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Abstract. In this paper we survey recent results about Fischer decomposi-
tions of polynomials or entire functions and their applications to holomorphic
partial differential equations. We discuss Cauchy and Goursat problems for the
polyharmonic operator. Special emphasis is given to the Khavinson-Shapiro
conjecture concerning polynomial solvability of the Dirichlet problem.
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1. Introduction

The theory of partial differential equations is a very active area of research with
a variety of methods and techniques. Classical methods such as the power series
method and the Fourier analysis method have as point of departure explicit
exact solutions. Some more recent developments, e.g. pseudo-differential and
Fourier integral operator methods, depend on explicit approximate solutions.
Other approaches in PDE’s, e.g. variational methods and distribution theory,
have lead to new branches in mathematics. Last but not least, methods of
complex analysis are considered as indispensable for a deeper understanding of
the subject, see e.g. [51] or [13].

In this survey paper we shall take a rather elementary approach to questions in
the theory of linear partial differential equations with analytic coefficients. Our
methods are based on so-called Fischer decompositions of polynomials or entire
functions in the spirit of the work of D.J. Newman and H. S. Shapiro, see [80],
[81] and [90]. Although this approach is elementary we shall derive various in-
teresting consequences concerning general Goursat problems and the polynomial
solvability of the Dirichlet problem. For another application, uniqueness of poly-
harmonic functions vanishing on prescribed hyper surfaces, we refer the reader
to [86] and [55].

.
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In order to give a first intuition for these methods let us consider the classical
Dirichlet problem for a domain Ω in Rd: given a real or complex valued continuous
function f defined on the boundary ∂Ω, a solution uf of the Dirichlet problem
is a function uf defined and continuous on the closure Ω of Ω which is harmonic
in Ω and satisfies the boundary value condition

uf (ξ) = f (ξ) for ξ ∈ ∂Ω.

The question of existence of solutions to the Dirichlet problem had an important
impact on the development of mathematics in the early 20th century and it is
connected with prominent names like H. Poincaré, C. Neumann, D. Hilbert, I.
Fredholm and O. Perron, see e.g the exposition [68]. Explicit solutions for the
Dirichlet problem can be constructed only for domains of special geometry. For a
ball the Poisson formula provides an explicit formula, see [8]. If Ω is an ellipsoid,
i.e. if Ω is, up to a rotation and a translation, given by

(1) Ωe = {x ∈ Rd :
d∑
j=1

ajx
2
j < 1} with a1, ..., ad > 0

it is already very cumbersome to provide an explicit formula, see e.g. [88]. On
the other hand it was already known in the 19th century that for a polynomial
data function f , restricted to the boundary ∂Ω of the ellipsoid Ω, the solution
uf of the Dirichlet problem is a harmonic polynomial. This result can be proved
by means of elliptical coordinates and separation of variables (see [98]) and is
associated with the names E. Heine, G. Lamé and M. Ferrers. A much simpler
proof based on techniques of Fischer operators was given in [70], see also [60]
and [10]. In the second Section of this paper we shall present this elementary
approach to the Dirichlet problem for an ellipsoid since it illustrates in a nice
way the basic ideas and the powerful tool of Fischer decompositions.

The aim of this survey is to show that Fischer decomposition techniques can be
extended to a much more general setting addressing as well problems for higher
order differential operators like the polyharmonic operator ∆k which is defined
iteratively by ∆k := ∆

(
∆k−1

)
where k is a natural number and

∆ =
∂2

∂x2
1

+ ...+
∂2

∂x2
d

is the Laplace operator. In particular we shall discuss later the Goursat problem
for perturbations of the polyharmonic operator ∆k.

In the third Section we shall discuss systematically the concept of a Fischer
operator: if Q (x) is a polynomial, Q (D) the associated differential operator and
P (x) a polynomial then we define the Fischer operator FQ,P acting on the space
of all polynomials by

FQ,P (q) := Q (D) (Pq) .
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If Q and P have the same degree k and Q is homogeneous then FQ,P maps the
space of all polynomials of degree ≤ m into itself. This important property has
the consequence that the linear operator FQ,P is bijective if and only if it is
injective. It is not very difficult to prove that the surjectivity of FQ,P implies the
following property: For each polynomial f of degree ≤ m there exist polynomials
q, r of degree ≤ m such that

(2) f = Pq + r and Q (D) r = 0.

The injectivity of FQ,P implies that the representation is unique. Equation (2) is
called the Fischer decomposition of the polynomial f with respect to the poly-
nomials P and Q (provided that the Fischer operator is bijective). Equation
(2) provides a solution for the following generalized Dirichlet problem: for any
polynomial data function f of degree m there exists a polynomial r of degree
≤ m such that

f (ξ) = r (ξ) for all ξ ∈ P−1 (0) :=
{
x ∈ Rd : P (x) = 0

}
and r is a solution of the partial differential equation Q (D) r = 0. For example,

if we take P (x) =
∑d

j=1 ajx
2
j − 1 and Q (x) = |x|2 := x2

1 + ...+ x2
d, then Q (D) is

the Laplace operator ∆ and we rediscover the Dirichlet problem for the ellipsoid.

An old theorem due to E. Fischer [45] in 1917 says that for any homogeneous
polynomial P the operator

(3) FP (q) := P ∗ (D) (Pq)

is bijective where P ∗ is the polynomial arising from P by conjugating the coeffi-
cients of P. In [86] we have been able to identify a new class of bijective Fischer
operators: if P is a polynomial of degree 2k whose leading part is non-negative
on Rd then the operator

(4) F∆k,P (q) := ∆k (Pq)

is bijective. Even for k = 1 this was proved only recently in [9].

In complex analysis we are dealing with power series or limits of polynomials.
For this reason it is desirable to extend the Fischer decomposition to a larger
class of functions than polynomials. Let us denote the ball with center 0 and
radius R > 0 by

BR :=
{
x ∈ Rd : |x| < R

}
where it is allowed that R takes the value ∞. Assume that f is infinitely differ-
entiable in a neighborhood of 0 and consider the Taylor polynomial of f of order
m, defined as f0 + ...+ fm , where the homogeneous polynomials fm are given by

fm =
∑
|α|=m

1

α!

∂αf

∂xα
(0) xα.

We define A (BR) as the space of all infinitely differentiable complex-valued func-
tions f on BR such that for any compact set K ⊂ BR the series

∑∞
m=0 fm (x)
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converges absolutely and uniformly to f on K. The second main result in Section
3 generalizes the existence of Fischer decompositions of polynomials to the class
A (BR): for an elliptic polynomial P (x) of degree 2k there exists R > 0 such
that for each f ∈ A (BR) there exist unique functions q, r ∈ A (BR) with

f = Pq + r and ∆kr = 0.

In the fourth section we shall discuss Cauchy and Goursat problems. Our ap-
proach is motivated by the work of P. Ebenfelt and H.S. Shapiro in [39] and [40]
who used Fischer operators of the type (3). Using the new type of Fischer de-
compositions, P. Ebenfelt and the present author established in [37] the following
result: Let R > 0 and consider the differential operator

L = ∆k +
∑
|α|≤k0

aα(x)
∂α

∂xα
, where aα ∈ A(BR).

Let P (x) be an elliptic, homogeneous polynomial of degree 2k. If k0 < k then
for any f ∈ A (BR) there exists v ∈ A (BR) such that

L (P · v) = f.

If k0 = k then there exists r > 0 such for any f ∈ A (BR) there exists v ∈ A (Br)
such that L (P · v) = f.

We illustrate the power of the Fischer decomposition method for a Goursat prob-
lem with respect to the Helmholtz operator ∆ + c (see [38] where also the poly-
harmonic operator is discussed): Let Γ1, Γ2 be two distinct lines through the
origin in R2, and denote by θ = 2πα the acute angle between them. Suppose
that α satisfies the Diophantine condition∣∣∣α− n

m

∣∣∣ ≥ C

m2
, for all n,m ∈ N0,m 6= 0

for some constant C > 0. Let c ∈ A(BR). Then there exists 0 < r ≤ R such that
the Goursat problem

(∆ + c)u = f and u = g on Γ1 ∪ Γ2

has a unique solution u ∈ A(Br) for every f, g ∈ A(BR). In the last subsection
of Section 4 we discuss some old and new results about the Dirichlet problem for
general differential operators and connections to dynamical systems.

In the fifth Section we shall return to the classical Dirichlet problem. We discuss
the following property introduced by D. Khavinson and H.S. Shapiro for a domain
Ω in Rd for which the Dirichlet problem is solvable:

(KS) For any polynomial f the solution uf of the Dirichlet problem for f | ∂Ω
is a polynomial.

The conjecture of D. Khavinson and H.S. Shapiro [70] says that property (KS)
for a bounded domain Ω implies that Ω is an ellipsoid. In other words: if Ω
is bounded but not an ellipsoid then there must exist a polynomial such that
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the solution uf of the Dirichlet problem is not a polynomial. Using our results
about Fischer decompositions for polynomials we shall establish a large class of
domains such that the polynomial

|x|2 = x2
1 + ...+ x2

d

does not have a polynomial solution. Unfortunately there are examples of do-
mains for which the test function |x|2 has a polynomial solution to the Dirichlet
problem but nonetheless (KS) does not hold.

