, f1 (x2) f0 (x0)− f0 (x2) f1 (x0) > 0, so Dx0,x,x2 (f) ≥ 0 is
equivalent to f (x) ≤ ψf

x0,x2
(x).

Next, assume that (25) holds for all x0, x, x2 such that a ≤ x0 < x < x2 ≤ b. Suppose
that for some u ∈ [a, b] \ [x0, x2] we have f(u) < ψf

x0,x2
(u). Without loss of generality

we may assume that x2 < u. We interpolate between x0 and u to obtain a contradiction:
ψf

x0,x2
(x0) = ψf

x0,u (x0), while ψf
x0,x2

(u) > ψf
x0,u (u). Since ψf

x0,x2
− ψf

x0,u has exactly one

zero, it follows that ψf
x0,x2

> ψf
x0,u on (x0, b]. In particular, f(x2) = ψf

x0,x2
(x2) > ψf

x0,u (x2),

which is impossible by (25) applied to f and ψf
x0,u. �
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Note that by inequality (25), convexity is the same as (1, x)-convexity. The next result
generalizes to (f0, f1)-convex functions, the familiar inequality Bnf ≥ f for the classical
Bernstein operator acting on convex functions. Here it is not assumed that Bn is defined
via an increasing sequence of nodes; it is enough to know that tn,k ∈ [a, b].

Theorem 14. Assume that for some n ≥ 1, there is a Bernstein operator Bn fixing f0

and f1. Then for every (f0, f1)-convex function f ∈ C[0, 1] we have Bnf ≥ f .

Proof. Suppose Bn exists for some n ≥ 1, and let ε > 0. We show that for an arbitrary
x ∈ [a, b], Bnf(x) ≥ f(x) − ε. Assume that x ∈ (a, b) (the cases x = a and x = b
can be proven via obvious changes in the notation, or just by using continuity). First,
select δ > 0 such that Bnδ < ε. Next, by continuity of f, choose h > 0 so small that
[x − h, x + h] ⊂ [a, b] and ψf

x−h,x+h < f + δ on [x − h, x + h]. Then ψf
x−h,x+h < f + δ on

[a, b] by (26), so

Bnf(x) > Bn

(
ψf

x−h,x+h − δ
)

(x) = Bnψ
f
x−h,x+h(x)−Bnδ(x) > ψf

x−h,x+h(x)−ε ≥ f(x)−ε,

where for the last inequality we have used (25). �

We shall use below the following characterization of (f0, f1)-convexity, due to M. Bessen-
yei and Z. Páles (cf. Theorem 5, p. 388 of [4]). While the result is stated there for open
intervals, it also holds for compact intervals.

Theorem 15. Let I := (f1/f0)([a, b]). Then f ∈ C[a, b] is (f0, f1)-convex if and only if
(f/f0) ◦ (f1/f0)

−1 ∈ C (I) is convex in the standard sense.

Example 16. Consider the Bernstein operator Bn,0,j from Example 10, defined on C[0, 1]
and fixing 1 and xj. It is easy to see from Theorem 15 that for s ∈ (0, j), the function xs

is (1, xj)-concave, while if s ∈ (j,∞), xs is (1, xj)-convex. Therefore, by Theorem 14, for
all x ∈ [0, 1] we have Bn,0,jx

s ≤ xs if s ∈ (0, j) and Bn,0,jx
s ≥ xs when s ∈ (j,∞).

Our next objective is to obtain an analog of Aramă’s result (presented at the beginning
of this section) for generalized Bernstein operators Bn. Here the interlacing property of
nodes is used in an essential way.

Proposition 17. Let sk, sk+1, sk+2 ∈ [a, b] be such that sk < sk+1 < sk+2, and assume
that Gk : C [c, d] → R is a functional of the form

Gk (f) = akf (sk) + bkf (sk+1) + ckf (sk+2) ,

satisfying Gk (f0) = Gk (f1) = 0. Then bk ≥ 0 if an only if Gk (f) ≤ 0 for all (f0,
f1)-convex functions f ∈ C [tk, tk+2].

