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Abstract. In this paper a positive answer is given to the following question of W.K.
Hayman: if a polyharmonic entire function of order k vanishes on k distinct ellipsoids
in the euclidean space Rn then it vanishes everywhere. Moreover a characterization of
ellipsoids is given in terms of an extension property of solutions of entire data functions
for the Dirichlet problem answering a question of D. Khavinson and H.S. Shapiro. These
results are consequences from a more general result in the context of direct sum decom-
positions (Fischer decompositions) of polynomials or functions in the algebra A (BR)
of all real-analytic functions defined on the ball BR of radius R and center 0 whose
Taylor series of homogeneous polynomials converges compactly in BR. The main result
states that for a given elliptic polynomial P of degree 2k and sufficiently large radius
R > 0 the following decomposition holds: for each function f ∈ A (BR) there exist
unique q, r ∈ A (BR) such that f = Pq + r and ∆kr = 0. Another application of this
result is the existence of polynomial solutions of the polyharmonic equation ∆ku = 0 for
polynomial data on certain classes of algebraic hypersurfaces.
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1. Introduction

Recall that a complex-valued function f defined on a domain G in the euclidean space
Rn is polyharmonic of order k if f is 2k-times continuously differentiable and

∆kf (x) = 0 for all x ∈ G

where ∆k is the k-th iterate of the Laplace operator ∆ = ∂2

∂x2
1
+...+ ∂2

∂x2
n
. For k = 1 this class

of functions are just the harmonic functions, while for k = 2 the term biharmonic function
is used which is important in elasticity theory. Fundamental work about polyharmonic
functions is due to E. Almansi [2], M. Nicolesco (see e.g. [52]) and N. Aronszajn [4], and
still this is an area of active research, see e.g. [29], [30], [41], [42], [47], [60]. Polyharmonic
functions are also important in applied mathematics, e.g. in approximation theory, radial
basis functions and wavelet analysis, see e.g. [8], [37], [43], [44], [45], [46] and [48].

The author is supported in part by Grant MTM2006-13000-C03-03 of the D.G.I. of Spain.
1



2 HERMANN RENDER

In [35] W.K. Hayman and B. Korenblum proved that a polyharmonic function f : G→
C of order k vanishing on k distinct spheres {x ∈ Rn : |x− xm| = rm} for m = 1, ..., k
is identical zero provided that the balls {x ∈ Rn : |x− xm| ≤ rm} are contained in G for
m = 1, ..., k; moreover they have proved that it is even possible to replace one of the
spheres by the boundary of a domain whose closure is contained in G. They raised the
question whether spheres can be replaced by more general hypersurfaces like ellipsoids in
Rn, see also [36]. In this paper we shall present a positive answer to this question for a
large class of algebraic hypersurfaces (including the case of ellipsoids) for polyharmonic
functions defined on Rn for arbitrary dimension n, generalizing previous results of M.
Balk and M. Mazalov in [9] and [10] for dimension n = 2. However, our method of proof
goes far beyond the question of uniqueness and they allow us to prove a conjecture in
[39] saying that ellipsoids are exactly the compact algebraic hypersurfaces in Rn for which
the solutions of the Dirichlet problem for entire data functions extends to entire harmonic
functions. Moreover we shall give an analogue of this result for the polyharmonic equation
∆kf = 0.

Our methods of proof are related to two influential papers: the first one is due to M.
Brelot and G. Choquet [14] which provides important basic results about harmonic and
polyharmonic polynomials. It is shown there that a non-trivial homogeneous non-negative
polynomial P of n variables is not a harmonic divisor. Recall that a polynomial P is a
harmonic divisor if there exists a non-zero polynomial q such that P · q is harmonic, so

∆ (Pq) = 0.

We refer to [1] and [3] for a characterization of all quadratic harmonic divisors and the
significance of this notion. The result of Brelot and Choquet is an immediate consequence
of the fact that a homogeneous harmonic polynomial is orthogonal over the unit sphere to
all polynomials of lower degree. We shall prove the following generalization: A homoge-
neous polynomial P of degree m is a solution of the equation ∆ku = 0 if and only if P is
orthogonal to all polynomials of degree less than m− 2k+ 2. It follows that a non-trivial
homogeneous non-negative polynomial of degree greater than 2k − 2 is not a k-harmonic
divisor, so there is not a non-zero polynomial q such that

∆k (Pq) = 0.