The central motivation behind the Khavinson-Shapiro conjecture is the following
question: is it possible to describe the singularities of the solution uf of the
Dirichlet problem for a given data function f in terms of the singularities of f
and characteristics of the domain Ω? If we assume that f is a polynomial (so f
does not have singularities) and Ω is not an ellipsoid, is it true that uf develops
somewhere a singularity, say in Rd or in Cd? This question leads to the following
condition:

(KSe) For any polynomial f the solution uf of the Dirichlet problem for f | ∂Ω
has an extension to a holomorphic function on Cd.

The second conjecture of Khavinson and Shapiro states that for a bounded do-
main Ω condition (KSe) implies that Ω is an ellipsoid. Using our results about
Fischer decompositions for the algebra A (BR) we can establish this conjecture for
a large class of domains. Roughly speaking, we shall assume that the boundary
of the domain Ω is given by the zero set of an elliptic polynomial. On the other
hand, it should be emphasized that the conjecture of Khavinson and Shapiro is
still open in its full generality, and we shall address recent developments in this
area at the end of Section 5.

Section 6 is devoted to a short introduction to the Schwarz potential in Rd which
generalizes the Schwarz function known from the two-dimensional case, see [29].
The interested reader is referred to the excellent expositions [64], [65], [69] and
[91] for a deeper analysis.

Finally let us fix some notations and definitions. Throughout the paper we shall
use multi-index notation: for α = (α1, ..., αd) ∈ Nd

0 we define |α| = α1 + ...+ αd.
The monomial xα is defined by xα1

1 ...x
αd
d for x = (x1, ..., xd) . A polynomial P (x)

of degree ≤ k is an expression of the the form

P (x) =
∑
|α|≤k

cαx
α

where cα are complex numbers. By C[x] we denote the set of all polynomials
with complex coefficients, and by R[x] those with real coefficients. For P (x) =∑
|α|≤k cαx

α we define P ∗ (x) =
∑
|α|≤k cαx

α where ca is the complex conjugate of

cα. The differential operator P (D) associated to a polynomial P (x) is defined
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by

P (D) =
∑
|α|≤k

cα
∂α

∂xα
.

For an open set Ω ⊂ Rd we denote by Ck (Ω) the set of all functions f : Ω→ C
which are differentiable up to order k. A function f ∈ C2k (Ω) is called poly-
harmonic of order k if ∆kf (x) = 0 for all x ∈ Ω. For k = 1 one obtains the
definition of a harmonic function. For a treatise about polyharmonic functions
we refer the reader to [7] and for applications see e.g. [72].

A function f : Ω → C is real-analytic at x0 ∈ Ω if there exists cα ∈ C and
a neighborhood U of x0 such that f (x) =

∑
α∈Nd0

cα (x− x0)α where the sum

converges locally uniformly in U.

2. An elementary approach to the Dirichlet problem for
the ellipsoid and quadratic surfaces

In the first part of this Section the main ideas are taken from [70], see also [11].

Theorem 1. Let P be a polynomial of degree ≤ 2. If the Fischer operator F∆,P :
C[x]→ C[x] defined by

F∆,P (q) := ∆ (Pq) for all q ∈ C[x]

is injective then for each polynomial f (x) of degree ≤ m there exists a harmonic
polynomial u of degree ≤ m such that

(5) u (ξ) = f (ξ) for all ξ ∈ P−1 (0) =
{
x ∈ Rd : P (x) = 0

}
.

Proof. Let Pm
(
Rd
)

be the space of all polynomials of degree ≤ m. Since P has

degree ≤ 2 the operator F∆,P maps Pm
(
Rd
)

into itself. Thus injectivity implies
bijectivity of F∆,P . The solution u in (5) is then defined by

u = f − P · F−1
∆,P (∆f) ,

where F−1
∆,P is the inverse of the bijective operator F∆,P defined on Pm

(
Rd
)
.

Then u obviously satisfies (5) and u is harmonic since

∆u = ∆f − F∆,P ◦ F−1
∆,P (∆f) = 0.

Hence the polynomial u is a solution to the generalized Dirichlet problem stated
in the theorem.

Theorem 2. Let E be an ellipsoid. Then for any polynomial f of degree ≤ m
the solution u of the Dirichlet problem for f | ∂E is a polynomial of degree ≤ m.

Proof. By Theorem 1 it suffices to prove the injectivity of F∆,P : if ∆ (Pq) = 0
then u := Pq is a harmonic function vanishing on the boundary ∂E = P−1 (0) ,
hence it is zero by the maximum principle for harmonic functions.
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Theorem 3. The Dirichlet problem is solvable for the ellipsoid E.

Proof. Let f be a continuous function on the boundary ∂E. By the Stone-
Weierstraß theorem we can approximate f by a sequence of polynomials pn, n ∈
N. For each pn there exists a harmonic polynomial un with pn (ξ) = un (ξ) for
ξ ∈ ∂E. Using the maximum principle we infer that

max
x∈E
|un (x)| = max

ξ∈∂E
|un (ξ)| = max

ξ∈∂E
|pn (ξ)| .

Thus un is a Cauchy sequence in the space C
(
E
)
. By completeness of C

(
E
)

there exists a continuous function u on E such that un converges uniformly to
u. Then the function u is harmonic in E and it is easy to see that u (ξ) = f (ξ)
for ξ ∈ ∂E.

An elementary treatment of the Dirichlet problem for the ellipse can also be
found in [60]. For a nice account about the potential theory on ellipsoids we
refer the reader to [65]. Interesting remarks about the history of the Dirichlet
problem are contained in [30, pp. 568–573], for a survey of potential methods in
classical mechanics we refer to [52]. Finally we mention that S.M. Nikol’skĭı has
generalized Theorem 2 to the case of elliptic self adjoint operators of degree 2l
and the ellipsoid with appropriate boundary conditions, see [82].

The reader who is interested in further algebraic aspects of solutions to the
Dirichlet problem is referred to the work [14], [15], [36] and [42].

Finally we mention that Theorem 2 has been generalized in the following way
by D. Khavinson and H.S. Shapiro in [70], see also [6] where growth conditions
of entire functions are considered:

Theorem 4. Let Ω be an ellipsoid. If f : Rd → C has an holomorphic extension
to Cd then the solution u of the Dirichlet problem for f | ∂Ω extends to an
holomorphic harmonic function on Cd.

We want to illustrate the usefulness of Fischer decompositions by another exam-
ple: Consider for γ ∈ (0, 1) the quadratic homogeneous polynomial

Pγ (x1, ..., xd) = γ2
(
x2

1 + ...+ x2
d−1

)
+
(
γ2 − 1

)
x2
d.

Then for γ ∈ (0, 1) the zero set of Pγ is a cone passing through 0 containing all
(x1, ..., xd−1, xd) such that

x2
1 + ...+ x2

d−1 =
1− γ2

γ2
x2
d.

We shall consider the Dirichlet problem for the cone

Ω :=
{
x ∈ Rd : xd > 0 and Pγ (x) < 0

}
for γ ∈ (0, 1) .

Note that the boundary ∂Ω is contained properly in the algebraic set P−1
γ (0).
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Let us recall that the Pochhammer symbol (α)k for a complex number α and a
natural number k ≥ 0 is defined by

(α)k = α (α + 1) ... (α + k − 1)

with the convention that (α)0 = 1. The Jacobi polynomial P
(α,β)
n (x) of degree n

for complex parameters α and β is defined by

P (α,β)
n (x) = (−1)n

(α + 1)n
n!

n∑
k=0

(−n)k
k!

(n+ α + β + 1)k
(α + 1)k

(
1− x

2

)k
,

see [4, p. 99]. The following result was proved by D. Armitage [5].

Theorem 5. Let γ ∈ (0, 1) and d ≥ 3. Then the Fischer operator F∆,Pγ for the
polynomial Pγ (x) is injective if and only if

(6) P (k+(d−3)/2,k+(d−3)/2)
n (γ) 6= 0 for all k, n ∈ N0,

where P
(α,β)
n (x) are the Jacobi polynomials of degree n.

It is well known that the Jacobi polynomials P
(α,β)
n (x) have their zeros in the

interval (−1, 1) , and they are clearly algebraic numbers. Thus for given rational
number γ ∈ (0, 1) it is not obvious whether condition (6) is satisfied. In [87] we
proved the following:

Theorem 6. Let b and c be relatively prime natural numbers and d ≥ 3. If n is
even and b 6= 1, or if n is odd and b 6= 1, 3, then

P (k+(d−3)/2,k+(d−3)/2)
n

(√
b

c

)
6= 0 for all k ∈ N0.

Combining Theorem 1 and 5 one obtains:

Theorem 7. Let d ≥ 3 and γ =
√
b/c with relatively prime natural numbers

b, c 6= 0 with b 6= 1, 3. Then for each polynomial f of degree ≤ m there exists
a harmonic polynomial u of degree ≤ m such that f (ξ) = u (ξ) for all ξ ∈
P−1
γ (0) =

{
x ∈ Rd : Pγ (x) = 0

}
.

For a different approach to the Dirichlet problem for a cone we refer the reader
to [73, p. 210].

Legendre polynomials are by definition the Jacobi polynomials P
(0,0)
n (x). It is

still an unsolved question whether the Legendre polynomials are irreducible over

the rationals, see [57], [77], [96] and [97]. H. Ille has shown in [58] that P
(0,0)
n (x)

has no quadratic factor which implies that P
(0,0)
n

(√
b/c
)
6= 0 for all n, b, c ∈ N

(even for the case b = 1, 3).
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A result related to Theorem 5 was proved in 1988 by V.P. Burskĭı for the Dirichlet
problem for the unit ball and the wave equation

(7) ux1x1 + ux2x2 − a2ux3x3 = 0.