Proof. Let f be (f0, f1)-convex, and let ψf
sk,sk+2

be the function in 〈f0, f1〉 that interpolates

f at the points sk and sk+2. By (25),

Gk (f) = Gk

(
f − ψf

sk,sk+2

)
= bk

(
f − ψf

sk,sk+2

)
(sk+1) ≤ 0
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if and only if bk ≥ 0. �

Theorem 18. Under the same hypotheses and with the same notation as in Theorem 6,
let the linear functionals Gk, k = 1, ..., n− 1, be defined by

Gk (f) = f (tn,k)αn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

− f (tn+1,k)αn+1,k + f (tn,k−1)αn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

.

Then

Bnf −Bn+1f =
n∑

k=1

Gk (f) · pn+1,k.

In particular, if f is (f0, f1)-convex then Bnf −Bn+1f ≥ 0.

Proof. Recall that

Bnf =
n∑

k=0

f (tn,k)αn,kpn,k and Bn+1f =
n+1∑
k=0

f (tn+1,k)αn+1,kpn+1,k

where tn,0 = tn+1,0 = a, tn,n = tn+1,n+1 = b, and tn,k−1 < tn+1,k < tn,k for k = 1, ..., n.
Using Proposition 2 we obtain

Bnf −Bn+1f =
n∑

k=0

f (tn,k)αn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

pn+1,k

+
n∑

k=0

f (tn,k)αn,k

p
(n−k)
n,k (b)

p
(n−k)
n+1,k+1 (b)

pn+1,k+1 −
n+1∑
k=0

f (tn+1,k)αn+1,kpn+1,k.

It follows from (12) that the first summands (corresponding to k = 0) of the first and the
last sum are the same, so they cancel out. Likewise, the n-th summand of the second sum
and the (n+ 1)-th summand of the last sum cancel out. Thus

Bnf −Bn+1f =

n∑
k=1

pn+1,k

[
f (tn,k)αn,k

p
(k)
n,k (a)

p
(k)
n+1,k (a)

− f (tn+1,k)αn+1,k + f (tn,k−1)αn,k−1

p
(n+1−k)
n,k−1 (b)

p
(n+1−k)
n+1,k (b)

]
Finally, let f be (f0, f1)-convex. Taking sk = tn,k−1, sk+1 = tn+1,k, and sk+2 = tn,k in
Proposition 17, we get Bnf −Bn+1f ≥ 0. �

A very natural question, not touched upon here, is under which conditions a sequence
of Bernstein operators for (f0, f1) converges to the identity. It follows from Theorems 14
and 18 that if f is (f0, f1)-convex, then the sequence {Bnf}∞n=1 monotonically converges
to some function g ≥ f (assuming that a sequence of functions f0, f1, f2, ... are given such
that 〈f0, ..., fn〉 is an extended Chebyshev space of dimension n+ 1 for each n ∈ N). But
we have not determined which conditions will ensure that g = f . In this regard, we expect



SHAPE PRESERVING PROPERTIES 15

the strict interlacing property of nodes to be useful, since it entails, in a qualitative sense,
that the sampling of functions is not “too biased”.

4. Total positivity and generalized convexity

Let Bn : C [a, b] → Un be a Bernstein operator for the pair (f0, f1). In Section 3 we
proved that Bnf ≥ f for all (f0, f1)-convex functions f ∈ C [a, b] . This did not require an
increasing sequence of nodes; it was enough to know that tn,k ∈ [a, b].

In this section we show that Bnf is (f0, f1)-convex for every (f0, f1)-convex function
f ∈ C [a, b], provided that the nodes tn,0, ..., tn,n are increasing and Un is an extended
Chebyshev space over [a, b] , and a similar result holds for so-called g-monotone functions.
These statements will follow directly from more general results presented in [17] concerning
shape preserving properties of linear transformations with totally positive kernels. The
connection between total positivity and shape preserving properties of bases is a classical
subject and it has been widely described, see e.g. [17] or the more recent survey [7].

The following definitions come from [17]. Let X and Y be subsets of R. A function
K : X × Y → R is called sign-consistent of order m if there exists an εm ∈ {−1, 1} such

(27) εm det


K (x1, y1) K (x1, y2) ... K (x1, ym)
K (x2, y1) K (x2, y2) ... K (x2, ym)

K (xm, y1) ... .... K (xm, ym)

 ≥ 0

for all x1 < x2 < ... < xm in X and y1 < y2 < ... < ym in Y. If εm = 1 we shall call
K positive of order m. A function K is totally positive if it is positive of all orders m
with m ∈ N,m ≥ 1. Similarly, if one has strict positivity in (27) then K is called strictly
sign-consistent of order m, and if in addition εm = 1 then K is strictly positive of order
m. Strict total positivity means that K is strictly positive of all orders m ∈ N,m ≥ 1.