The second source is the fundamental work [50] of D.J. Newman and H.S. Shapiro
about direct sum decompositions of entire functions which have been proven to be useful
in a variety of mathematical problems like holomorphic solutions of the Dirichlet and
Goursat problem, see [56] and [39], to mixed Cauchy problems, see [19] and [20], and for
the discussion of weak maximum principles, see [21]. In [24] we will discuss applications
of our method to the mixed Cauchy problem for data on singular conics, and in [25] to
the Goursat problem for the Helmholtz operator.

In order to motivate direct sum decompositions we recall the theorem of Almansi saying
that for every polyharmonic function f : G → C of order k on a star domain G there
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exist harmonic functions h0, ..., hk on G such that

(1) f (x) = |x|2k hk (x) + |x|2(k−1) hk−1 (x) + ....+ h0 (x) ,

where |x|2 := x2
1 + ... + x2

n is the euclidean distance of x = (x1, ..., xn) ∈ Rn, see p. 4 in
[4], and p. 122 in [4] for a further essential extension. This result, proved by Almansi
in 1899 in [2], generalizes the Gauß decomposition of a polynomial f , which is basic in
the theory of harmonic functions, see [5], [43] or [61]. The question which we address
to is whether the special role of the function |x|2 in (1) can be taken over by a general
polynomial P (x) where one allows the coefficient functions hj, j = 1, ..., k to be solutions
of an accompanying linear differential operator Q (D) with constant coefficients. It is
convenient to adopt a notion introduced by H.S. Shapiro in [56]: Suppose that E is a
vector space of infinitely differentiable functions f : G → C defined on an open subset
G ⊂ Rn which is a module over C [x1, ..., xn] , the space of all polynomials in n variables
with complex coefficients. A polynomial P and a differential operator Q (D) forms a
Fischer pair for the space E, shortly we say that (P,Q (D)) is a Fischer pair, if for each
f ∈ E there exist unique elements q ∈ E and r ∈ E such that

(2) f = P · q + r and Q (D) r = 0.

Here Q (D) is the linear differential operator obtained from the polynomial Q by replacing
the variables xj by the partial derivatives ∂/∂xj for j = 1, ..., n. It follows from the Gauß

decomposition that (|x|2 ,∆) is a Fischer pair for C [x1, ..., xn] . This classical result was
generalized by E. Fischer1 in 1917 (see [27] or [17]): (P, P ∗ (D)) is a Fischer pair for
any homogeneous polynomial P , where P ∗ denotes the polynomial obtained from P by
conjugating its coefficients. Important ingredient of the proof is the Fischer inner product
[·, ·]F on C [x1, ..., xn] defined by

[P,Q]F := [Q (D)P ] (0) =
∑
α∈Nn

0

α!cαdα

where we use the standard notation for multi-indices α = (α1, ..., αn) ∈ Nn
0 , and α! =

α1!...αn! and xα = xα1
1 ...x

αn
n , and P and Q are given by P (x) =

∑
α∈Nn

0
cαx

α and Q (x) =∑
α∈Nn

0
dαx

α (where the sums are assumed to be finite). In [50] and [56] the corresponding

Hilbert space norm
√

[P, P ]F is called the Fischer norm, while in [12] and [63] the term
Bombieri norm is used. In passing, let us note that the Fischer inner product is also
used in the recent work of C. de Boor, A. Ron and T. Sauer in the context of polynomial
interpolation problems and algorithms for H-bases, see [16] and [55] and the references
cited there.

In 1966 D.J. Newman and H.S. Shapiro proved a Fischer type decomposition (see [50]
for the precise statement) for the Bargmann space Fn (also called Fock or Fischer space)

1See [32], p. 217 and p. 228, for some biographical comments and remarks on the Riesz-Fischer
theorem for Hilbert spaces.
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defined as the space of all entire functions f : Cn → C which satisfy

(3) ‖f‖2
Fn

:=
1

πn

∫
Cn

|f (z)|2 e−|z|
2

dz <∞

where dz is Lebesgue measure on R2n. Since ‖P‖Fn
=
√

[P, P ]F for any P ∈ C [x1, ..., xn],
and polynomials are dense in Fn the Bargmann space Fn is the completion of C [x1, ..., xn]
under the Fischer norm, see [11]. In [56] H.S. Shapiro has generalized Fischer’s result:
(P, P ∗ (D)) is a Fischer pair for the algebra En of all entire functions in Cn for any
homogeneous polynomial P . Furthermore A. Meril and D. Struppa showed in [49] that