It is shown in [21] that the set of all solutions of (7) satisfying u (ξ) = 0 for

all |ξ| = 1 is trivial if and only if P
(k,k)
n

(
1/
√

1 + a2
)
6= 0 for all k, n ∈ N0. A

generalization to n variables can be found in [25].

3. Fischer decompositions

A polynomial P (x) is called homogeneous of degree k if P (rx) = rkP (x) for all
x ∈ Rd and r > 0. Let P (x) =

∑
|α|≤k cαx

α be a polynomial. By defining

Pm (x) :=
∑
|α|=m

cαx
α

we see that each polynomial can be written as a sum of homogeneous polynomials
Pm for m = 0, ..., k, i.e. that

P = P0 + ...+ Pk.

The polynomial Pk 6= 0 is called the leading part or principal part of P (x) . A
polynomial P (x) of degree 2k is called elliptic if there there exists C > 0 such
that the leading part P2k satisfies

P2k (x) ≥ C · |x|2k = C ·
(
x2

1 + ...+ x2
d

)k
for all x ∈ Rd.

As before, the Fischer operator for polynomials P and Q is defined by

FQ,P (q) := Q (D) (Pq) .

At first we recall the well known fact that surjectivity of the Fischer operator
corresponds to a polynomial decomposition property (see e.g. [90], [78]):

Theorem 8. Let Q be a homogeneous polynomial. Then the Fischer operator
FQ,P is surjective if and only if for each polynomial f there exist polynomial q
and r such that

(8) f = Pq + r and Q (D) r = 0.

Proof. Assume that FQ,P is surjective and let f be a polynomial. By surjectivity,
we can find a polynomial q with FQ,P (q) = Q (D) f. We define r := f−Pq. Then

Q (D) r = Q (D) f −Q (D) (Pq) = Q (D) f − FQ,P (q) = 0.

For the converse we shall use without proof the well known fact that for every
polynomial f there exists a polynomial g withQ (D) g = f. By assumption we can
write g = Pq + r with Q (D) r = 0. Then f = Q (D) g = Q (D) (Pq) = FQ,P (q) ,
so FQ,P is surjective.

Similarly it is easy to see that injectivity of the Fischer operator corresponds to
the uniqueness of the decomposition (8).
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3.1. Fischer decompositions for polynomials. The following result is proved
in the same manner as Theorem 1, see also Theorem 8.

Theorem 9. Let P be polynomial of degree ≤ k and Q be a homogeneous poly-
nomial of degree ≤ k. If the Fischer operator FQ,P : C[x]→ C[x] defined by

FQ,P (q) = Q (D) (Pq) for all q ∈ C[x],

is injective then for each polynomial f (x) of degree ≤ m there exist unique poly-
nomials q and u of degree ≤ m such that

(9) f = Pq + r and Q (D) r = 0.

In general, it is very difficult to decide whether a given Fischer operator is injec-
tive. A simple example of a non-injective Fischer operator is the following: take
a harmonic polynomial P (x) of exact degree 2 and define

F∆,P (q) = ∆ (Pq) .

If q is the constant function 1 then F∆,P (1) = 0 and the Fischer operator is not
injective.

In the following we want to develop criteria which ensure the injectivity of the
Fischer operator. It is amazing that elementary Hilbert space techniques are
very useful in this context. One key tool is the following scalar product defined
for polynomials f =

∑
|α|≤N cαx

α and g =
∑
|α|≤N dαx

α by the simple formula

(10) 〈f, g〉F =
∑
|α|≤N

α!cαdα.

This scalar product is often called the Fischer inner product or the apolar inner
product and its origin goes back to classical invariant theory. We note that it
is often used in the treatment of spherical harmonics, see e.g. [31]. The apolar
inner product has the following basic property:

(11) 〈f,Q · g〉F = 〈Q∗ (D) f, g〉F
for all f, g ∈ C[x]. Thus the adjoint of the multiplication operator g 7−→ Q · g is
the differential operatorQ∗ (D) . The identity (11) is easily checked for monomials
f (x) = xα and g (x) = xβ, and by bilinearity the result follows.

Theorem 10. (Fischer 1917) Let P (x) be a homogeneous polynomial. Then
the Fischer operator FP : C [x] → C [x] defined by FP (q) = P ∗ (D) (Pq) is a
bijection.

Proof. It suffices to show that FP is injective. Suppose that FP (q) = 0. Then

0 =< q, FP (q) >F=< q, P ∗ (D) (Pq) >F=< Pq, Pq) >F= ‖Pq‖2
F .

This implies Pq = 0 and q = 0.
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The apolar inner product possesses an integral representation. Indeed, let us
define the Bargmann space Fd (or Fock space or Fischer space, see [12] and [90])
as the space of all entire functions f : Cd → C satisfying

(12) ‖f‖2
F :=

1

πd

∫
Cd
|f (z)|2 e−|z|

2

dz <∞.

Clearly the norm ‖f‖F is induced by the scalar product

(13)
1

πd

∫
Rd

∫
Rd
f (x+ iy) g (x+ iy)e−|x|

2−|y|2dxdy <∞

where dxdy is the Lebesgue measure over R2d. By a direct computation one may
prove that for polynomials f, g the apolar inner product 〈f, g〉F defined in (10)
is identical to the expression (13); moreover,

xα/
√
α!, α ∈ Nd

0,

are orthonormal polynomials.

One disadvantage of the apolar inner product is the fact the integration in (13)
has to be taken over all complex arguments. Thus an assumption like ellipticity
of a polynomial P (x) can not easily be used. In analogy to (12) we have defined
in [86] the real Bargmann space RFn as the space of all measurable functions
f : Rn → C such that

(14) ‖f‖2 :=

∫
Rn
|f (x)|2 e−|x|

2

dx <∞,

endowed with the scalar product

〈f, g〉rF :=

∫
Rd
f (x) g (x)e−|x|

2

dx.

The following result is crucial and for a proof we refer to [86].

Theorem 11. Let f be a homogeneous polynomial of degree m, and k ∈ N with
2 (k − 1) ≤ m. Then ∆kf = 0 if and only if

〈f, g〉rF = 0 for all polynomials g with deg g + 2 (k − 1) < m.

As a consequence we obtain an important theorem due to Brelot-Choquet [20]:

Corollary 12. (Brelot-Choquet) Let f be a homogeneous harmonic polynomial
of degree m. Then f does not have a non-negative non-constant factor.

Proof. Since f is harmonic and homogeneous we infer from Theorem 11 for
k = 1 that 〈f, g〉rF = 0 for all polynomials g of degree < m. Suppose that
f = f1f2 where f1 is non-negative and has degree ≥ 1. Then we conclude that

0 = 〈f, f2〉rF = 〈f1f2, f2〉rF =

∫
Rd
f1 (x) |f2 (x)|2 e−|x|

2

dx.

Since f1 is non-negative we infer that f1f
2
2 = 0, a contradiction.
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Theorem 13. Let P (x) be a polynomial of degree 2k whose leading part is non-
negative. Then the Fischer operator F∆k,P defined by

F∆k,P (q) := ∆k (Pq)

is a bijection on C[x] and for each polynomial f of degree ≤ m there exist poly-
nomials q and r of degree ≤ m such that

f = Pq + r and ∆kr = 0.

Proof. It suffices to prove the injectivity of F∆k,P . Suppose that F∆k,P (q) =
0 for a polynomial q 6= 0 of degree m. By expanding q and P into sums of
homogeneous polynomials with leading parts qm 6= 0 and P2k 6= 0 and comparing
the homogeneous summands one arrives at the equation ∆k (P2kqm) = 0. By
Theorem 11 applied to the polynomial f := P2kqm we see that 〈P2kqm, g〉rF = 0
for all polynomials g with deg g+ 2 (k − 1) < 2k+m. Thus we may take g = qm
and obtain that

0 = 〈P2kqm, qm〉rF =

∫
Rd
P2k (x) |qm (x)|2 e−|x|

2

dx.

Since P2k is non-negative we infer that qm = 0. This contradiction finishes the
proof.

Let us illustrate Theorem 13 by two examples:

(i) At first consider the one-dimensional case d = 1: then ∆k = d2k

dx2k and the

condition ∆kr = 0 means that deg r < 2k. Thus the decomposition f = Pq + r
just leads to the Euclidean algorithm.

(ii) Consider the domain

Ω :=
{
x ∈ Rd : x2k

1 + ...+ x2k
d < 1

}
,

sometimes called the TV-screen. Theorem 13 shows that for any polynomial f
there exists a unique polynomial u such that ∆ku = 0 and u (x) = f (x) for all
x ∈ ∂Ω.

3.2. Fischer decompositions for analytic functions. In the last Section
we investigated the Fischer decomposition for a polynomial f . Now we want to
extend this result to a special class of analytic functions. Let us recall from the
introduction that BR :=

{
x ∈ Rd : |x| < R

}
is the ball with center 0 and radius

0 < R ≤ ∞, and A (BR) is the space of all f ∈ C∞ (BR) such that for any
compact set K ⊂ BR the series

∑∞
m=0 fm (x) converges absolutely and uniformly

to f on K where fm

(15) fm =
∑
|α|=m

1

α!