The following result is well-known, see e.g. [24, p. 358], or the proof presented in [11,
pp. 342–344]:

Theorem 19. Let Un ⊂ Cn [a, b] be an extended Chebyshev space over [a, b] and let
pn,k, k = 0, ..., n, be a non-negative Bernstein basis for [a, b] . Then K : [a, b]×{0, ...., n} →
R defined by

(28) K (x, k) := pn,k (x)

is totally positive, and K is strictly totally positive on (a, b)× {0, ...., n} .

Following the notation of [8], [9], [21], we can deduce from the previous result that
a non-negative Bernstein basis of an extended Chebyshev system over [a, b] is totally
positive on [a, b] and so a B-basis.

We cite from [17, p. 284] the following result (specialized to the case of two functions
F0, F1 instead of a family F1, ..., Fm).
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Theorem 20. Let X and Y be subsets of R, let F0, F1 be functions on Y and let K :
X × Y → R be continuous, and positive of order 3. Let µ be a non-negative sigma-finite
measure and BK : C (Y ) → C (X) be defined

BK (F ) (x) :=

∫
Y

K (x, y)F (y) dµ (y) .

If F is (F0, F1)-convex then BK (F ) is (BKF0, BKF1)-convex.

From this we conclude:

Theorem 21. Let Un be an extended Chebyshev space over [a, b] . Assume there exists a
Bernstein operator Bn : C [a, b] → Un fixing f0 and f1, with increasing nodes tn,0 ≤ .... ≤
tn,n. If f ∈ C [a, b] is (f0, f1)-convex, then Bn (f) is (f0, f1)-convex.

Proof. PutX = [a, b] and Y := {0, ...., n}. Define the function ϕ : Y → X by ϕ (k) := tn,k,
for k = 0, ..., n− 1. Observe that ϕ is monotone increasing (though perhaps not strictly),
so it is order preserving. Next, set µ :=

∑n
k=0 αn,kδk, where the αn,k are the positive

coefficients defining Bn and δk is the Dirac measure at the point k ∈ {0, ..., n} . With
K(x, k) := pn,k(x), we obtain, for every F ∈ C (Y ),

BK (F ) (x) :=

∫
Y

K (x, y)F (y) dµ (y) =
n∑

k=0

F (k)αn,kpn,k (x) .

Now let f ∈ C (X) , and define F := f ◦ ϕ ∈ C (Y ) . Then

(29) BK (f ◦ ϕ) (x) =
n∑

k=0

f (tn,k)αn,kpn,k (x) = Bn (f) (x) .

If f ∈ C (X) is (f0, f1)-convex, then F = f ◦ϕ is (f0 ◦ ϕ, f1 ◦ ϕ)-convex, since ϕ preserves
order (cf. Remark 12). Putting Fj = fj ◦ ϕ for j = 0, 1, an application of Theorem 20
shows that BK (F ) is (BKF0, BKF1)-convex. By formula (29) and the property that Bn

fixes f0 and f1 one obtains

BKFj = Bn (fj) = fj

for j = 0, 1. Thus BK (F ) = Bn (f) is (f0, f1)-convex. �

In a similar way one might derive generalized monotonicity properties of the Bernstein
operator. Here we need the following concept:

Definition 22. Let g > 0. We say that f is g-increasing on [a, b] if f/g is increasing on
[a, b] , i.e. that

f (x0)

g (x0)
≤ f (x1)

g (x1)

for all x0 < x1 in [a, b] .
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It is easy to see that a function f : [a, b] → R is g-increasing on [a, b] if for all x0, x1 in
[a, b] with x0 < x1 the determinant

Dx0,x1 (f) := det

(
f (x0) f (x1)
g (x0) g (x1)

)
is non-negative. Using again Theorem 3.3 in [17, p. 284] and the proof of Theorem 21
one obtains:

Theorem 23. Let Un be an extended Chebyshev space over [a, b] . Assume that a Bernstein
operator Bn : C [a, b] → Un exists for the pair (f0, f1) with increasing nodes tn,0 ≤ .... ≤
tn,n. If g ∈ 〈f0, f1〉 is positive and if f ∈ C [a, b] is g-monotone then Bn (f) is g-monotone.