(xkj , Q (D)) and (Q, ∂k

∂xk
j
) are Fischer pairs for En for polynomials Q having a non-zero

coefficient at xkj .
A new type of a Fischer pair has been recently recognized in [6]: (P,∆) is a Fischer

pair for C [x1, ..., xn] whenever P is a nonhyperbolic quadratic polynomial, so P is of the
form

n∑
j=1

b2jx
2
j +

n∑
j=1

cjxj + d,

where at least one bj 6= 0. More generally, let us call a polynomial P nonhyperbolic if its
principal part is non-negative on Rn. Recall that the principal part (also called the leading

term, see [16]) of a polynomial P is the non-zero polynomial Pk such that P =
∑k

j=0 Pj
with homogeneous polynomials Pj of degree j for j = 0, ..., k. Further a polynomial P is

called elliptic if there exists C > 0 such that its principal part Pk satisfies CPk (x) ≥ |x|k
for all x ∈ Rn.

We will present the following far reaching generalization of Theorem 2.8 in [6]: if the
polynomial P of degree 2k is nonhyperbolic then (P,∆k) is a Fischer pair for C [x1, ..., xn] .
For the proof of this result we introduce the space RFn of all measurable functions
f : Rn → C such that

(4) ‖f‖2 :=

∫
Rn

|f (x)|2 e−|x|
2

dx <∞,

which we call the real Bargmann space and which is the basic technical tool in our in-
vestigations. Let us emphasize that RFn differs from the Bargmann space Fn in many
respects; however it is very suitable to introduce real methods like non-negativity for the
concept of Fischer pairs. One basic observation is the following fact: a homogeneous poly-
nomial f of degree ≥ 2 (k − 1) is polyharmonic of order k if and only if it is orthogonal
to all polynomials g of degree < deg f − 2 (k − 1) with respect to the scalar product of
the real Bargmann space. This result leads rather quickly to a solution of the question of
W.K. Hayman for polyharmonic polynomials.

The next important step is the passage from the polynomial case to suitable spaces of
real-analytic functions. It turns out that the following space is very useful: Let BR :=
{x ∈ Rn : |x| < R} be the open ball in Rn with center 0 and radius 0 < R ≤ ∞, and let
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A (BR) be the set of all infinitely differentiable functions f : BR → C such that for any
compact subset K ⊂ BR the homogeneous Taylor series

∑∞
m=0 fm (x) converges absolutely

and uniformly to f on K, where fm are the homogeneous polynomials of degree m defined
by the Taylor series of f, i.e. that

fm (x) =
∑
|α|=m

1

α!

∂αf

∂xα
(0) xα for m ∈ N0.

It is known that A (BR) is isomorphic to the set of all holomorphic functions on the
harmonicity hull of BR, see Section 8.

Using our results for the polynomial case we can show that (P2k,∆
k) is a Fischer

pair for A (BR) whenever P2k is a homogeneous elliptic polynomial of degree 2k. The
question under which conditions (P,∆k) is a Fischer pair for A (BR) for non-homogeneous
polynomials is much more involved and subtle; moreover the answer has applications to
the Dirichlet problem and boundary value problems of higher order PDE’s as we shall see
below. Our main result says that for a given elliptic polynomial P the pair (P,∆k) is a
Fischer pair for A (BR) whenever the radius R is large enough; an explicit bound is given
depending on P and the ellipticity constant C. For R = ∞ this implies that (P,∆k) is a
Fischer pair for the algebra En of all entire functions for any elliptic polynomial.

Our results enable us to solve (at least partially, i.e. for a class of algebraic hypersur-
faces) the following questions of D. Khavinson and H.S. Shapiro (see [39], p. 460): Let Ω
be a bounded domain in Rn such that ∂Ω is a real-analytic hypersurface.

(I) Suppose that for every entire function f the solution of Dirichlet’s problem for Ω
with data f | ∂Ω is harmonically extendible to Rn. Must Ω be an ellipsoid?

(II) Suppose that for every polynomial f the solution of Dirichlet’s problem for Ω with
data f | ∂Ω is a polynomial. Must Ω be an ellipsoid?

Problem (II) has been discussed by several authors: Based on ideas in [39] a positive
solution of question (II) was given in [15] for the case n = 2 such that the boundary ∂Ω is
equal to an algebraic set, i.e. the zero set of a polynomial ψ (which satisfies some natural
conditions). We shall extend this result to arbitrary dimension.