∂αf

∂xα
(0) xα.

It is easy to see that f ∈ A (BR) is real-analytic in BR. The converse is not true
as the simple example f (x) = 1

1+x2 for x ∈ R shows. A characterization of the
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class A (BR) in terms of holomorphy is given in the next theorem. Since we shall
not use this result we omit the details, see [86].

Theorem 14. Each f ∈ A (BR) has an holomorphic extension to the Lie ball,
also called the classical domain RIV of E. Cartan, defined by

B̂R :=

{
z ∈ Cd : |z|2 +

√
|z|4 − |q (z)|2 < R2

}
where q (z) = z2

1 + ... + z2
d and |z|2 = |z1|2 + ... + |zd|2 . In particular, each

f ∈ A (BR) for R =∞ has an holomorphic extension to Cd.

The next theorem says that for functions f ∈ A (BR) there exists a Fischer
decomposition provided that the polynomial P (x) is homogeneous and elliptic:

Theorem 15. Let P (x) be a homogeneous elliptic polynomial of degree 2k. Then
for each f ∈ A (BR) there exist unique functions q, r ∈ A (BR) such that

f = Pq + r and ∆kr = 0.

For applications it is important to consider non-homogeneous elliptic polynomials
P (x) . However, in order that Theorem 15 holds for non-homogeneous polyno-
mials one has to require that the radius R for defining the class A (BR) is large
enough (see [86]):

Theorem 16. Let P (x) a be polynomial of degree 2k and P = P2k + ...+ P0 be

its homogeneous decomposition, and assume that CP2k (x) ≥ |x|2k for all x ∈ Rd.
Let lP be the cardinality of EP := {s ∈ {0, ..., 2k − 1} : Ps 6= 0} and let α denote
the smallest and β the largest element in EP . Define

D := max
s=0,...,2k−1

max
θ∈Sn−1

|Ps (θ)| .

Assume that R is so large such that

(16) lPCD < Rγ for all γ with 2k − β ≤ γ ≤ 2k − α.
Then for each f ∈ A (BR) there exist unique functions q, r ∈ A (BR) such that

f = Pq + r and ∆kr = 0.

At a first glance one may be surprised that one needs the requirement of a large
radius. But consider the following example: define P := |x|2k − d with d > 0.

Suppose that the radius R is small, e.g. suppose that R2k < d. Then P := |x|2k−d
has no zeros in BR and it is invertible in A (BR) . Let u ∈ A (BR) be an arbitrary
harmonic function. Then we can write for any f ∈ A (BR) the following trivial
and useless decomposition

f = u+ Pq with q := (f − u)P−1 ∈ A (BR) .

Thus uniqueness of the representation fails.
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A proof of Theorem 16 runs as follows. Since f ∈ A (BR) we can write f =∑∞
m=0 fm with homogeneous polynomials fm. For each fm there exists a Fischer

decomposition

(17) fm = Pqm + rm

with polynomials qm and rm of degree ≤ m and Q (D) rm = 0. Then we define q =∑∞
m=0 qm and r =

∑∞
m=0 rm. The only difficulty is to establish the convergence

of the last two sums, and this is the place where one needs the assumption that
the radius R is large enough. Basic ingredients of the proof are estimates of the
norms of qm and rm in the decomposition (17) in dependence of the norm of fm.
For details we refer the interested reader to [86].

4. Cauchy and Goursat problems

The original proof of the Cauchy-Kovalevski theorem goes back to 1874 but it was
precedented by the work of A. Cauchy in 1842 who proved an existence theorem
for analytic differential equations of second order. For a general introduction to
the subject we refer the reader to the excellent books of J. Rauch [85], or F. John
[62], or D. Khavinson [65].

As explained in the introduction we want to generalize results from [39] and [40]
to the framework of the new classes of Fischer operators presented in Section 3.
The first central result is Theorem 21 below, due to P. Ebenfelt and the author.
Since the reader might be not very familiar with some extensions of the Cauchy-
Kovalevski theorem, like the Goursat theorem, we shall use the opportunity to
provide background material in order to facilitate the comparison of Theorem 21
with related theorems in the literature.

4.1. The Cauchy-Kovalevski theorem for hyperplanes. Let us recall the
Cauchy-Kovalevski theorem in a form which is surely known to every mathe-
matician:

Theorem 17. Let x0 = (t0, y0) ∈ R×Rd−1, and V and U open sets with t0 ∈ V
and y0 ∈ U . Assume that a(j,β) : V × U → C are real-analytic functions and
consider the partial differential operator

L =
∂m

∂tm
+

m−1∑
j=0

∑
|β|≤m−j

a(j,β) (t, y)
∂j

∂tj
∂β

∂yβ
.

If f (t, y) and w0 (y) , ...., wm−1 (y) are real-analytic on V × U and U resp., then
there exists a unique real-analytic function u defined on a neighborhood V0 × U0

of (t0, y0) such that

Lu (t, y) = f (t, y) for all (t, y) ∈ V0 × U0

∂ju

∂tj
(t0, y) = wj (y) for all y ∈ U0 and for all j = 0, ...,m− 1.
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In many applications the function f (t, y) will be the zero function while the real-
analytic functions w0 (y) , ...., wm−1 (y) express the initial conditions. However,
from a proof-theoretic point of view the following well known observation is very
useful:

Remark 1. It is sufficient to prove the theorem for arbitrary real-analytic func-
tions f (t, y) and initial condition w0 = .... = wm−1 = 0.

Proof. Let f (t, y) and w1 (y) , ..., wm−1 (y) be real-analytic functions. Define

w (t, y) =
∑m−1

j=0
1
j!

(t− t0)j wj (y) and g = f−L (w) . Then g is real-analytic. By

assumption there exists a solution u0 of the equation L(u0) = f −L(w) and zero

boundary conditions ∂ju0

∂tj
(t0, y) = 0 for j = 0, ...,m. Then u := u0+w is a solution

of L(u) = f with boundary conditions ∂ju
∂tj

(t0, y) = wj (y) for j = 0, ...,m− 1.

The Cauchy-Kovalevski theorem is a local result : the solution u is defined only
on a neighborhood of the point x0 and it does not give the maximal domain
of regularity of the solution of the partial differential equation in terms of the
regularity of the data. This is a severe limitation for applications, and for this
reason the Cauchy-Kovalevski theorem is usually considered as a theoretical re-
sult. However, under certain additional assumptions it is possible to derive a
global result and we cite from [83].

Theorem 18. (Persson) Assume that a(j,β) and f and w0, ...., wm−1 are entire
functions. Then the solution of the Cauchy-Kovalevski problem has an entire
solution u provided that for those indexes (j, β) with j + |β| = m the coefficients
a(j,β) are polynomials in y of degree ≤ |β| = m− j, i.e. of the form

aj,β (t, y) =
∑
|γ|≤|β|

aj,β,γ (t) · yγ.

S. Kovalevski proved her result for systems of non-linear partial differential equa-
tions with analytic coefficients. In case of one equation this is usually expressed
in the form

(18)
∂m

∂tm
u (t, y) = F

(
t, y,Dr

tD
α
y

)
where F (t, y, z) is an analytic function and the number r ∈ N0 of derivatives
Dt := ∂

∂t
in (18) is smaller thanm, and α ∈ Nd−1

0 is a multi-index with r+|α| ≤ m,
so the expression on the right hand side only contains derivatives Dr

tD
α
y u of order

at most m.

The Cauchy-Kovalevski theorem has been generalized in many respects. For ex-
ample, A. Friedman [48] allows infinitely differentiable functions F (t, y, z) which
are real-analytic in t and z, while for the variable y weaker estimates for the
derivatives are required, and the solution u (t, y) is of the same type. There are
many contributions to the Cauchy-Kovalevski problem (non-linear case, char-
acteristic case, uniqueness questions beyond analytic functions, Gevrey classes)
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which can be connected to the following incomplete list of names given in al-
phabetical order: M.S. Baouendi, A. Bergamasco, P. Ebenfelt, A. Friedman, L.
G̊arding, C. Goulaouic, T. Gramchev, Y. Hamada, L. Hörmander, K. Igari, F.
John, T. Kotake, J. Leray, M. Miyake, J. Persson, H.S. Shapiro, F. Treves.

Note that an equation of the type

(19) a (t, y)
∂m

∂tm
u (t, y) = F

(
t, y,Dr

tD
α
y

)
can be reduced to the equation (18) if we assume that a (t0, y0) 6= 0, simply
by dividing (19) by a (t, y) and restricting the values (t, y) to a suitable small
neighborhood of (t0, y0). The case a (t0, y0) = 0 leads to many difficulties and new
phenomena and it is called the characteristic Cauchy problem for the differential
operator L and the hyperplane.

