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Abstract. Let L be a linear differential operator with constant coefficients of order
n and complex eigenvalues λ0, ..., λn. Assume that the set Un of all solutions of the
equation Lf = 0 is closed under complex conjugation. If the length of the interval [a, b]
is smaller than π/Mn, where Mn := max {|Imλj | : j = 0, ..., n}, then there exists a basis
pn,k, k = 0, ...n, of the space Un with the property that each pn,k has a zero of order k
at a and a zero of order n− k at b, and each pn,k is positive on the open interval (a, b) .
Under the additional assumption that λ0 and λ1 are real and distinct, our first main
result states that there exist points a = t0 < t1 < ... < tn = b and positive numbers
α0, .., αn, such that the operator

Bnf :=
n∑

k=0

αkf (tk) pn,k (x)

satisfies Bneλjx = eλjx, for j = 0, 1. The second main result gives a sufficient condition
guaranteeing the uniform convergence of Bnf to f for each f ∈ C [a, b].
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1. Introduction

Let λ0, ..., λn be complex numbers, let Λn be the vector (λ0, ..., λn), and define the linear
differential operator L with constant coefficients by

(1) L =

(
d

dx
− λ0

)
....

(
d

dx
− λn

)
.

Complex-valued solutions f of the equation Lf = 0 are called exponential polynomials
or L-polynomials. They provide natural generalizations of classical, trigonometric, and
hyperbolic polynomials (see [30]), and the so-called D-polynomials considered in [27]. For
example, it is well known that one can develop a nice spline theory based on cardinal
exponential polynomials (see e.g. [26], [29], [25]) and a satisfactory nonstationary mul-
tiresolutional analysis for cardinal exponential splines, see the results in [7], [15], [16], [17]
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and [21], rediscovered in [31]. Another motivation stems from the investigation of a new
class of multivariate splines, the so-called polysplines, cf. [15], [18].

Special interest in exponential polynomials has arisen recently within Computer Aided
Geometric Design for modelling parametric curves. On the one hand, special systems of
exponential polynomials are considered, such as

1, x, ..., xn−1, cos x, sin x.

(which corresponds to the case λ0 = ... = λn−2 = 0, λn−1 = i, and λn = −i), cf. [5],
[22], [33] and [6], [4] for further generalizations. On the other hand, a remarkable result
is the existence of a so-called normalized Bernstein basis in certain classes of extended
Chebyshev systems, see [3], [24]. In order to explain this result, let us recall that a
subspace Un of Cn (I), the space of n-times continuously differentiable complex-valued
functions on an interval I, is called an extended Chebyshev system for the subset A ⊂ I
if Un has dimension n + 1 and each non-zero f ∈ Un vanishes at most n times in A (with
multiplicities). A system pn,k ∈ Un, k = 0, ..., n, is a Bernstein-like basis for a 6= b ∈ I, if
the function pn,k has a zero of order k at a, and a zero of order n− k at b for k = 0, ..., n.
For example, in the polynomial case a Bernstein-like basis Pn,k for {a, b} may be defined
explicitly by

(2) Pn,k (x) :=
1

k!

1

(b− a)n−k
(x− a)k (b− x)n−k .

The above-mentioned result in [3], [24] says the following: Assume that the constant
function 1 is in Un; clearly then there exist coefficients αk, k = 0, ..., n, such that 1 =∑n

k=0 αkpn,k, since pn,k, k = 0, ..., n, is a basis. The normalization property proved in [3]
and [24] for a certain class of Chebyshev systems says that the coefficients αk are positive.

In this paper we shall be concerned with Bernstein-like bases and Bernstein operators
for the set of exponential polynomials induced by a linear differential operator L of the
type (1), i.e.

(3) Un = E(λ0,...,λn) := {f ∈ C∞ (R) : Lf = 0} .

It is easy to see that there exists a Bernstein-like basis pn,k, k = 0, ..., n for a 6= b if and
only if E(λ0,...,λn) is an extended Chebyshev system for the set {a, b} . In order to guarantee
that the basis functions pn,k, k = 0, ..., n, are strictly positive on the open interval (a, b) it
is sufficient to know that E(λ0,...,λn) is closed under complex conjugation and that E(λ0,...,λn)

is an extended Chebyshev space for the closed interval [a, b] . In Section 2 we shall give
the following criterion: E(λ0,...,λn) is an extended Chebyshev space for the interval [a, b] if
E(λ0,...,λn) is closed under complex conjugation and b− a < π/Mn, where

(4) Mn := max {|Imλj| : j = 0, ..., n} .
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Having at hand a Bernstein-like basis it is natural to ask whether one can introduce a
corresponding Bernstein operator, i.e. an operator of the type

(5) Bnf (x) :=
n∑

k=0

αkf (tk) pn,k (x)

where the coefficients α0, ..., αn and the knots t0, ..., tn have to be defined in a suitable
way. Our first main result (Section 3, Theorem 19) states the following: assume that
E(λ0,...,λn) is closed under complex conjugation and b − a < π/Mn. If λ0 6= λ1 are real
then there exist unique points a = t0 < t1 < ... < tn = b, and unique positive coefficients
α0, ..., αn, such that the operator Bn : C [a, b] → E(λ0,...,λn) defined by (5) has the following
reproducing property

(6) Bn

(
eλ0x

)
= eλ0x and Bn

(
eλ1x

)
= eλ1x.

Of course, the latter property is reminiscent of the well known fact that the classical
(polynomial) Bernstein operator Bn on [0, 1] satisfies Bn1 = 1 and Bnx = x. Note that
the assumption b − a < π/Mn is crucial: we give an example of an extended Chebyshev
system E(λ0,...,λn) over an interval [a, b] (for n = 3) such that the condition (6) implies the
positivity of the coefficients α0, α1, α2, α3 but the points t0, t1, t2, t3 in (5) are not ordered,
namely they satisfy the inequality a = t0 < t2 < t1 < t3 = b. Additionally, we discuss the
case λ0 = λ1, the function eλ1x in (6) is replaced by xeλ0x.

It follows from the above construction that the operator Bn defined by (5) satisfying (6)
is a positive operator. Using a Korovkin-type theorem for extended Chebyshev systems we
derive in Section 4 a sufficient criterion for the uniform convergence of Bnf on f ∈ C [a, b] .
The criterion is formulated in terms of the basis functions pn,k and their derivatives at
the point b.

In Section 5 we consider exponential polynomials for equidistant eigenvalues Λn =
(λ0, ...., λn), i.e. for λj = λ0 + jω for j = 0, ..., n. We briefly discuss the relationship of a
Bernstein-type theorem due to S. Morigi and M. Neamtu with our results.

2. Bernstein bases for complex eigenvalues

In order to give the reader more intuition about exponential polynomials we shall recall
some elementary facts. In the case of pairwise different λj, j = 0, ..., n, the space E(λ0,...,λn)

is the linear span generated by the functions

eλ0x, eλ1x, ...., eλnx.

When some λj occurs mj times in Λn = (λ0, ..., λn), a basis for the space E(λ0,...,λn) is
given by the linearly independent functions

xseλjx for s = 0, 1, ...,mj − 1.