It seems that problem (I) has not been solved even for the simplest domains in R2.
We give the following solution of question (I): suppose that ψ = ψ1...ψr is elliptic where
ψ1, ..., ψr ∈ R [x1, ..., xn] are irreducible and no ψj is a scalar multiple of some ψk for k 6= j.
Assume that there exist open sets Uj, j = 1, ..., r such that ψj changes sign on Uj and
such that

Uj ∩ {x ∈ Rn : ψj (x) = 0} ⊂ ∂Ω

for j = 1, ..., n. If degψ > 2 then (I) is not satisfied. In other words, (I) implies that ψ has
degree 2, and using the boundedness of the region, it follows that ψ defines an ellipsoid.

Let us now give a short outline of the paper. In Section 2 we show that nonhyperbolic
polynomials P of degree 2k induces Fischer pairs (P,∆k) for C [x1, ..., xn] . Section 3
contains a proof of Hayman’s conjecture for the polynomial case. In Section 4 it is shown
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that (P2k,∆
k) is a Fischer pair for A (BR) whenever P2k is homogeneous of degree 2k and

elliptic. In Section 5 we discuss uniqueness of the Fischer decomposition in the general
case. In Section 6 we prove the main result about non-homogeneous Fischer pairs (P,∆k)
for A (BR) and large radii R. In Section 7 we deduce an Almansi type theorem from our
main result. In Section 8 it is shown how these results carry over to the space En of all
entire functions.

In Section 9 we present the main result, the solution of Hayman’s conjecture for poly-
harmonic functions on Rn. Section 10 contains the above-mentioned characterization of
ellipsoids via condition (I) or (II) and some analogues for the polyharmonic equation.

In the appendix 11 we collect some basic results about Fischer pairs. Although most of
the results are known and relatively simple to prove (the original source is [27]), we have
included some proofs in order to hold the paper self-contained.

Finally let us introduce some notation. The natural numbers are denoted by N and we
put N0 = N∪{0} . A real-valued function f changes sign on a set U if there exists x, y ∈ U
with f (x) < 0 < f (y) . If R is a ring we denote by R [x1, ..., xn] the ring of polynomials
in n variables with coefficients in R. By degP we denote the degree of a polynomial P.
A polynomial P is called homogeneous of degree m if P (rx) = rmP (x) for all r > 0 and
x ∈ Rn. In order to emphasize in formulae that a polynomial P is homogeneous of degree
m we write often Pm instead of P. Frequently we use spherical coordinates x = rθ where
r > 0 and θ is in the unit sphere Sn−1 defined by

Sn−1 = {x ∈ Rn : |x| = 1} .

Moreover ωn−1 :=
∫

Sn−1 1dθ denotes the area of Sn−1.
The author is indebted to Prof. Ognyan Kounchev for stimulating discussions and

valuable comments on the subject.

2. Fischer pairs for C [x1, ..., xn]

Define a scalar product on C [x1, ..., xn] by setting for f, g ∈ C [x1, ..., xn]

〈f, g〉 :=

∫
Rn

f (x) g (x)e−|x|
2

dx.

A simple argument, using partial integration, shows that for j = 1, ..., n〈
∂

∂xj
f, g

〉
= −

〈
f,

∂

∂xj
g

〉
+ 2 〈xj · f, g〉 .

Then a straightforward computation gives

〈∆f, g〉 = 〈f,∆g〉+ 2
n∑
j=1

〈
xj

∂

∂xj
f, g

〉
−
〈
f, xj

∂

∂xj
g

〉
.

Assuming now that f, g are homogeneous one obtains the following conclusion:
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Proposition 1. For homogeneous polynomials f and g of degree mf and mg resp. the
following identity holds:

(5) 〈∆f, g〉 = 〈f,∆g〉+ 2 (mf −mg) 〈f, g〉 .
Theorem 2. Suppose that f is a homogeneous polynomial, and let k ∈ N0 with 2 (k − 1) ≤
deg f. Then ∆kf = 0 if and only if 〈f, g〉 = 0 for all polynomials g with 2 (k − 1)+deg g <
deg f.