As one of the referees has pointed out to us, one might prove Theorem 23 and 21
without referring to Theorem 3.3 in [17, p. 284], and by using elementary shape preserving
properties of totally positive bases as described in the surveys [7] or [15]. Moreover,
Theorem 23 and 21 for the special case f0 = 1 and f1 (x) = x are direct consequences of
Corollary 3.7 and 3.8 proved by T. Goodman in [15, p. 162].

5. Normalized Bernstein bases and existence of Bernstein operators

Let bn,k, k = 0, ..., n, be a basis of a given subspace Un ⊂ C [a, b] of dimension n + 1.
The basis bn,k, k = 0, ..., n is totally positive if the kernel K (x, k) := bn,k (x) is totally
positive (in particular the functions bn,k are non-negative). Suppose now that Un contains
the constant function 1. Then the basis bn,k, k = 0, ..., n is called normalized if

1 =
n∑

k=0

bn,k (x)

for all x ∈ [a, b] . Normalized totally positive bases are important in geometric design due
to their good shape preserving properties. J.-M. Carnicer and J.-M. Peña have shown
that a normalized totally positive Bernstein basis is optimal, see [5], [6], [15]. Moreover it
was shown in [8], and independently in [24], that a subspace Un of Cn [a, b] of dimension
n + 1 containing the constant function possesses a normalized totally positive Bernstein
basis provided that Un and the space of all derivatives U ′n := {f ′ : f ∈ Un} are extended
Chebyshev systems over [a, b] .

From this point of view it is natural to conjecture that one might define well-behaved
Bernstein operators (with increasing nodes) under the assumption that Un possesses a
normalized totally positive Bernstein basis and 〈f0〉 , 〈f0, f1〉 are extended Chebyshev sys-
tems. However, we shall show by a counterexample that this is not true. We refer to
[2] for a more detailed discussion under which conditions there might exist a Bernstein
operator for given f0, f1 ∈ Un.

In the following we consider the linear space U3 generated by the functions

1, x, cosx, sin x
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over the interval [0, b] with b > 0 which has been considered by several authors, see the
references in [8] or [21]. Note that U3 and the space U ′3 of all derivatives are extended
Chebyshev spaces over [0, b] for every b ∈ (0, 2π) . Thus U3 possesses a normalized totally
positive Bernstein basis for every b ∈ (0, 2π) . By [8] this entails that the critical length
of U3 for design purposes is 2π. However, we show in Theorem 24 that for b sufficiently
close to 2π (say, b ≥ 4.5) there is no Bernstein operator on U3 fixing 1 and x.

The obstruction for employing Corollary 7 is due to the fact that neither 〈1, x, cosx〉
nor 〈1, x, sin x〉 are extended Chebyshev spaces over [0, b] for all b < 2π (for instance,
sin x − x has a zero of order 3 at 0) so the chain of nested spaces cannot be continued
beyond U1 = 〈1, x〉. By Corollary 8, it is nevertheless possible to construct a Bernstein
operator fixing some pair of functions g0, g1 ∈ U ′3 = 〈1, cosx, sin x〉, with g0 > 0 and g1/g0

strictly increasing, and hence, by Theorem 6 there is a corresponding Bernstein operator
on U3, fixing g0 and g1, with strictly interlacing nodes.

Theorem 24. Let ρ0 be the first positive root of b 7−→ sin b− b cos b, (ρ0 ≈ 4.4934). Let
U3 = 〈1, x, cosx, sinx〉 and f0 = 1 and f1 (x) = x. Then for any b ∈ (0, ρ0) there exists a
Bernstein operator for (f0, f1) over [0, b]. The nodes t0 (b) , t1 (b) , t1 (b) , t3 (b) satisfy the
following inequalities:

0 = t0 (b) < t1 (b) < t1 (b) < t3 (b) = b for b ∈ (0, π)

0 = t0 (b) < t1 (b) = t2 (b) < t3 (b) = b for b = π

0 = t0 (b) < t2 (b) < t1 (b) < t3 (b) = b for b ∈ (π, ρ0) .

For b ∈ (ρ0, 2π) there does not exist a Bernstein operator for (f0, f1) . The Bernstein
operator preserves convex functions for any b ∈ (0, π) , but not for b ∈ (π, ρ0) .