4.2. The Cauchy-Kovalevski theorem for hyper surfaces. It is straight-
forward to generalize the result to the important case that data are given on a
hyper surface: assume that ϕ is a real-analytic function defined on an open set
Ω and define

Σ = {x ∈ Ω : ϕ (x) = 0} .
If Σ is non-empty and ∇ϕ (x) 6= 0 for all x ∈ Σ then Σ is a hyper surface.
Consider a linear differential operator of the form

Lu =
∑
|α|≤m

aα (x)
∂α

∂xα
u.

where aα are real-analytic functions on Ω ⊂ Rd. Assume that x0 ∈ Σ is a given
point. By a suitable change of coordinates the differential operator can be trans-
formed to an equation of type (19), transforming the point x0 to (t0, y0) . In order
to apply the Cauchy-Kovalevski theorem one has to ensure that a (t0, y0) is not
equal to zero. This condition can be formulated for the original equation and x0

in the following form:

(20) Lm (x0,∇ϕ (x0)) 6= 0 for Lm (x, ξ) :=
∑
|α|=m

aα (x) · ξα.

Here Lm is called the principal symbol of L and we say that x0 is non-characteristic
for (L,Σ) if (20) holds.

Theorem 19. Let x0 ∈ Σ and L as above. Assume that f and w are real-analytic
data on Ω and that x0 is non-characteristic for (L,Σ) . Then there exists a unique
real-analytic function u defined on a neighborhood U of x0 such that

Lu (x) = f (x) for all x ∈ U,(21)

∂αLu

∂xα
(ξ) =

∂α

∂xα
w (ξ) for all ξ ∈ Σ ∩ U and |α| ≤ m− 1.(22)
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4.3. Goursat problems. Goursat considered an initial boundary problem for
the operator

∂

∂x

∂

∂y
u

where the initial data set Σ is defined in accordance to the differential operator:

Σ :=
{

(x, y) ∈ R2 : xy = 0
}

= R× {0} ∪ {0} × R.
Clearly Σ is not a hyper surface since it has a singularity at (0, 0) , so the Cauchy-
Kovalevski theorem can not be used for solving this problem. However, Goursat
proved that for a given real-analytic function f : R2 → R one can find a real-
analytic solution u of the problem

∂

∂x

∂

∂y
u (x, y) = f (x, y) and u (x, 0) = 0 and u (0, y) = 0 for all x, y ∈ R.

This type of problem is called the Goursat problem. L. Hörmander has general-
ized this result in his classical treatment [56]:

Theorem 20. Let γ ∈ Nd
0 be a fixed multi-index and aα be real-analytic in a

neighborhood of x0. Then the equation

L(u) :=
∂γ

∂xγ
u+

∑
|α|≤|γ|,α 6=γ

aα (x)
∂α

∂xα
u = f

has a unique real-analytic solution u defined in a neighborhood of x0 satisfying
for j = 1, ..., d :

(23)
∂mj

∂x
mj
j

u (x1, ..xj−1, 0, xj+1, ..., xd) = 0 for all ≤ mj < γj.

4.4. Mixed Cauchy problems with data on singular conics. The bound-
ary conditions (23) for the solution u can be expressed in the following way: the
solution u of the equation L (u) = f is of the form u (x) = xγv (x) for some
real-analytic function v. Hence Theorem 20 is equivalent to the statement that
there exists a real-analytic function v (x) with

L (xγv (x)) = f.

Now we replace the monomial xγ be a general homogeneous polynomial P (x) of
degree 2k. Instead of the partial differential operator ∂γ

∂xγ
we consider the poly-

harmonic operator ∆k. Using refined results about Fischer operators P. Ebenfelt
and the author have been able to provide a proof of the following result (see
[37]):

Theorem 21. Let P (x) be an elliptic, homogeneous polynomial of degree 2k.
Let R > 0 be a positive number and k0 ≤ k a natural number and define

L = ∆k +
∑
|α|≤k0

aα(x)
∂α

∂xα
, where aα ∈ A(BR).
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If k0 < k then for any f ∈ A (BR) there exists v ∈ A (BR) such that

L (P · v) = f.

If k0 = k then there exists r > 0 such for any f ∈ A (BR) there exists v ∈ A (Br)
such that L (P · v) = f.

4.5. Goursat problems for the Helmholtz operator. In this Section we
are dealing only with the two-dimensional case. In Theorem 21 we considered
perturbations of the polyharmonic operator ∆k and the data have been related
to an elliptic homogeneous polynomial P (x) of degree 2k. Now we are turning to
another extreme: the homogeneous polynomial P (x) of degree 2k is a product of
2k lines, so it is highly non-elliptic. For simplicity let us discuss in the following
only the case k = 1: then P (x) is a product of two lines Γ1, Γ2. In general, the
problem

(24) ∆u = f and u = g on Γ1 ∪ Γ2

does not allow unique solutions: Denote by θ = 2πα the acute angle between
Γ1 and Γ2. If α is rational then there exists infinitely many solutions to the
problem (24) for g = 0 (e.g. for the case Γ1 = R × {0} and Γ2 = {0} × R we
see that 0 and the function xy are solutions of the problem for f = g = 0). Thus
for rational α the Dirichlet-type problem in (24) does not have unique solutions.
However, for α irrational there exists for every polynomial data function f and
g a unique polynomial u solving (24) since one might prove that the Fischer
operator q 7→ ∆ (Pq) is injective, and therefore bijective. For data functions
f, g ∈ A (BR) the question of existence of solutions u ∈ A (BR) is much more
subtle. In recent joint work with P. Ebenfelt the following result below was
obtained; the interested reader may find in [38] as well a discussion of the more
difficult case of the polyharmonic operator ∆k.

Theorem 22. Let Γ1, Γ2 be two distinct lines through the origin in R2, and
denote by θ = 2πα the acute angle between them. Suppose that α is irrational
and satisfies the condition

(25) τ := lim inf
m→∞

(
inf
n∈Z

∣∣∣α− n

m

∣∣∣)1/m

> 0.

Then, the homogeneous Goursat problem

∆u = f and u = g on Γ1 ∪ Γ2

has a unique solution u ∈ A(BτR) for every f, g ∈ A(BR).

For the Helmholtz operator we have the following result:

Corollary 23. Let Γ1, Γ2 be two distinct lines through the origin in R2, and
denote by θ = 2πα the acute angle between them. Suppose that α satisfies the
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Diophantine condition

(26)
∣∣∣α− n

m

∣∣∣ ≥ C

m2
, for all n,m ∈ N0,m 6= 0

for some constant C > 0. Then, for any c ∈ A(BR), there exists 0 < r ≤ R such
that the Goursat problem

(∆ + c)u = f and u = g on Γ1 ∪ Γ2

has a unique solution u ∈ A(Br) for every f, g ∈ A(BR).

In the following we want to show that Theorem 22 is equivalent to a result of
Leray in [74] who considered the homogeneous Goursat problem

(27)

(
∆ + λ

∂2

∂x∂y

)
u = f and u = g on R× {0} ∪ {0} × R

where λ is a real constant. The general theory of Goursat (or mixed Cauchy)
problems shows that (27) has a unique real-analytic solution near 0, for all f and
g, if |λ| > 2 (see G̊arding [50]; see also Theorem 9.4.2 in Hörmander [56]). The
case where λ ∈ [−2, 2] is much more subtle, and was analyzed by Leray in [74]
(see also the work of Yoshino [99], [100] for extensions to complex parameters and
higher dimensions). For λ ∈ [−2, 2], let β ∈ [−1/4, 1/4] denote the angle such
that λ = 2 sin(2πβ). Leray showed that the unique solvability of (27) depends
on Diophantine properties of β. For instance, there is a unique formal power
series solution u for every f and g if and only if β is irrational. Leray also gave a
necessary and sufficient Diophantine condition on irrational β guaranteeing that
this formal solution u converges for all convergent f and g,

(28) lim inf
Z3m→∞

(
inf
n∈Z

∣∣∣β − n

m

∣∣∣1/m) > 0.

In order to show that the result for λ ∈ (−2, 2) is equivalent to Theorem 22 we
consider the linear change of variables

(29) x→ −
√

1− λ2

4
x+

λ

2
y.

This leads to the following transformation for the principal symbol of the operator

λ
∂2

∂x∂y
+ ∆→ ∆.

Hence, the Goursat problem (27) is transformed into the following problem:

(30) ∆u = f and u = g on the set x (x− ay) = 0

where

(31) a :=
λ/2√

1− (λ/2)2
.
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If we let θ = 2πα denote the acute angle between the two lines L1 := {y = 0}
and L2 := {x = by} and β the angle such that λ := 2 sin(2πβ), then we have

α =
1− 2β

4
.

Clearly, we have

lim inf
Z3m→∞

(
inf
n∈Z

∣∣∣β − n

m

∣∣∣)1/m

= lim inf
Z3m→∞

(
inf
n∈Z

∣∣∣α− n

m

∣∣∣)1/m

.

This shows that Leray’s result, with λ ∈ (−2, 2), is equivalent to Theorem 22.

As mentioned above, we discussed in [38] the polyharmonic operator ∆k for
data given on a homogeneous polynomial consisting of 2k linear factors. The
invertibility of the Fischer operator q 7−→ ∆k (Pq) on the space P≤m

(
Rd
)

of all
polynomials of degree ≤ m can be expressed by the requirement that certain
determinants Mm do not vanish; similar results can be found in [25], see also
[22]. The solvability of the equation for data functions f, g ∈ A (BR) depends on

the asymptotic behavior of m
√
|Mm| for m→∞.

4.6. The Dirichlet problem for general differential operators and dy-
namical systems. In this Section we present some results about Dirichlet prob-
lems for a domain Ω in R2 for a general differential operator of second order and
continuous data on the boundary ∂Ω. We include these results in this survey
because there are some fascinating similarities with the results in the last sec-
tion. It should be noted that these Dirichlet problems do not represent natural
problems of mathematical physics and they have a completely different character
from the classical (elliptic) Dirichlet problem.