We say that the vector Λn ∈ Cn+1is equivalent to the vector Λ′
n ∈ Cn+1 if the correspond-

ing differential operators are equal (so the spaces of solutions are equal). This is the same
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to say that each λ occurs in Λn and Λ′
n with the same multiplicity. Since the differential

operator L defined in (1) does not depend on the order of differentiation, it is clear that
each permutation of the vector Λn is equivalent to Λn. Hence the space E(λ0,...,λn) does not
depend on the order of the eigenvalues λ0, ..., λn.

The k-th derivative of a function f is denoted by f (k). A function f ∈ Cn (I, C) has a
zero of order k or of multiplicity k at a point a ∈ I if f (a) = ... = f (k−1) (a) = 0 and
f (k) (a) 6= 0. We shall repeatedly use the fact that

(7) k! · lim
x→0

f (x)

(x− a)k
= f (k) (a) .

for any function f ∈ C(k)(I) with f (a) = ... = f (k−1) (a) = 0.

Definition 1. A system of functions pn,k, k = 0, ..., n in the space E(λ0,...,λn) is called
Bernstein-like basis of E(λ0,...,λn) for a 6= b ∈ R if and only if each function pn,k has a zero
of order k at a and a zero of order n− k at b for k = 0, ..., n.

It is easy to see that a Bernstein-like basis pn,k, k = 0, ..., n (if it exists) is indeed a
basis for the space E(λ0,...,λn). Moreover the basis functions are unique up to a non-zero
multiplicative constant. In case of existence we shall require that

(8) k! lim
x→a,x>a

pn,k (x)

(x− a)k
= p

(k)
n,k (a) = 1

and we shall call pn,k, k = 0, ..., n, the Bernstein basis of E(λ0,...,λn) with respect to a 6= b.
In order to give a characterization of the existence of Bernstein bases, let us recall the

general fact (cf. [26]) that for Λn = (λ0, ..., λn) ∈ Cn+1 there exists a unique function

Φn ∈ E(λ0,...,λn) such that Φn (0) = .... = Φ
(n−1)
n (0) = 0 and Φ

(n)
n (0) = 1. An explicit

formula for Φn is given by

(9) Φn (x) := ΦΛn (x) := [λ0, ..., λn] exz =
1

2πi

∫
Γr

exz

(z − λ0) ... (z − λn)
dz

where [λ0, ..., λn] denotes the divided difference, and Γr is a path in the complex plane
defined by Γr (t) = reit, t ∈ [0, 2π], surrounding all the scalars λ0, ..., λn. We shall call Φn

the fundamental function. Moreover we define

(10) Φn,k (x) := det

 Φn (x) ... Φ
(k)
n (x)

...
...

Φ
(k)
n (x) ... Φ

(2k)
n (x)


for each k = 0, ..., n. The following characterization is straightforward, see e.g. [19]:

Theorem 2. Let (λ0, ..., λn) ∈ Cn+1 and let a 6= b ∈ R. Then the following statements
are equivalent:

a) There exists a Bernstein basis pn,k, k = 0, ..., n in the space E(λ0,...,λn) for {a, b} ,
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b) E(λ0,...,λn) is an extended Chebyshev system for {a, b} ,
c) Φn,k (b− a) 6= 0 for k = 0, ..., n.

The equivalence of a) and b) also holds in the context of Chebyshev systems of real-
valued functions, see [3], [10], [23], [24]. Further references on properties of Bernstein
bases are [8] and [28].

It is well known that for real eigenvalues λ0, ..., λn the space E(λ0,...,λn) is an extended
Chebyshev system over any interval [a, b] , so a Bernstein basis exists in that case. In
what follows we want to discuss the case of complex eigenvalues. The reader interested
only in real eigenvalues may skip the rest of this section.

The following example is instructive:

Example 3. Let Λ2 = (0, i,−i) . Then Φ2 (x) = 1 − cos x is the fundamental function.
Since Φ2 (2πk) = 0 it follows that EΛ2 does not possess a Bernstein basis for {0, 2πk}
with k ∈ Z. On the other hand, if b 6= 2πk, k ∈ Z, then EΛ2 does possess a Bernstein basis
for {0, b} , explicitly given by

p2,2 (x) = 1− cos x,

p2,1 (x) = sin x− sin b
1− cos x

1− cos b
,

p2,0 (x) =
1− cos (x− b)

1− cos b
.

Note that E(0,i,−i) possesses a Bernstein basis for {0, π} but that the subspace E(i,−i)

does not possess a Bernstein basis for {0, π} since ϕ(i,−i) (x) = sin x has then two zeros in
{0, π}.

Let us take now b = 3π in Example 3. Then a Bernstein basis exists for {0, 3π} but the
basis function p2,1 (x) = sin x takes negative values on the interval [0, 3π] . So Bernstein
basis functions may fail to be positive.

Let us recall that E(λ0,...,λn) is closed under complex conjugation if for each f ∈ E(λ0,...,λn)

the complex conjugate function f is again in E(λ0,...,λn). It is easy to see that for complex
numbers λ0, ..., λn the space E(λ0,...,λn) is closed under complex conjugation if and only if

there exists a permutation σ of the indices {0, ..., n} such that λj = λσ(j) for j = 0, ..., n.
In other words, E(λ0,...,λn) is closed under complex conjugation if and only if the vector

Λn = (λ0, ..., λn) is equivalent to the conjugate vector Λn.

Proposition 4. Suppose that E(λ0,...,λn) is an extended Chebyshev system for a 6= b ∈ R.
Then the space E(λ0,...,λn) is closed under complex conjugation if and only if the basis
functions pn,k are real-valued on R for each k = 0, ..., n.

Proof. Suppose that E(λ0,...,λn) is closed under complex conjugation. Then pn,k is in
E(λ0,...,λn) = E(λ0,...,λn), it has a zero of order k at a, and a zero of order n − k at b.

By uniqueness, pn,k = Dpn,k for some constant D, and it follows from (8) that D = 1.
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Thus p(λ0,λ1,...,λn),k is real-valued. The converse is easy, since the pn,k are real-valued
functions on R, and they form a basis.

Assume E(λ0,...,λn) is closed under complex conjugation and E(λ0,...,λn) is an extended
Chebyshev system for the closed interval [a, b]: then it easy to see that the Bernstein
basis functions are strictly positive on the interval (a, b), and there exists x0 ∈ (a, b) such
that pn,k is strictly increasing on (a, x0) and decreasing on (x0, b) , see e.g. [19]. Next we
study when E(λ0,...,λn) is an extended Chebyshev over an interval [a, b] .

Theorem 5. Let (λ0, ..., λn) ∈ Cn+1 and assume that E(λ0,...,λn) is closed under complex
conjugation. Then the following statements are equivalent for a < b ∈ R :

a) E(λ0,...,λn) is an extended Chebyshev system over the interval [a, b] ,
b) E(λ0,...,λn) is an extended Chebyshev system for all {a, x} with x ∈ (a, b] ,
c) The functions x 7−→ Φn,k (x− a) , k = 0, ..., n, have no zeros in (a, b] .