In order to hold computations simple we shall present at first two general propositions
and the following definition: We say that a subspace Un ⊂ C [a, b] is symmetric if f ∈ Un

implies that the function F defined by F (x) := f (a+ b− x) is in Un.
Assume that Un ⊂ Cn [a, b] is a symmetric, extended Chebyshev space over [a, b] . Let

pn,k, k = 0, ...., n be a non-negative Bernstein basis of Un, and let β0, ..., βn and γ0, ..., γn

be constants such that 1 =
∑n

k=0 βkpn,k (x) and x =
∑n

k=0 γkpn,k (x) for all x ∈ [a, b] .

Proposition 25. Suppose that Un ⊂ Cn [a, b] is a symmetric, extended Chebyshev space
over [a, b] containing the constant function f0 = 1 and the identity function f1 (x) = x.
If there exists a Bernstein operator Bn fixing f0 and f1, then the following equalities hold
for the coefficients βk and the nodes tn,k, whenever k = 0, ..., n:

(30) βk = βn−k and tn,k + tn,n−k = a+ b.

Proof. Let pn,k, k = 0, ...., n be a non-negative Bernstein basis of Un. By suitably rescaling
we may assume that

(31) pn,k

(
a+ b

2

)
= 1
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for all k = 0, ...., n. Note that while this assumption will change the size of the constants
βk and γk, the ratio γk/βk is invariant under any such rescaling, and hence so is the
location of the nodes. Now qn,k (x) := pn,k (a+ b− x) is in Un and since qn,k has a zero of
order n− k at a and a zero of order k at x = b, there exists a nonzero constant Ck such
that pn,k (a+ b− x) = Ckpn,n−k (x) . It follows from (31) that Ck = 1, so

(32) pn,k (a+ b− x) = pn,n−k (x) .

Replacing x by a+ b− x in the expressions for 1 and x, from (32) we get

1 =
n∑

k=0

βkpn,k (a+ b− x) =
n∑

k=0

βkpn,n−k (x) =
n∑

k=0

βn−kpn,k (x) ,

so βn−k = βk for all k = 0, ..., n, and

a+ b− x =
n∑

k=0

γkpn,k (a+ b− x) =
n∑

k=0

γkpn,n−k (x) =
n∑

k=0

γn−kpn,k (x) .

Now

0 = x+ a+ b− x− (a+ b)1 =
n∑

k=0

[γn−k + γk − (a+ b) βk] pn,k (x) ,

so (a+ b) βk = γk + γn−k. Dividing by βk (since βk > 0, cf. Lemma 5) we obtain
γn−k

βn−k

=
γn−k

βk

= a+ b− γk

βk

.

But f1 (x) /f0(x) = x, so by (10) we have tn,k = γk/βk, and thus tn,k + tn,n−k = a+ b. �

Remark 26. Consider the Bernstein operators Bn,0,2k+1 fixing 1 and x2k+1 in the classical
polynomial spaces, but this time over the interval [−1, 1] rather than [0, 1]. Arguing as in
the preceding proposition, with x2k+1 instead of x and [−a, a] instead of [a, b], we see that
the nodes for Bn,0,2k+1 over [−1, 1] are obtained by reflecting about zero the nodes in [0, 1]
(cf. Example 10) . So the situation is very different from the classical case where 1 and
x are fixed. There the nodes in different intervals are automatically obtained by an affine
change of coordinates.

Proposition 27. Let pn,k, k = 0, ..., n, be a Bernstein basis, and for f ∈ Un let β0, ..., βn

be the coefficients in the expression

(33) f =
n∑

k=0

βkpn,k.

Then pn,n (b) βn = f (b) and

(34) f ′ (b) = βn−1p
′
n,n−1 (b) + βnp

′
n,n (b)

Proof. For the first statement insert x = b in (33), for the second take the derivative of f
in (33) and then insert x = b. �
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Now we turn to the proof of Theorem 24:

Proof. Let b > 0. We define now four functions in the space U3 by

p3,3 (x) = x− sin x,(35)

p3,2 (x) = (b− sin b) (1− cosx)− (1− cos b) (x− sin x) ,

p3,1 (x) = p3,2 (b− x) and p3,0 (x) = p3,3 (b− x) .