The Dirichlet problem for the vibrating string equation

(32)

(
∂2

∂x2
− ∂2

∂y2

)
u (x, y) = 0

is the problem to find for a continuous function f : ∂Ω→ C a solution u of (32)
such that u (ξ) = f (ξ) for all ξ ∈ ∂G. The first systematic results are due to A.
Huber in 1932 who considered the case of an rectangle

Ωa,b = [0, a]× [0, b] .

In 1939 D. G. Bourgin and R. Duffin [18] showed that the qualitative behavior
of the Dirichlet problem depends on number-theoretic properties of the quotient
b/a : if b/a is an irrational number then solutions for the Dirichlet problem
are unique: if u ∈ C2

(
Ωa,b

)
is a solution of (32) and u vanishes on ∂G then u

is identical zero. If b/a is rational then many solutions exist: the function un
defined by

un (x, t) = sin

(
1

a
nπx

)
sin

(
1

a
nπy

)
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satisfies (32) and clearly vanishes if x = 0, x = a, or y = 0. If b/a is rational we
can find infinitely many n such that nb/a is a natural number, so un vanishes as
well for y = b. Thus the question of uniqueness of solutions is completely solved.

The problem of existence of solutions u for data functions f is much more subtle.
A sufficient condition is that the number α := b/a has the following Diophantine
property: there exist a positive constant A, a natural number K such that for
all natural numbers m,n such that m ≤ 2αn the inequality∣∣∣α− m

n

∣∣∣ > A

nK+1

holds. Under this assumption there exists for any smooth data function f a
solution u ∈ C2

(
Ωa,b

)
of the Dirichlet problem. We refer the interested reader

to [33] for a generalization to the case of n variables, and to [19], [101] for the
Dirichlet problem for more general hyperbolic operators.

The above-mentioned results are proved for the rectangle and depend on classical
methods from Fourier analysis. In [61] F. John introduced a completely different
method which reveals a connection of this problem to dynamical systems. It is
assumed that the boundary of Ω ⊂ R2 is a Jordan curve and that Ω is convex in
the x- and y-direction in the following sense: if L is a line parallel to the x-axis
or to the y-axis then the intersection of the line with the boundary ∂Ω has at
most two points. Using this property one may define a map

T : ∂Ω→ ∂Ω

in the following way: given a point P ∈ ∂Ω there exists by our assumption
a unique point AP ∈ ∂Ω which has the same abscissa as P . For AP we can
find a unique point Q ∈ ∂Ω which the same ordinate as AP, and we define
finally T (P ) = Q. The uniqueness for the Dirichlet problem is now connected to
properties of the transformation T . We recall that P is a periodic point of T if
there exists a natural number n such that T nP = P.

Theorem 24. Let Ω ⊂ R2 be convex in the x- and y-direction and ∂Ω a Jordan
curve. Then the solution for the Dirichlet problem

(33)
∂2

∂x∂y
u (x, y) = 0 and u | ∂Ω = 0

is uniquely determined in the space C2
(
Ω
)

if the set of all periodic points of the
transformation T is either finite or denumerable.

In the interesting paper of V.P. Burskĭı and A.S. Zhedanov [27] (see also [26]),
the transformation T is called the John mapping. The interested reader can find
there a deep analysis of the Dirichlet problem for the hyperbolic operator (33)
for domains Ω whose boundary ∂Ω is given by a biquadratic algebraic curve

F (x, y) =
2∑

k,j=0

ak,jx
kyj.
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For a discussion of the Dirichlet problem for non-linear wave equations we refer
to [16] and the references given there.

5. The conjecture of Khavinson and Shapiro

The reader can find an excellent survey about the Khavinson-Shapiro conjecture
in [67] which is illustrated by many heuristic motivations and illuminating ex-
amples. Our presentation emphasizes the connection to Fischer decomposition
methods. Let us recall that the Khavinson-Shapiro conjecture says that for a
bounded domain Ω condition (KS) implies that Ω is an ellipsoid where

(KS) For any polynomial f the solution uf of the Dirichlet problem for f | ∂Ω
is a polynomial.

It is not difficult to see that it suffices to show that the boundary ∂Ω is contained
in the zero-set of a polynomial P (x) of degree 2 using the classification of conical
sections.

It is a well-known fact that condition (KS) implies that the boundary ∂Ω is
contained in an algebraic set. We include the short proof:

Lemma 25. Suppose that the data function |x|2 for the Dirichlet problem of
domain Ω has a polynomial harmonic solution u (x) . Then ∂Ω is contained in
the zero set of Q (x) := |x|2 − u (x) .

Proof. By assumption, there exists a harmonic polynomial u such that u (ξ) =
|ξ|2 for all ξ ∈ ∂Ω. Then Q(ξ) := |ξ|2 − u(ξ) = 0 for ξ ∈ ∂Ω, and

(34) ∂Ω ⊂ Q−1({0}).

This completes the proof.

It is important to note that the inclusion (34) is in general proper: consider for
example the rectangle R := [0, 1] × [0, 1] . Then the boundary ∂R is properly
contained in the zero set of

Q (x, y) = x (x− 1) y (y − 1) .

This examples shows as well that the set Rd \ P−1 (0) decomposes into several
connected components, so one can associate different domains to one polyno-
mial P (x) . In contrast to complex algebraic geometry, the zero set P−1 (0) :={
x ∈ Rd : P (x) = 0

}
of an irreducible polynomial P (x) is in general not con-

nected, for examples see [17] or [75].
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5.1. The Khavinson-Shapiro conjecture and polynomial decomposi-
tions. Lemma 25 tells us that we may assume that the boundary ∂Ω of the
domain Ω is contained in the zero set of a non-constant polynomial P with real
coefficients. Hence there exist irreducible polynomials ψ1, ...., ψr in R [x] and
natural numbers m1, ...,mr and a constant C 6= 0 such that

P (x) = Cψm1
1 ....ψmrr .

For the inclusion (34) we may assume that m1 = ... = mr = 1, so one may assume
that ψj is not a scalar multiple of ψk for k 6= j. But we have also to guarantee
that each factor ψj really contributes to the description of the boundary ∂Ω, so
we have to disregard those factors which have non-empty intersection with the
boundary. We can achieve this by requiring that there exists open balls Uj such
that

(35) ∅ 6=
{
x ∈ Rd : ψj (x) = 0

}
∩ Uj ⊂ ∂Ω.

Still it might happen that the intersection in (35) is just one point. In order to
guarantee that the intersection has many points we shall require that ψj changes
sign over Uj which means that there exist

x 6= y ∈ Uj such that ψj (x) < 0 < ψj (y) .

Now are ready to connect the conjecture of Khavinson-Shapiro with a question
which is purely formulated in terms of polynomial decompositions:

Theorem 26. Let Ω be a domain in Rd. Let P ∈ R [x] be of the form P = ψ1....ψr
such that ψ1, ...., ψr are irreducible and ψj 6= cψk for j 6= k. Suppose that for
every j = 1, ..., r there exists an open ball Uj such that

(36)
{
y ∈ Rd : ψj (y) = 0

}
∩ Uj ⊂ ∂Ω

and ψj changes sign over Uj for j = 1, ..., r. Then condition (KS) implies that
for any polynomial f there exist polynomials qf and uf with

(37) f = Pqf + uf and ∆uf = 0.

Proof. Let f be a polynomial. By assumption there exists a harmonic poly-
nomial uf such that uf (ξ) = |ξ|2 for ξ ∈ ∂Ω. Then Q(x) := f (x) − uf (x) is
zero over {x ∈ Uj : ψj (x) = 0} for each j = 1, ..., r. A theorem in real algebraic
geometry [17, Theorem 4.5.1 ] (using the assumption that ψj is irreducible and
changes sign) tells us that Q = ψj · fj some polynomial fj. Hence there exists a
polynomial q such that

Q = ψ1....ψrq = Pq.

Since Q = f − uf we infer f = Pq + uf .

Now we confirm the Khavinson-Shapiro conjecture for a large class of domains:
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Theorem 27. Let Ω be a domain in Rd and let P ∈ R [x] be of the form P =
ψ1....ψr such that ψ1, ...., ψr are irreducible and ψj 6= cψk for j 6= k. Suppose that
for every j = 1, ..., r there exists an open ball Uj such that{

y ∈ Rd : ψj (y) = 0
}
∩ Uj ⊂ ∂Ω

and ψj changes sign over Uj for j = 1, ..., r. Assume that degψ > 2 and that the
leading term of ψ contains a non-negative non-constant factor. Then the data
function |x|2 does not have a polynomial solution for the Dirichlet problem.

Proof. Suppose that the function |x|2 has a polynomial solution. By Theorem
26 there exist polynomials q and u such that |x|2 = Pq+ u where u is harmonic.
Since |x|2 is not harmonic it follows that q 6= 0, and clearly 2d = ∆ (Pq) . Expand
q and P into sums of homogeneous polynomials with leading parts qm 6= 0 and
Ps 6= 0. Since degP ≥ 3 and 2d = ∆ (Pq) it follows that ∆ (Psqm) = 0. Thus
Psqm is harmonic. By Corollary 12 we infer that Psqm must be zero. This
contradiction completes the proof.