Proof. Clearly a) → b) is trivial, and b) and c) are equivalent by Theorem 2. For c) → a)

note that the function Φn is real-valued, so Φn, Φ
′
n, ..., Φ

(n)
n are real-valued and they form

a basis of E(λ0,...,λn). We show that f ∈ E(λ0,...,λn) has at most n zeros in [a, b] . Since
E(λ0,...,λn) is closed under complex conjugation we may assume that f is real-valued. We

can write f = a0Φn + ... + anΦ
(n)
n . Then f has a zero of order r ∈ {0, .., n− 1} at a,

implying that an = ... = an−r+1 = 0. Hence f is in the real linear span of Φn, ..., Φ
(n−r)
n ,

which will be denoted by Un−r. Since Φn,k (b) 6= 0 for k = 0, ..., n − r, there exists by
continuity some δ > 0 such that Φn,k (y) 6= 0 for all y ∈ [b− δ, b + δ] and k = 0, ..., n− r.
By Theorem 2.3 in [13, p. 52], applied to the open interval (a, b + δ), each function in Ur

has at most n− r zeros (counting the multiplicities) in the open interval (a, b + δ) . Hence
f has at most n zeros on [a, b] .

Lemma 6. If E(λ0,....,λn) is an extended Chebyshev system over [a, b] and γ is a real
number, then E(λ0,....,λn) is an extended Chebyshev system over [a + γ, b + γ] .

Lemma 7. If E(λ0,....,λn) is an extended Chebyshev system over [a, b] and c is a complex
number then E(λ0−c,....,λn−c) is an extended Chebyshev system over [a, b] .

Proof. If f ∈ E (λ0, ...., λn), then g defined by g (x) = e−cxf (x) is in E(λ0−c,....,λn−c).
If g had more than n zeros in [a, b] then f would have more than n zeros in [a, b] , a
contradiction.

Lemma 8. If E(λ0,....,λn) is an extended Chebyshev system over [a, b] and c is a positive

number, then E(λ0c,....,λnc) is an extended Chebyshev system over
[
a, a + b−a

c

]
.

Proof. By Lemma 6 we may assume that a = 0. If f ∈ E(λ0,....,λn) then g, defined by

g (x) := f (cx), is in E(λ0c,....,λnc). Suppose that g has more than n zeros in
[
0, b

c

]
. Then f

has more than n zeros in [0, b] , a contradiction.
The following is the main result of this section:



BERNSTEIN OPERATORS FOR EXPONENTIAL POLYNOMIALS 7

Theorem 9. Let (λ0, ..., λn) ∈ Cn+1 and assume that E(λ0,...,λn) is closed under complex
conjugation. If |Imλj| ≤ Mn for j = 0, ..., n, then E(λ0,...,λn) is an extended Chebyshev
system for the interval [a, b], provided b− a < π/Mn.

Proof. By an inductive argument, it suffices to prove the following two statements for an
extended Chebyshev system E(λ0,....,λn) over [a, b], closed under complex conjugation:

1) If λn+1 is real then E(λ0,....,λn+1) is an extended Chebyshev system for [a, b] ,

2) If λn+1 is a non-real complex number, then E
(
λ0, ...., λn, λn+1, λn+1

)
is an extended

Chebyshev system over [a, d], for any d with a < d ≤ b and d− a < π
|Imλn+1| .

For a proof of 1) we use a standard argument: let f ∈ E(λ0,....,λn+1) be non-zero with
m zeros in [a, b]. We may assume that f is real-valued since E(λ0,....,λn+1) is closed under
complex conjugation. Then h (x) := e−λn+1xf (x) is real-valued and it has m zeros in
[a, b] . By Rolle’s theorem h′ (x) has at least m− 1 zeros in [a, b] . Since

eλn+1xh′ (x) = eλn+1x d

dx

(
e−λn+1xf (x)

)
=

(
d

dx
− λn+1

)
f (x) =: F (x)

we conclude that F has at least m− 1 zeros in [a, b] . But F is in E(λ0,....,λn), so it has at
most n zeros, and hence m− 1 ≤ n.

For a proof of 2) note that by Lemma 7 we may assume that c := Reλn+1 is zero.
Without loss of generality let Imλn+1 > 0, and by Lemma 8 it suffices to prove 2) for
the case that λn+1 = i. It is clear that E(λ0,....,λn,i,−i) is closed under complex conjugation.

Furthermore, by Lemma 6 we may assume that [a, d] ⊂ I :=
(
−1

2
π, 1

2
π
)
. Let us introduce

the auxiliary function

v (x) =
1 + tan x

1− tan x

defined on the interval I. A computation shows that v′ = v2 + 1. Let u be a primitive
function of v, so we have u′ = v and u′′ = (u′)2 + 1. Let us define g := eu. Then g satisfies
the differential equation g′′g − 2 (g′)2 = g2 and a computation shows that

g
d

dx

[
g−2 d

dx
(gf)

]
=

(
d2

dx2
+ 1

)
f.

Now we can argue as above: if f ∈ E(λ0,....,λn,i,−i) has m zeros in the interval [a, d], so does

gf. Thus d
dx

(gf) has at least m−1 zeros in [a, d] . Hence g−2 d
dx

(gf) has at least m−1 zeros

in [a, d] and we conclude that d
dx

[
g−2 d

dx
(gf)

]
has at least m− 2 zeros in [a, d]. Therefore(

d2

dx2 + 1
)

f has at least m − 2 zeros in [a, d]. Since d ≤ b and
(

d2

dx2 + 1
)

f ∈ E(λ0,....,λn),

and since E(λ0,....,λn) is a Chebyshev system over [a, b] we obtain m− 2 ≤ n.
For a discussion of complex zeros of exponential polynomials we refer to the recent work

[32].
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3. Recursive relations for Bernstein bases

Let (λ0, ..., λn) ∈ Cn+1 and assume that E(λ0,...,λn) is an extended Chebyshev system
for {a, b} . We can construct a Bernstein basis for a 6= b ∈ R via the following procedure:
put q0 (x) = Φn (x− a) , which clearly has a zero of order n at a. Then q0 (b) 6= 0 since

E(λ0,...,λn) is an extended Chebyshev system for {a, b}. We define q1 := q
(1)
0 − α0q0, where

α0 = q
(1)
0 (b) /q0 (b). Then q1 has a zero of order n− 1 at a and a zero of order 1 at b. For

k ≥ 2 we define qk recursively by

(11) qk := q
(1)
k−1 − (αk−1 − αk−2) · qk−1 − βkqk−2

with coefficients αk−1, αk−2 and βk to be determined. Note that qk has a zero of order at
least k − 2 at b, and a zero of order n − k at a. The coefficients αk−1, αk−2 and βk are
chosen so that qk has a zero of order k at b, which is achieved by defining

(12) βk :=
q
(k−1)
k−1 (b)

q
(k−2)
k−2 (b)

and αk−1 :=
q
(k)
k−1 (b)

q
(k−1)
k−1 (b)

.