Clearly p3,3 has a zero of exact order 3 at 0, and it is strictly positive over (0,∞) . The
function p3,2 has a zero of order 2 at 0 and clearly p3,2 (b) = 0. In order that p3,2 has a
zero of exact order 1 at b one has to require that

p′3,2 (b) = b sin b− 2 + 2 cos b

is non-zero. On the other hand, if p′3,2 (b) 6= 0 then it follows from the symmetry of the
basis that the system p3,k, k = 0, ..., 3 is indeed a Bernstein basis on [0, b] . Thus for all
b > 0 with p′3,2 (b) 6= 0 there does exist a Bernstein basis on [0, b]). The function p3,2 is non-
negative on [0, b] if b < 2π since in this case 〈1, x, cosx, sin x〉 is an extended Chebyshev
space [0, b]. For b > 2π the function p3,2 might attain also negative values.

Recall that Bernstein bases are unique up to multiplicative constants. So to prove that
a Bernstein operator does not exist, it is sufficient to consider the preceding basis. On
the other hand, to prove that a Bernstein operator does exist, we need to exhibit nodes
tk in [0, b] and positive coefficients αk, for k = 0, 1, 2, 3. Now let 1 =

∑3
k=0 βkp3,k and

x =
∑3

k=0 γkp3,k. Lemma 5 tells us what the nodes and coefficients must be if B3 exists.
By Proposition 27 we have

β3 =
1

b− sin b
and γ3 =

b

b− sin b
,

so t3(b) := γ3/β3 = b. It follows from (34) that

(36) β2p
′
3,2 (b) = −β3p

′
3,3 (b) and γ2p

′
3,2 (b) = 1− γ3p

′
3,3 (b) .

Thus

t2 (b) :=
γ2

β2

=
−γ3p

′
3,3 (b)

−β3p′3,3 (b)
+

1

−β3p′3,3 (b)
= b− b− sin b

1− cos b
.

Now (30) implies that

t1 (b) =
b− sin b

1− cos b
.

We see that t2 (b) − t1 (b) > 0 if and only if g(b) := 2 sin b − b cos b − b > 0. Elementary
calculus shows that g > 0 on (0, π), g(π) = 0, and g < 0 (at least) on (π, 3π/2). If b = π,
then t1 (π) = t2 (π) = π/2. Furthermore, t2 (b) < 0 whenever sin b − b cos b < 0, so by
Lemma 5, for b ∈ (ρ0, 2π) there does not exists a Bernstein operator. To see that such
operator exists when b ∈ (0, ρ0), note that since f0 ≡ 1, by (11) we have αk = βk, so it is
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enough to show that βk > 0 for k = 0, 1, 2, 3. Since β0 = β3 and β1 = β2 by Proposition
25, and β3 > 0, it suffices to prove that β2 > 0. Now from equation (36) we get

β2 = −
(

1− cos b

b− sin b

)
1

b sin b− 2 + 2 cos b
,

so β2 > 0 if and only if b sin b − 2 + 2 cos b < 0. Elementary calculus shows that this is
the case for every b ∈ (0, ρ0).

Regarding the convexity assertions, if b ∈ (0, π] then the Bernstein operatorB3 preserves
convexity by Theorem 21. Next, fix b ∈ (π, ρ0), write t1 = t1 (b), t2 = t2 (b), and consider
the convex function f (x) = (x− t1) (x− t2). Since t1 + t2 = b, we have f (0) = f (b) =
t1 (b− t1) . By Proposition 25, β0 = β3, so

B3f (x) = f (0) β0p3,0 (x) + f (b) β3p3,3 (x) = β0f (0) (p3,0 (x) + p3,3 (x)) .

Using β0f (0) > 0 we see that B3f is convex if and only if F := p3,0 + p3,3 is convex. A
direct computation shows that F (x) = b− sin (b− x)− sin x, so

F ′′ (x) = sin (b− x) + sinx.

Thus F ′′ (0) = sin b < 0, since b ∈ (π, 2π) . By continuity, F ′′ (x) < 0 for all x in a small
neighborhood of 0, so F is not convex.. �

References

[1] J. M. Aldaz, O. Kounchev, H. Render, Bernstein operators for exponential polynomials, to appear
in Constr. Approx..

[2] J. M. Aldaz, O. Kounchev, H. Render, Bernstein operators for extended Chebyshev systems, submit-
ted.
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