As an example, consider the square Ω := (−1, 1)× (−1, 1) in R2 and P (x, y) =
(x− 1) (x+ 1) (y − 1) (y + 1) . Clearly the leading part of P is non-negative.
Since degP = 4 it follows from Theorem 27 that the solution of the Dirich-
let problem for the data function x2 + y2 can not be a polynomial. Similarly, for
k > 1,

Ωk :=
{

(x1, ..., xd) ∈ Rd : x2k
1 + ...+ x2k

d < 1
}

is a domain for which the data function |x|2 does not have a polynomial solution.
For d = 2 this result was proved by P. Ebenfelt in [35] by different methods.

M.L. Agranovsky and Y. Krasnov introduced in [1] the concept of a harmonic
divisor which arises naturally in the investigation of stationary sets for the wave
and heat equation [2], and the injectivity of the spherical Radon transform [3].
We say that a polynomial P is a harmonic divisor if there exists a polynomial
q 6= 0 such that Pq is harmonic. Analyzing again the proof of Theorem 27 we
see that it is sufficient in Theorem 27 to assume that the leading term Ps is not a
harmonic divisor. We used the assumption of a non-negative non-constant factor
of the leading term in order to conclude via Corollary 12 that the leading term
is not a harmonic divisor.

Theorem 27 was proved in [86] and generalizes a result of Chamberland and
Siegel in [28] for the two dimensional case.

E. Volkov has shown in [94] that for a domain in R2 whose boundary is a polygon
with more than 3 edges the function x2

1 +x2
2 does not have a polynomial solution.

In [95] the author discusses the case of a polygonal domain whose edges consists
of algebraic curves.
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5.2. Degree preserving polynomial decompositions. It is an interesting
fact in Theorem 27 that we can specify an explicit function f , namely

f (x) = |x|2 ,
for which the solution u of the Dirichlet is not a polynomial. It is tempting to
conjecture that the condition (KS) is satisfied if we know that the function |x|2
has a polynomial solution for the Dirichlet problem. Unfortunately this is not
true as the following example of L.J. Hansen and H.S. Shapiro [54, p. 125] shows
(it also shows that Theorem 27 does not hold if we omit the assumption that the
leading term is not a harmonic divisor):

Example 5.2: Let ϕ ∈ R[x] be a harmonic polynomial on Rd. For ε > 0 define

(38) Pε (x) := |x|2 − 1 + εϕ (x) .

If ε > 0 is small enough then Pε (0) < 0 and positive on |x| = 2. Then the
connected component Ωε of the open set {Pε < 0} containing the point 0 is a
bounded domain in Rd. The Dirichlet problem for the data function |x|2 has the
harmonic polynomial solution uf (x) = 1− εϕ (x) since

|x|2 = Pε (x) · 1 + 1− εϕ (x) .

Note that the degree of the solution uf = 1 − εϕ (x) is indeed larger than the

degree of the data function |x|2 . On the other hand we shall see that condition
(KS) is not satisfied for certain polynomials ϕ, see the arguments at the end of
this Section.

In view of Theorem 26 it is natural to consider the following conjecture, see [76]:

Conjecture A: Let P ∈ R [x] be a polynomial with real coefficients such that
for any polynomial f ∈ R [x] there exist polynomials qf and uf in ∈ R [x] with
f = Pqf + uf and ∆uf = 0. Then degP ≤ 2.

In joint work with E. Lundberg [76] we have been able to prove the conjecture
A if we add a degree condition on the involved polynomials:

Theorem 28. Let P be a polynomial of degree ≥ 2. Suppose that there exists a
constant C > 0 such that for any polynomial f ∈ R [x] there exists a decomposi-
tion f = Pqf + uf with ∆uf = 0 and

(39) deg uf ≤ deg f + C.

Then deg(P ) = 2.

In [76] we gave a criterion such that the degree condition (39) is automatically
satisfied:

Theorem 29. Suppose that P is a polynomial of degree k > 2 such that the
decomposition into homogeneous polynomials P = Pk + Ps + Ps−1 + ...+ P0 with
Pk 6= 0 has the property that the second non-zero summand Ps of degree s contains
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a non-negative non-constant factor. Let f be a polynomial and assume that there
exists a decomposition

f = Pq + u

where h is harmonic and q is a polynomial. Then deg u ≤ deg f + (k − s+ 2).

Let us return to Example 5.2: we see that the leading term of Pε is equal to
Pk = εϕ, and the second non-zero summand is Ps (x) = |x|2 , so it is non-negative.
Assume further that ϕ is a homogeneous harmonic polynomial of degree 3 such
that Pε is irreducible. By Theorem 26, Theorem 29 and Theorem 28 it follows
that property (KS) is not satisfied, although we can find for |x|2 a polynomial
solution of the Dirichlet problem.

5.3. The conjecture of Khavinson-Shapiro with entire solutions. In the
introduction we have explained the significance of the following condition:

(KSe) For any polynomial f the solution uf of the Dirichlet problem for f | ∂Ω
has an extension to a holomorphic function on Cd.

The second conjecture of Khavinson-Shapiro states that for a bounded domain Ω,
(KSe) implies that Ω is an ellipsoid (or contained in the zero set of a polynomial
of degree 2).

In case of condition (KS) we concluded easily that the boundary of the domain
must be contained in an algebraic set. In case of (KSe) we can only infer that
the boundary is contained in an real-analytic set.

The proof of Theorem 27 uses in an essential way the fact that we were dealing
with polynomials. However, the proof of Theorem 26 can be extended to the
setting of entire functions, or what is equivalent, to the setting of the algebra
A (BR) for R = ∞. Roughly speaking, the fact that the Fischer decomposition
is unique in A (B∞) will be the essential argument. However, this fact, proven
in [86], is much more difficult to prove than the corresponding result in the
polynomial case: it requires a series of technical estimates and the assumption
of an elliptic polynomial P (x).

Theorem 30. Let Ω be a domain in Rd and let P ∈ R [x1, ..., xd] be of the form
P = ψ1....ψr such that ψ1, ...., ψr are irreducible and ψj 6= cψl for j 6= l. Suppose
that for every j = 1, ..., r there exists an open ball Uj such that{

y ∈ Rd : ψj (y) = 0
}
∩ Uj ⊂ ∂Ω

and ψj changes sign over Uj for j = 1, ..., r. If degP > 2 and P = ψ1...ψr
is elliptic then there is no entire solution of the Dirichlet problem for the data
function |x|2 restricted to ∂Ω.

Proof. Suppose that the function |x|2 has an entire solution. Then there exists
a harmonic function u ∈ A (BR) for R = ∞ such Q (x) := |x|2 − u (x) vanishes
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on ∂Ω. Using the assumptions about ψ1, ..., ψr we infer as in the proof Theo-
rem 26 that there exist q such that Q = Pq; the critical reader may observe
that Q is not a polynomial but a function in A (BR) , and that q will be an el-
ement in A (BR); however, the necessary modifications for the proof are sort of
mathematical folklore (see [86]) and we conclude that

Pq − |x|2 + u (x) = 0.

Hence for k := 1
2

degP > 1 and r (x) = − |x|2 + u (x) we obtain ∆kr = 0 and
0 = Pq + r. The uniqueness property in Theorem 16 implies that r = 0 and
q = 0. Thus |x|2 = u (x) , a contradiction to the harmonicity of u.

Now let us summarize further results in the literature concerning the second
Khavinson-Shapiro conjecture. To the best knowledge of the author, results
have been achieved only for the two-dimensional case. Methods based on the
Schwarz function have been used by P. Ebenfelt [35] to discuss the behavior of
singularities of the Dirichlet problem for quadrature domains or domains which
are bounded by k-th root of an ellipse. In contrast to our Theorem 30 he obtains
in his deep work an explicit description of the singularities.

Although the Khavinson-Shapiro conjecture is a statement in real analysis there
is a close connection to complex analysis, at least for the two-dimensional case.
We illustrate this by a result proven by L. Hansen and H.S. Shapiro in [54]:
assume that γ is a curve in the plane R2 defined by

P (x, y) = 0,

where P is an irreducible polynomial. We turn P into a polynomial in the
variables z and z replacing x by (z + z) /2 and y by (z − z) /2i, so that

P (x, y) = P̃ (z, z)

for a suitable polynomial P̃ . Now substitute the variable z by w. We say that
the curve γ contains a rectangle if there exists four distinct points (zj, wk) ∈ C2,

j, k ∈ {1, 2} , so that P̃ (zj, wk) = 0 for j, k ∈ {1, 2} . In [54] the following is
proved:

Theorem 31. If a curve γ (defined by an irreducible polynomial P ) contains
a rectangle, and is the boundary of the bounded region Ω, then the solution of
the Dirichlet problem on Ω with boundary data |x|2 cannot be extended to be
harmonic on all of R2.

The last result can be extended to the framework of so-called complex lightning
bolts and we refer the interested reader to the work of E. Lundberg [75] for
more details and instructive examples of domains which are not covered by The-
orem 30. In passing we mention that lightning bolts were used by Kolmogorov
and Arnold to solve Hilbert’s 13th problem regarding the solution of 7th degree
equations using functions of two parameters, see [75].
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We mention the following result in [54] which relates conjecture (KS) to conjec-
ture (KSe):

Theorem 32. Suppose that the domain Ω ⊂ R2 is bounded by a curve Γ with
the property that there exists a non constant entire function F : C→ C mapping
the unit circle {z ∈ C : |z| = 1} into Γ. Suppose that the polynomial f (x, y) of
degree m has a solution uf on Ω to the Dirichlet problem with boundary data f
which extends to harmonic function on the entire space R2. Then uf (x, y) is a
polynomial of degree ≤ m.