Then pn,n−k := qk for k = 0, ..., n is the Bernstein basis satisfying condition (8).
The proof of the following proposition is easy and therefore omitted.

Proposition 10. Let c ∈ C and define c + Λn := (c + λ0, ...., c + λn) . If there exists a
Bernstein basis pn,k, k = 0, ..., n for EΛn and a 6= b, then there exists a Bernstein basis of
Ec+Λn given by

pc+Λn,k (x) = pΛn,k (x) ec(x−a)

for k = 0, ..., n.

In the polynomial case the Bernstein basis Pn,k defined in (2) satisfies the useful identity

d

dx
Pn,k = Pn−1,k−1 −

n− k

b− a
Pn−1,k,

which follows directly by differentiating (2). Next we present its analog for exponen-
tial polynomials. In what follows we shall use the more precise but lengthier notation
p(λ0,...,λn),k instead of pn,k.

Proposition 11. Suppose that E(λ0,...,λn) and E(λ0,...,λn−1) are extended Chebyshev systems
for a 6= b ∈ R. Define for k = 0, ...., n− 1 the numbers

(13) dk := lim
x↑b

d
dx

p(λ0,...,λn),k (x)

p(λ0,...,λn−1),k (x)
6= 0.

Then,

(14)

(
d

dx
− λn

)
p(λ0,...,λn),k = p(λ0,...,λn−1),k−1 + dkp(λ0,...,λn−1),k
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for any k = 1, ..., n − 1. Furthermore, for k = 0 the right hand side of (14) is equal to
d0p(λ0,...,λn−1),0, while for k = n, it is equal to p(λ0,...,λn−1),n−1.

Proof. Let fk be the left hand side of (14) and let 1 ≤ k ≤ n− 1. Using the fact that fk

has a zero of order k − 1 at a and a zero of order n − k − 1 at b, it is easy to see that
fk = ckp(λ0,...,λn−1),k−1 + dkp(λ0,...,λn−1),k for some constants ck and dk. Now simple limit
considerations complete the proof.

Proposition 12. Suppose that E(λ0,...,λn) and E(λ0,...,λn−1) are extended Chebyshev systems
for a 6= b ∈ R. Assume that p(λ0,...,λn−1,λn),k (x) = p(λ0,...,λn−1,ηn),k (x) on (a, b) for a given
k. Then λn = ηn. The same holds if instead of λn we consider any other eigenvalue.

Proof. Suppose first that 1 ≤ k ≤ n− 1. By Proposition 11 we obtain the equations(
d

dx
− λn

)
p(λ0,...,λn−1,λn),k = p(λ0,...,λn−1),k−1 + dkp(λ0,...,λn−1),k,(

d

dx
− ηn

)
p(λ0,...,λn−1,ηn),k = p(λ0,...,λn−1),k−1 + Dkp(λ0,...,λn−1),k.

Using the order of the zeros at b and assumption p(λ0,...,λn−1,λn),k (x) = p(λ0,...,λn−1,ηn),k (x)
we get dk = Dk, so the right hand sides are equal. Subtracting we conclude that λn = ηn.
The cases k = 0 and k = 1 immediately follow from Proposition 11.

For the polynomial Bernstein basis over the interval [0, 1] one often uses identities like

(15) 1 = (x + (1− x))n =
n∑

k=0

n!

(n− k)!
Pn,k (x)

where Pn,k is defined as in (2). The following is an analog for exponential polynomials:

Theorem 13. Suppose that E(λ0,...,λn) and E(λ0,...,λn−1) are extended Chebyshev systems
for a 6= b ∈ R. Let d0, . . . , dn−1 be the non-zero numbers defined in (13). Then

(16) e(x−a)λn = p(λ0,...,λn),0 (x) +
n∑

k=1

(−1)k d0 · · · dk−1 · p(λ0,...,λn),k (x) .

Furthermore for k = 1, . . . , n− 1, we have the equality

(17) d0 · · · dk−1 = (−1)n e(b−a)λn

p(λ0,...,λn),n (b)

1

dk · · · dn−1

.



10 J.M. ALDAZ, O. KOUNCHEV AND H. RENDER

Proof. Write e(x−a)λn =
∑n

k=0 βkp(λ0,...,λn),k (x) for coefficients β0, ..., βn. Inserting x = a
yields 1 = β0p(λ0,...,λn),0 (0) , so β0 = 1 by (8). Proposition 11 yields

0 =

(
d

dx
− λn

)
e(x−a)λn = d0p(λ0,...,λn−1),0(x) + β1p(λ0,...,λn−1),0(x)

+
n−2∑
k=1

(βk+1 + βkdk) p(λ0,...,λn−1),k(x) + p(λ0,...,λn−1),n−1(x) [βn−1dn−1 + βn] .

Thus β1 = −d0, βk+1 = −βkdk for k = 1, ..., n − 2, and βn−1dn−1 + βn = 0. Hence,
for k = 1, . . . , n we have βk = (−1)kd0 · · · dk−1, and then (16) follows. Furthermore, by
inserting x = b in (16) and recalling that p(λ0,...,λn),k has a zero of order n − k at x = b,
we see that

(−1)n d0 · · · dn−1 · p(λ0,...,λn),n (b) = e(b−a)λn .

Thus, we get (17).
Theorem 13 does not hold when the assumption of having an extended Chebyshev

system E(λ0,...,λn−1) for a 6= b is dropped: in Example 3, with b = π, one has that

1 =
1

2
(1− cos x) + 0 · sin x +

1

2
(1 + cos x) ,

so 1 is a linear combination of the Bernstein basis functions with a zero coefficient.

Theorem 14. Suppose that E(λ0,...,λn), E(λ0,λ2...,λn), E(λ1...,λn) and E(λ2...,λn) are extended

Chebyshev systems for a 6= b ∈ R. Let λ0 6= λ1. Then there exists a constant Cλ0,λ1

k (Λn) 6=
0 such that

(18) p(λ0,λ2,...,λn),k − p(λ1,λ2,...,λn),k = Cλ0,λ1

k (Λn) · p(λ0,λ1,λ2,...,λn),k+1.

Moreover,

(19) lim
x→b

p(λ0,λ2,...,λn),k (x)

p(λ1,...,λn),k (x)
6= 1.

Proof. Let B (x) be the function on the left hand side of (18). Then B has a zero of
order k + 1 at a, since p(λ0,λ2,...,λn),k and p(λ1,λ2,...,λn),k have a zero of order k at a, and

B(k) (a) = limx→a
B(x)

(x−a)k = 0 by (8). Furthermore B has a zero of order n − k − 1 at b.

By Proposition 12, B is not identically zero (here we need that E(λ2...,λn) is an extended
Chebyshev system for a 6= b). Since B ∈ E(λ0,λ1,...,λn), it must be a non-zero multiple of
p(λ0,λ1,...,λn),k+1.

Finally, suppose that the limit in (19) is equal to 1. Then p
(n−1−k)
(λ0,λ2,...,λn),k (b) = p

(n−1−k)
(λ1,...,λn),k (b) .

By (18) we conclude that p
(n−1−k)
(λ0,λ1λ2,...,λn),k+1 (b) = 0. Hence p(λ0,λ1λ2,...,λn),k+1 has a zero of

order n− k at b and a zero of order k + 1 at a, a contradiction.
In the case of equidistant eigenvalues it is possible to define a Bernstein basis explicitly:
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Proposition 15. Suppose that ω 6= 0 and λj = λ0 + jω for j = 0, ..., n. Then

(20) pn,k (x) :=
eλ0(x−a)

k!ωk

(
eω(x−a) − 1

)k
(

1− eω(x−b)

1− eω(a−b)

)n−k

is a Bernstein basis for [a, b] satisfying

(21) k! lim
x→a

pn,k (a) / (x− a)k = 1.

Proof. It is easy to see that pn,k is an exponential polynomial. Furthermore, pn,k has a
zero at x = a of order k and a zero of order n− k at x = b.

Lemma 16. Let ω 6= 0 and let λj = λ0 + jω for j = 0, ..., n. Then

p(λ0,λ1,...,λn−1),k − p(λ1,λ2,...,λn),k = − (k + 1) ωp(λ0,λ1λ2,...,λn),k+1.

Proof. This is a computation using (20).
The following result is crucial for the proof of the existence of a Bernstein operator. In

this theorem we shall use a homotopy argument for the eigenvalues Λn and the assumption
(22) will guarantee that the corresponding Bernstein bases with respect to the points a 6= b
exist.

Theorem 17. Suppose that E(λ2,...,λn) is closed under complex conjugation and 0 < b−a <
π/Mn, where

(22) Mn = max {|Imλj| : for j = 2, ..., n} .

If λ0, λ1 ∈ R and λ0 < λ1, then

(23) lim
x→b

p(λ0,λ2,...,λn),k (x)

p(λ1,...,λn),k (x)
< 1.

Furthermore, the function of λ ∈ R

(24) λ 7−→ p(λ,λ2,...,λn),k (x)

is strictly increasing for each x ∈ (a, b).

Proof. By Proposition 4, p(λ,λ2,...,λn),k (x) is real valued for every real λ. Let now λ0 <

λ1 be real. It follows that Cλ0,λ1

k (Λn) in (18) is real. Clearly, for λ0 < λ1 and fixed

(λ2, ..., λn) the function in (24) is increasing if Cλ0,λ1

k (Λn) in (18) is negative. From the
inductive formula (11) we get that the function (λ0, ..., λn) 7−→ p(λ0,...,λn),k is continuous.

Now (18) implies that (λ0, ..., λn) 7−→ Cλ0,λ1

k (Λn) is continuous. For λ0 < λ1, define
µj := λ0 + j (λ1 − λ0) /n, where j = 0, ..., n. Since µ0 = λ0 and µn = λ1 the function

t 7−→ C
tλ0+(1−t)µ0,tλ1+(1−t)µn

k (t (λ0, ..., λn) + (1− t) (µ0..., µn))
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is continuous, and by Theorem 14, it has no zero on R. It follows that this function must
have constant sign. Hence it suffices to show that Cµ0,µn

k (µ0, ..., µn) < 0. But this follows
from Lemma 16. Thus, λ 7−→ p(λ,λ2,...,λn),k (x) is increasing, so for a < x < b and λ0 < λ1,

(25) p(λ0,λ2,...,λn),k (x) < p(λ1,λ2,...,λn),k (x) .

Dividing (25) by its right hand side, using (19), and taking the limit x ↑ b, we get (23).

Example 18. Let us take λ ∈ R. Then the fundamental function Φ(λ,i,−i) with respect to
(λ, i,−i) is given by

Φ(λ,i,−i) (x) =
eλx − cos x− λ sin x

λ2 + 1
.

Since Φ(λ,i,−i) is equal to the basis function p(λ,i,−i),2 it follows that λ 7−→ Φ(λ,i,−i) (x)
is increasing for any x in the interval (0, π) . Differentiating, it is easy to check that
λ 7−→ Φλ (x) is decreasing whenever x < 0 is small in absolute value, and λ is sufficiently
large. For x with π < x < 2π it might be checked that λ 7−→ Φλ (x) is not increasing.

4. Construction of the Bernstein operator

We now proceed to our first main result which roughly says the following: given two
functions eλ0x and eλ1x in the extended Chebyshev system E(λ0,...,λn) over [a, b] we can find
points t0, ..., tn in the interval [a, b] and positive numbers α0, ..., αn such that the operator
Bn defined by (27) below reproduces (or preserves) the functions eλ0x and eλ1x, i.e. (28)
holds.

Theorem 19. Let λ0, ..., λn be complex numbers with λ0 and λ1 real and λ0 < λ1. Suppose
E(λ0,...,λn) is closed under complex conjugation and 0 < b− a < π/Mn, where

Mn := max {|Imλj| : j = 0, ..., n} .

Define inductively points t0, ..., tn by setting t0 = a and

e(λ0−λ1)(tk−tk−1) = lim
x→b

p(λ0,λ2,...,λn),k−1 (x)

p(λ1,...,λn),k−1 (x)

for k = 1, 2, ..., n. Then
a = t0 < t1 < .... < tn = b.

Put α0 = 1, and define numbers

(26) αk = e−λ0(tk−a) (−1)k
k−1∏
l=0

lim
x→b

d
dx

p(λ0,...,λn),l (x)

p(λ1,...,λn),l (x)

for k = 1, ...., n. Then α0, ..., αn > 0 and the operator B(λ0,...,λn) on C [a, b] defined by

(27) B(λ0,...,λn)f =
n∑

k=0

αkf (tk) p(λ0,...,λn),k.
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fixes the functions eλ0x and eλ1x, i.e.

(28) B(λ0,...,λn)

(
eλ0x

)
= eλ0x and B(λ0,...,λn)

(
eλ1x

)
= eλ1x.

Moreover, the real numbers t0, ..., tn and α0, ..., αn satisfying (28) are unique.

Proof. First let us only assume that E(λ0,λ1,...,λn), E(λ1,λ2,...,λn) and E(λ0,λ2...,λn) are extended
Chebyshev systems over {a, b}, in order to clarify where we need the assumption 0 <
b − a < π/Mn. Let β0, ...., βn and γ0, ..., γn be the unique non-zero coefficients, found in
Theorem 13, that satisfy

(29) eλ0(x−a) =
n∑

k=0

βkp(λ0,...,λn),k (x) and eλ1(x−a) =
n∑

k=0

γkp(λ0,...,λn),k (x) .

The reproducing property of the Bernstein operator for eλ0x in (28) implies that
n∑

k=0

eλ0(tk−a)αkp(λ0,...,λn),k (x) =
n∑

k=0

βkp(λ0,...,λn),k (x) .