The paper [54] discovers also a connection between certain functional equations
for entire functions and the property (KSe), see also [46].

5.4. Recurrence relations for planar orthogonal polynomials and the
Khavinson-Shapiro conjecture. Recently M. Putinar and N.S. Stylianopou-
los found a nice link between the Khavinson-Shapiro conjecture and recurrence
relations of Bergman orthogonal polynomials in the complex plane. Let us in-
troduce some notations and definitions:

Let Ω be a bounded domain in the complex plane C which will be identified with
R2 (so we can speak about the Dirichlet problem for Ω). Define for polynomials
f (z) and g (z) of a complex variable z the inner product

(40) 〈f, g〉Ω :=

∫
Ω

f (z) g (z)dA (z)

where dA stands for the area measure. The Bergman orthogonal polynomials
pn (z) of degree n are defined as the polynomials

pn (z) = γnz
n + γn−1z

n−1 + ...+ γ1z + γ0

with γn > 0 which are orthonormal with respect to the inner product (40). We
say that the orthogonal polynomials pn satisfy a recurrence relation of order
N + 1 if for each n ∈ N, n ≥ N + 1, there exists real numbers an+1,n, ..., an−N+1,n

such that

z · pn (z) = an+1,npn+1 (z) + an,npn (z) + ...+ an−N+1,npn−N+1 (z) .

For example, if N = 2, then the orthogonal polynomials pn satisfies a recurrence
relation of order 3 if for each n there exist an+1,n, an,n and an−1,n such that

(41) z · pn (z) = an+1,npn+1 (z) + an,npn (z) + an−1,npn−1 (z) .

We say that a sequence of Bergman orthogonal polynomials satisfy a finite re-
currence relation if for each fixed k ≥ 0 there exists N (k) ≥ 0 such that

〈z · pn, pk〉 = 0 for all n ≥ N (k) .

Let us denote by L2
a (Ω) the space of all analytic functions f : Ω → C which

are square integrable with respect to area measure. In the following it is always
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assumed that polynomials are dense in L2
a (Ω) . This is e.g satisfied if the interior

of Ω is contained in Ω.

M. Putinar and N.S. Stylianopoulos established in [84] the following result:

Theorem 33. Let Ω be a simply connected bounded domain in C such that the
polynomials are dense in L2

a (Ω) . Let N0 ≥ 2 be a natural number such that

(42) 〈z · pn (z) , 1〉Ω = 0 for all n ≥ N0.

Then for the polynomial |x|2 = x2
1 + x2

2 there exists a harmonic polynomial u (x)
of degree ≤ N0 such that

(43) |ξ|2 = u (ξ) for all ξ ∈ ∂Ω.

If the orthogonal polynomials satisfy a recurrence relation of order 3, see (41),
then (42) is satisfied for all n ≥ 2; thus we conclude from Theorem 33 with
N0 := 2 that ∂Ω is contained in the zero-set of a polynomial of degree ≤ 2. Since
Ω is bounded we conclude that Ω is an ellipse. Thus we obtain:

Theorem 34. Let Ω be a simply connected bounded domain in C such that the
polynomials are dense in L2

a (Ω) . If the Bergman orthogonal polynomials satisfy
a recurrence relation of order 3 then Ω is an ellipse.

With the same methods one obtains the following interesting result:

Theorem 35. Let Ω be a simply connected bounded domain in C such that
the polynomials are dense in L2

a (Ω) . Then the Bergman orthogonal polynomials
satisfy a finite-term recurrence relation if and only if the condition (KS) holds
for Ω.

Thus one may use results about the Khavinson-Shapiro conjecture for proving
the non-existence of finite-term recurrence relations of Bergman orthogonal poly-
nomials or vice versa. Recurrence relations of order N + 1 can be characterized
in a similar way:

Theorem 36. Let Ω be a simply connected bounded domain in C such that the
polynomials are dense in L2

a (Ω) . The the following statements are equivalent for
a given natural number N ≥ 2:

1. The Bergman orthogonal polynomials pn (z) satisfy a recurrence relation of
order N + 1.

2. For all m,n ∈ N0 the Dirichlet problem with data function zmzn has
a polynomial solution of degree ≤ m (N − 1) + n in z and of degree ≤
n (N − 1) +m in z.

Using results about the asymptotic of orthogonal polynomials pn (z) and some
results about quadrature domains it is proved in [71] that condition 1 in Theorem
36 implies that Ω is an ellipse and N = 2 under the additional assumption that Ω
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has a C2-smooth Jordan boundary ∂Ω. Thus the Khavinson-Shapiro conjecture
is true in R2 if the domain has a C2-smooth Jordan boundary ∂Ω (without cusps)
and the degree of the polynomial solution uf of the Dirichlet problem depends
in a nice way on the degree of f.

Similar results hold for Hardy spaces and for Szegö orthogonal polynomials and
we refer the reader to [84], [71], [67] and [32] for more information and for a
description on the history of the subject refering to the work of P. Duren [34] in
1965.

6. The Schwarz potential conjecture

Let f be a real analytic function of two variables x, y and define

(44) Γ =
{

(x, y) ∈ R2 : f (x, y) = 0
}
.

If the gradient of f does not vanish on Γ we call Γ a real-analytic hyper surface.
Setting x = (z + z) /2 and y = (z − z) /2i where z = x+ iy we can rewrite (44)
as

Γ = {z ∈ C : F (z, z) = 0}
where F is a suitable real analytic function of z and z. Then ∂F/∂z does not
vanish on Γ, and by the implicit function theorem we can solve the equation
F (z, z) = 0, obtaining an analytic function S (z) in a neighborhood of Γ such
that

S (z) = z for z ∈ Γ.

In [29] the function S is called the Schwarz function and the reader will find
there a detailed account, many examples and applications to various areas in
complex function theory.

In [69] and [65] D. Khavinson and H.S. Shapiro introduced a Schwarz function
in the context of several real variables and with respect to a real analytic hyper
surface Γ in Rd and they showed that many features of the classical theory can
be extended to this setting.

Definition 1. Let Ω be a domain in Rd such that the boundary ∂Ω is a real
analytic hyper surface. The Schwarz potential is defined as the solution u (defined
in a neighborhood of the boundary ∂Ω) of the Cauchy problem

∆u = 0(45)

u (ξ) = |ξ|2 for all ξ ∈ ∂Ω,(46)

∂u

∂xj
(ξ) = 2ξj for all ξ = (ξ1, ..., ξd) ∈ ∂Ω and j = 1, ..., d.(47)

One outstanding conjecture in this area is the Schwarz potential conjecture:
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• Any solution u of the Laplace equation ∆u = 0 with entire Cauchy data
function f and initial conditions u (ξ) = f (ξ) and ∂u

∂xj
(ξ) = ∂f

∂xj
(ξ) for

ξ ∈ ∂Ω and j = 1, ..., d can be analytically continued as far as the Schwarz
potential can be continued.

In [69] and [65] one can find explicit computations for the Schwarz potential of
basic surfaces as planes, spheres and cylinders for which the Schwarz potential
conjecture can be confirmed directly. For example, Khavinson has proved in an
elementary way the following result in [66]:

Theorem 37. Let Ω = {x ∈ Rd :
∑d

j=1 x
2
j < 1} be the unit ball. If f : Rd → C

is entire then there exists a harmonic function u : Rd \ {0} → C such that

u (ξ) = f (ξ) for all ξ ∈ ∂Ω,

∂u

∂xj
(ξ) =

∂f

∂xj
(ξ) for all ξ ∈ ∂Ω and j = 1, ..., d.

The theorem tells us that the Schwarz potential of the ball can be extended to the
space Rd \ {0} , and and it tells us that this is also true for every solution of the
Cauchy problem for any entire data function; in particular the Schwarz potential
conjecture holds for the ball. More generally, G. Johnsson has confirmed the
conjecture for any surface given by a quadratic polynomials, see [63].

The general idea behind the Schwarz potential conjecture is that one needs to
test only one particular data function, namely |x|2 , in order to understand the
location of the singularities of the solutions u of the Cauchy problem for arbitrary
entire data, or at least for all polynomial data.

The technique of Fischer decomposition gives only a slight reduction in the case
that the boundary of the domain Ω in Rd is algebraic, i.e. that there exists a
polynomial ψ of degree k with

(48) ∂Ω ⊂ ψ−1 {0} .
If f is a polynomial data function we can use Theorem 13 for the polynomial
P := ψ2 which has clearly non-negative leading part. Thus we can write

(49) f = Pq + r = ψ2q + r

with ∆2kr = 0 where q and r are polynomials. From (48) and (49) it follows that
f (ξ) = r (ξ) for all x ∈ ∂Ω and ∂f

∂xj
(ξ) = ∂r

∂xj
(ξ) for all ξ ∈ Ω and j = 1, ..., d.

Thus it suffices to solve the Cauchy problem for the data function r instead of
f. In other words, we may assume that the data function f already satisfies the
polyharmonic equation ∆2kr = 0.
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