Since p(λ0,...,λn),k is a basis we conclude that eλ0(tk−a)αk = βk. Similarly, eλ1(tk−a)αk = γk

follows from B(λ0,...,λn)

(
eλ1x

)
= eλ1x. Dividing, we see that tk satisfies the equation

(30) e(λ0−λ1)tk =
βk

γk

e(λ0−λ1)a.

Hence, for αk we obtain

(31) αk = e−λ0(tk−a)βk.

It is easy to see that βk and γk are real, since the functions p(λ0,...,λn),k are real-valued

(Proposition 4) and both λ0 and λ1 are real. Now t 7−→ e(λ0−λ1)t is real-valued and
injective, so tk is uniquely determined by (30), and hence so is αk by (31). Moreover, it
is easy to see that the points t0 = a and tn = b satisfy (30).

Next we want to show that αk is positive: by Theorem 13 (applied to λ0 instead of λn)

we have βk = (−1)k d̃0...d̃k−1, where d̃l is given by

(32) d̃l = lim
x→b

d
dx

p(λ0,...,λn),l (x)

p(λ1,...,λn),l (x)
.

The positivity of p(λ1,...,λn),k (x) on (a, b) implies that d̃l is negative. Hence, for k =
1, ..., n− 1, equation (31) yields

(33) αk = e−λ0(tk−a)βk = e−λ0(tk−a) (−1)k d̃0...d̃k−1

showing that αk is positive. Similarly, γk = (−1)k D0....Dk−1 where Dl is given by

(34) Dl = lim
x→b

d
dx

p(λ0,...,λn),l (x)

p(λ0,λ2,...,λn),l (x)
.
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Thus the points tk are defined by

(35) e(λ0−λ1)tk =
βk

γk

e(λ0−λ1)a =
d̃0...d̃k−1

D0....Dk−1

e(λ0−λ1)a.

Note that for k = 1, ..., n

(36) e(λ0−λ1)(tk−tk−1) =
e(λ0−λ1)tk

e(λ0−λ1)tk−1
=

d̃k−1

Dk−1

= lim
x→b

p(λ0,λ2,...,λn),k−1 (x)

p(λ1,...,λn),k−1 (x)
.

Next we show that tk is in the interval [a, b] . Since t0 = a and tn = b, it suffices to show
that tk−1 < tk. Since λ0 < λ1 the requirement tk−1 < tk is equivalent to the requirement
that

lim
x→b

p(λ0,λ2,...,λn),k−1 (x)

p(λ1,...,λn),k−1 (x)
< 1.

Theorem 17 tells us this is true under the assumption that |b− a| < π/Mn, thus finishing
the proof.

In Example 18 we have computed the fundamental function for (λ, i,−i) and it is easy
to see that the Bernstein basis function p(λ,i,−i),1 for {0, b} is given by
(37)

p(λ,i,−i),1 (x) =
λeλx + sin x− λ cos x

λ2 + 1
−

(
eλx − cos x− λ sin x

) (
λeλb + sin b− λ cos b

)
(eλb − cos b− λ sin b) (λ2 + 1)

.

Simple computations show that p′(λ,i,−i),1 (b) = eλb cos b−λeλb sin b−1
eλb−cos b−λ sin b

and

(38)
p′(−λ,i,−i),1 (b)

p′(λ,i,−i),1 (b)
=

(
eλb − cos b− λ sin b

1− eλb cos b + λeλb sin b

)2

.

Consider now the Bernstein operator for Λ3 = (−1, 1, i,−i) for the interval [0, 3.5] . Using
Theorem 2 it can be seen that E(1,i,−i) and E(−1,i,−i) are extended Chebyshev systems, at
least for the interval [0, 3.8] . By property 1) in the proof of Theorem 9, E(−1,1,i,−i) is an
extended Chebyshev system for [0, 3.8] . Hence by the proof of Theorem 13 it follows from
(36) that

e−2(t2−t1) =
p′(−1,i,−i),1 (3.5)

p′(1,i,−i),1 (3.5)
≈ 2. 8454 > 1,

so t2 − t1 must be negative, and thus the Bernstein operator for Λ3 = (−1, 1, i,−i) has
the property that t0 < t2 < t1 < t3.

If we take b = π then (37) shows that p(λ,i,−i),1 = sin x. Thus Theorem 14 is not valid if
we drop the assumption that E(λ2...,λn) is an extended Chebyshev system for a 6= b ∈ R.

By a limiting process one can handle the case that the eigenvalues λ0, λ1 are equal when
replacing eλ1x by xeλ0xin (28). However, we have not been able to show that in this case
the nodes a = t0 ≤ t1 ≤ .... ≤ tn = b are distinct.
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Theorem 20. Let λ0, ..., λn be complex numbers such that λ0 = λ1 is real. Suppose that
E(λ0,...,λn) is closed under complex conjugation and that 0 < b− a < π/Mn for

Mn := max {|Imλj| : j = 0, ..., n} .

Then there exist unique nodes a = t0 ≤ t1 ≤ .... ≤ tn = b and unique positive numbers
α0, ..., αn such that the operator defined for f ∈ C [a, b] by

(39) B(λ0,...,λn)f =
n∑

k=0

αkf (tk) p(λ0,...,λn),k

fixes the functions eλ0x and xeλ0x.

Proof. For ε ≥ 0 define Λε := (λ0, λ0 + ε, λ2, ..., λn) . By Theorem 19 there exist for each
ε > 0 points a = t0 (ε) < t1 (ε) < .... < tn (ε) = b and positive numbers α0 (ε) , ..., αn (ε)
such that the corresponding Bernstein operator BΛε satisfies

BΛε

(
eλ0x

)
= eλ0x and BΛε

(
e(λ0+ε)x

)
= e(λ0+ε)x.

By compactness of the interval [a, b] there exists a sequence of positive numbers εm → 0
such that tj (εm) converges to numbers tj for m → ∞ and for each j = 0, ..., n. Clearly
one has a = t0 ≤ t1 ≤ .... ≤ tn = b. Let us write eλ0(x−a) =

∑n
k=0 βk (ε) pΛε,k (x) for

ε ≥ 0. Clearly pΛεm ,k (x) converges to pΛ0,k (x) for m → ∞ and k = 0, ..., n, and βk (εm)
converges to βk (0) (cf. formula (13) and Theorem 13). By Theorem 13 βk (0) is positive
and the formula eλ0(tk(ε)−a)αk (ε) = βk (ε) now shows that αk (εm) converges to the positive
number αk (0) . We define now the Bernstein operator BΛ0f by (39) with αk := αk (0) for
k = 0, ..., n. It is easy to see that

BΛ0

(
eλ0x

)
= lim

ε→0
BΛε

(
eλ0x

)
= eλ0x.

Clearly

fm (x) :=
e(λ0+εm)x − eλ0x

εm

→ xeλ0x for m →∞

and since BΛεm
fm (x) = fm, a limit argument shows that BΛ0

(
xeλ0x

)
= xeλ0x. The

uniqueness is proven in a similar way as in the last proof.

5. Convergence of the Bernstein operator

Next we present a sufficient condition for the Bernstein operator B(λ0,...,λn) to converge
to the identity.

Definition 21. For each n ∈ N, let {a (n, k) : k = 0, ...., n} be a triangular array of
complex numbers. We say that a (n, k) converges uniformly to c if for each ε > 0 there
exists a natural number n0 such that |a (n, k)− c| < ε, for all n ≥ n0 and all k = 0, ..., n.

The following lemma is implicitly contained in [20, p. 47]. For completeness we include
the proof.
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Lemma 22. Let γ > 0. For each n ∈ N and each j = 0, ...., n, let a (n, j) ∈ (0, 1) and
b (n, j) ∈ R. Suppose that

(40) lim
n→∞

log b (n, j)

log a (n, j)
= γ > 0,

and assume that the convergence is uniform in j. Define Ak (n) =
∏n

j=k a (n, j) and

Bk (n) =
∏n

j=k b (n, j) . Then limn→∞ (Ak (n)γ −Bk (n)) = 0 uniformly in k.

Proof. We have to show that for each ε1 > 0 there exists an n0 such that for all n ≥ n0

and all k = 0..., n,

|Ak (n)γ −Bk (n)| < ε1.

Fix ε1 > 0, and select ε ∈ (0, 1) such that 1− εε < ε1, ε + εγ < ε1, ε < γ, and εγ−ε < ε1.
By (40), there exists an n0 such that if n ≥ n0 and j = 0, ..., n,∣∣∣∣ log b (n, j)

log a (n, j)
− γ

∣∣∣∣ < ε.

Then γ − ε < log b(n,j)
log a(n,j)

< γ + ε. Observe that log b (n, j) < 0 since log a (n, j) < 0. So

(γ − ε) log a (n, j) > log b (n, j) and (γ + ε) log a (n, j) < log b (n, j) . Hence a (n, j)γ+ε ≤
b (n, j) and b (n, j) ≤ a (n, j)γ−ε . Thus we have proven that

(41) Ak (n)γ+ε ≤ Bk (n) and Bk (n) ≤ Ak (n)γ−ε .

Next we consider two cases: First assume that Ak(n)γ ≥ Bk (n) . Then, using (41),

0 ≤ Ak (n)γ −Bk (n) ≤ Ak (n)γ − Ak (n)γ+ε = Ak(n)γ (1− Ak (n)ε) .

If Ak (n) ≥ ε, then for all n ≥ n0 and all k we have, using that Ak (n) < 1,

0 ≤ Ak (n)γ −Bk (n) ≤ 1− Ak (n)ε ≤ 1− εε < ε1.

If Ak (n) < ε for some k, n, then Bk (n) ≤ Ak (n)γ ≤ εγ and 0 ≤ Ak (n)γ − Bk (n) ≤
ε + εγ < ε1.In the second case we have Ak(n)γ ≤ Bk (n) . Then, from (41) we get

0 ≤ Bk (n)− Ak (n)γ ≤ Ak (n)γ−ε − Ak (n)γ = Ak(n)γ−ε (1− Ak (n)ε) .

If Ak (n) ≥ ε we obtain

0 ≤ Bk (n)− Ak (n)γ ≤ 1− Ak (n)ε ≤ 1− εε < ε1.

Finally, if Ak (n) < ε for some k, n, then 0 ≤ Bk (n) − Ak (n)γ ≤ Ak (n)γ−ε − Ak (n)γ ≤
εγ−ε < ε1.

Next we present our second main result:

Theorem 23. Let λ0, λ1, λ2 be distinct real numbers and let Λn = (λ0, λ1, ...., λn), where
for j = 3, ..., n the complex numbers λj are allowed to vary. Suppose each E(λ0,...,λn) is
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closed under complex conjugation, and furthermore there exists a positive number M such
that for every n ≥ 2 and every j = 0, ..., n, we have |Imλj| ≤ M . For each k ≤ n set

a (n, k) := lim
x→b

p(λ0,λ2,....,λn),k (x)

p(λ1,λ2,....,λn),k (x)
, and(42)

b (n, k) := lim
x→b

p(λ0,λ1,λ3,....,λn),k (x)

p(λ1,λ2,....,λn),k (x)
.(43)

Let tk, k = 0, . . . , n, be the uniquely determined points given by Theorem 19. Assume that

(44) lim
n→∞

tk − tk−1 = 0

uniformly in k, and likewise, that

(45) lim
n→∞

log b (n, k)

tk − tk+1

= λ2 − λ0

uniformly in k. Then the Bernstein operator B(λ0,...,λn) defined in Theorem 19, converges
to the identity operator on C([a, b], C) with the uniform norm.

Proof. 1. We remind the reader that d̃k is given by (32), and Dk by (34). Recall that

B(λ0,...,λn)f (x) =
∑n

k=0 f (tk) αkp(λ0,...,λn),k (x), where αk = e−λ0(tk−a) (−1)k d̃0 · · · d̃k−1. By

construction we have B(λ0,...,λn)e
λjx = eλjx for j = 0, 1. If we show that B(λ0,...,λn)e

λ2(x−a)

converges to eλ2(x−a), then it follows from the generalized Korovkin theorem for Chebyshev
systems that BΛn converges to the identity operator (cf. [14], Theorem 8).

2. We may assume that λ2 > 0. Indeed, we can always translate the vector Λn =
(λ0, ..., λn) by a positive constant c so that λ2 + c > 0. Then E(λ0+c,...,λn+c) is again closed
under complex conjugation; by Proposition 10, the corresponding numbers in (42) and
(43) are the same for the translated vector c + Λn. If the Bernstein operator converges
for c + Λn, then so does B(λ0,...,λn). Thus, we may assume that λ2 > 0 to begin with.

3. Write (by Theorem 13) e(x−a)λ2 =
∑n

k=0 qkp(λ0,...,λn),k (x), where qk = (−1)k ˜̃
d0 · · ·

˜̃
dk−1

and

(46)
˜̃
dn,k := lim

x→b

d
dx

p(λ0,...,λn),k (x)

p(λ0,λ1,λ3,....,λn),k (x)
.

Thus, for ϕ (x) := eλ2(x−b) = eλ2(x−a)eλ2(a−b), by (33) we have

(47) B(λ0,...,λn)ϕ(x)− ϕ(x) =
n∑

k=0

(
eλ2(tk−b) − qk

αk

eλ2(a−b)

)
αkp(λ0,...,λn),k (x) .

Also, eλ2(tk−b) =
∏n−1

j=k eλ2(tj−tj+1) for k ≤ n− 1. Define

(48) ã (n, j) := etj−tj+1 < 1.
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Since ϕ (x) = eλ2(x−a)eλ2(a−b), we have

(49)
qk

αk

eλ2(a−b) =
˜̃
d0....

˜̃
dk−1

d̃0....d̃k−1

eλ0(tk−a)eλ2(a−b).

By (17) (applied to λ0 instead of λn ) we obtain

(50)
qk

αk

eλ2(a−b) =
d̃k....d̃n−1˜̃
dk....

˜̃
dn−1

eλ0(tk−b) =
n−1∏
j=k

 d̃j˜̃
dj

eλ0(tj−tj+1)

 .

Since the left hand side of (50) is real for each k = 0, ..., n− 1, it is clear that

(51) b̃ (n, j) :=
d̃j˜̃
dj

eλ0(tj−tj+1) = b (n, j) eλ0(tj−tj+1)

is real for all j = 0, ..., n− 1 and all n. Suppose we know that

(52)
log b̃ (n, j)

log ã (n, j)
→ λ2.

Then we may use Lemma 22: Set Ãk (n) =
∏n−1

j=k ã (n, j) and B̃k (n) =
∏n−1

j=k b̃ (n, j) . By

uniform convergence, given ε > 0 there exists n0 such that
∣∣∣Ãk (n)λ2 − B̃k (n)

∣∣∣ < ε for all

n ≥ n0 and all k ≤ n. Note that by (51) and (50),

(53) B̃k (n) =
qk

αk

eλ2(a−b).

Since Ãk (n)λ2 = eλ2(tk−b) and 1 ≤ eλ2(tk−a), from (47) we get

(54)
∣∣B(λ0,...,λn)ϕ(x)− ϕ(x)

∣∣ ≤ ε
n∑

k=0

αkp(λ0,...,λn),k (x)

≤ ε
n∑

k=0

eλ2(tk−a)αkp(λ0,...,λn),k (x) = εeλ2(b−a)B(λ0,...,λn)ϕ(x)

for all n ≥ n0 and all k ≤ n. So for every x ∈ [a, b],

1

1 + εeλ2(b−a)
ϕ (x) ≤ B(λ0,...,λn)ϕ (x) ≤ 1

1− εeλ2(b−a)
ϕ (x) ,

proving uniform convergence of B(λ0,...,λn)ϕ to to ϕ on [a, b].
We show next that (52) holds. From formula (35) we obtain

(55) a (n, k) =
d̃k

Dk

= e(λ0−λ1)(tk+1−tk).
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By assumption (44), limn−→∞ a (n, k) = 1 uniformly in k. Since λ0 6= λ1, this implies
that

(56) lim
n→∞

1− b (n, k)

1− a (n, k)
=

λ2 − λ0

λ1 − λ0

uniformly in k. From (48) we have log ã (n, k) = tk − tk+1, so by (51),

log b̃ (n, k) = log
(
b (n, k) eλ0(tk−tk+1)

)
= log b (n, k) + λ0 (tk − tk+1) .

Now by assumption (45),

log b̃ (n, k)

log ã (n, k)
=

log b (n, k) + λ0 (tk − tk+1)

tk − tk+1

=
log b (n, k)

tk − tk+1

+ λ0 → λ2,

finishing the proof.

6. Equidistant eigenvalues

In this section we want to illustrate our results when the eigenvalues in (λ0, ...., λn) are
equidistant, i.e., when λj = λ0 + jω for j = 0, ..., n. In this case the elements of E(λ0,...,λn)

are also called D-polynomials, see [27] or [11, Remark 2.1]. An important particular
instance of D-polynomials is the class of scaled trigonometric polynomials, defined for
even n by

span {1, sin (2x/n) , cos (2x/n) , sin (4x/n) , cos (4x/n) ....., sin x, cos x}.

and for odd n by

span {sin (x/n) , cos (x/n) , sin (3x/n) , cos (3x/n) ....., sin x, cos x},

see [27].
We shall assume that ω 6= 0 since ω = 0 leads to the polynomial case, covered by the

classical Bernstein theorem. The following result was proved in [27]:

Proposition 24. Let λj = λ0+jω for j = 0, ..., n, where ω 6= 0. Define tk := a+ k
n

(b− a)
and p(λ0,...,λn),k as in (20). Then the operator defined for f ∈ C [a, b] by

B(λ0,...,λn)f (x) =
n∑

k=0

f (tk)
n!

(n− k)!

ωke−λ0( k
n

(b−a))

(eω(b−a) − 1)
k

p(λ0,...,λn),k (x) .

satisfies B(λ0,...,λn)

(
eλ0x

)
= eλ0x and B(λ0,...,λn)

(
eλnx

)
= eλnx.
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Proof. Straightforward calculations show that the constants dk and Dk in Theorem 19 are

dk := lim
x→b

d
dx

p(λ0,...,λn),k (x)

p(λ1,...,λn),k (x)
= − (n− k) ω

1− eω(a−b)
e(b−a)(λ0−λ1)

Dk := lim
x→b

d
dx

p(λ0,...λn),k (x)

p(λ0,....,λn−1),k (x)
= − (n− k) ω

1− eω(a−b)
.

By (35), tk − tk−1 is defined through

(57) e(λ0−λn)(tk−tk−1) =
dk−1

Dk−1

= e(b−a)(λ0−λ1),

so tk − tk−1 = λ0−λ1

λ0−λn
= 1

n
(b− a) . It follows that tk = a + k

n
(b− a) . According to (26) we

have

αk = e−λ0(tk−a) (−1)k d0....dk−1 = e−λ0( k
n

(b−a)) e(a−b)kωωk

(1− eω(a−b))
k

n!

(n− k)!
.

The following theorem was proved by S. Morigi and M. Neamtu in [27, p. 137].

Theorem 25. Let µ0 6= µ1 be either real numbers or complex conjugates, and in the latter
case assume that b − a < π/ |Imµ0| . Set ∆ := µ1 − µ0, and define λj = µ0 + j 1

2n
∆ for

j = 0, ..., 2n. Then B(λ0,...,λ2n)f (x) converges uniformly to f for all f ∈ C [a, b] .

It is possible to derive Theorem 25 from Theorem 23 (for vectors Λ2n with even index,
which guarantees that λn is a component of Λ2n for every n) applied to the triple λ0, λ2n

and λn (instead of λ0, λ1, λ2). Since the proof is rather technical it is omitted.

7. Final remarks

For λ0 = 0 < λ1 < λ2 < ... < λn, the Müntz polynomials are defined as elements in
the linear space Vn generated by 1, xλ1 , xλ2 , ..., xλn , considered as functions on the interval
[a, b], where a ≥ 0. Assume a > 0. Using the transformation x = et we see that Vn

is isomorphic to the linear space Un generated by 1, eλ1t, eλ2t, ....eλnt. Clearly f ∈ Un

is an exponential polynomial on the interval [ln a, ln b]. To each Λn := (λ0, ..., λn) we
can associate the Bernstein operator B(λ0,...,λn) for the interval [ln a, ln b]. Convergence of
Bn to the identity operator implies that the union of the spaces Un, n ∈ N, is dense in
C [ln a, ln b] . It is well known (see [2, p. 180]) that this entails

(58)
∞∑

n=1

1

λn

= ∞.

In particular, it follows that Theorem 23 does not extend to the case of arbitrary vectors
Λn = (λ0, ..., λn). It would be interesting to derive from Theorem 23 a Bernstein type
result for Müntz polynomials over [ln a, ln b], a > 0. Let us mention that the results in
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[12] for Müntz polynomials over [0, 1] are of a different type, since the basic functions used
there do not form a Bernstein basis in our sense.
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