Proof. Let us prove the necessity part. Clearly we can assume that g is a homogeneous
polynomial. Let mg = deg g and mf = deg f. We prove the claim by induction over k. If
k = 0 then the assumption ∆kf = f = 0 clearly implies 〈f, g〉 = 0 for any polynomial
g. Suppose the statement holds for k and assume that ∆k+1f = 0 for a polynomial f
with deg f ≥ 2k. Then ∆kf1 = 0 with f1 := ∆f and deg f1 ≥ 2 (k − 1) . By induction
hypothesis we know that 0 = 〈f1, g〉 = 〈∆f, g〉 for all homogeneous polynomials g with
deg g < deg f1 − 2 (k − 1) = deg f − 2k. Then (5) shows that

(6) 0 = 〈f,∆g〉+ 2 (mf −mg) 〈f, g〉
for all homogeneous polynomials g with mg < mf − 2k. Hence it suffices to show that (6)
implies 0 = 〈f, g〉 for all homogeneous polynomials g with mg ≤ mf − 2k.

We prove the latter statement by a second induction over a new variable s ∈ N: let k
be fixed, we claim that 0 = 〈f, g〉 for all homogeneous polynomials g with mg < mf − 2k
and ∆sg = 0. If s = 1, this means that g is a harmonic polynomial with mg < mf − 2k.
Then equation (6) implies 0 = 〈f, g〉 . Assume that the statement holds for s, and let g1

be a homogeneous polynomial such that mg1 < mf − 2k and ∆s+1g1 = 0. By the Gauß

decomposition, g1 = |x|2 g+ h, where h is a harmonic homogeneous polynomial of degree
≤ deg g1 and g is homogeneous. Then (6) implies

(7) 0 =
〈
f,∆(|x|2 g)

〉
+ 2 (mf −mg − 2)

〈
f, |x|2 g

〉
.

We know that ∆s∆(|x|2 g) = ∆s+1g1 = 0. Thus by induction hypothesis
〈
f,∆(|x|2 g)

〉
= 0.

Hence (7) yields 0 = (mf −mg − 2)
〈
f, |x|2 g

〉
. Since mg + 2 = mg1 < mf we conclude〈

f, |x|2 g
〉

= 0. Since we already know that 〈f, h〉 = 0 we arrive at 〈f, g〉 = 0 and the
induction is completed.

Now let us prove the sufficiency part (which is not needed later) by induction over k.
If k = 0 we may take g = f and obtain that 〈f, f〉 = 0 which implies f = 0. Assume the
statement holds for k, and let f be a polynomial of degree ≥ 2k such that (*) 〈f, g〉 = 0
for all polynomials g of degree < deg f − 2k. Define F := ∆f. Then for any polynomial
g with degree < degF − 2 (k − 1) = deg f − 2k we have by (5) and our assumption (*)
(twice applied)

〈F, g〉 = 〈∆f, g〉 = 〈f,∆g〉+ 2 (mf −mg) 〈f, g〉 = 0.

By induction hypothesis we conclude that ∆kF = 0, hence ∆k+1f = 0. The proof is
complete. �
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Theorem 3. Let P be a nonhyperbolic polynomial of degree 2k. Then (P,∆k) is a Fischer
pair for C [x1, ..., xn]. Moreover,

(8) ∆k (Pq) 6= 0 and ∆k (P2kq) 6= 0

for any polynomial q 6= 0 where P2k is the principal part of P.

Proof. Suppose that ∆k (P2kq) = 0 for a polynomial q 6= 0. By Theorem 2, 〈P2kq, g〉 = 0
for all polynomials g of degree < deg (Pq)− 2 (k − 1) = deg q + 2. So we can take g := q
and obtain that

0 = 〈P2kq, q〉 =

∫
Rn

|q (x)|2 P2k (x) e−|x|
2

dx.

Since P2k ≥ 0 we conclude that q = 0, a contradiction. Hence ∆k (P2kq) 6= 0 for all q 6= 0.

By Theorem 37 in the appendix, (P2k, |x|2k) is a Fischer pair. Finally Theorem 38 shows
that (P,∆k) is a Fischer pair for C [x1, ..., xn] and that ∆k (Pq) 6= 0. �

I am are very indebted to H.S. Shapiro [57] for providing and permitting me to com-
municate the following example. It shows that the operator ∆k in Theorem 3 cannot be
replaced by a general homogeneous elliptic differential operator.

Example 4. There exist elliptic homogeneous polynomials P,Q of the same degree such
that (P,Q (D)) is not a Fischer pair: Let d = 2 and P (x, y) = x4 + y4 + 12x2y2 and
Q (x, y) = x4 + y4 − x2y2. It is easy to see that P,Q are homogeneous elliptic polynomials
and that 〈P,Q〉F = 0. It follows that

0 = 〈P,Q〉F = 〈1, P ∗ (D) (Q)〉 = P ∗ (D) (Q) (0) = P ∗ (D) (Q · 1) .

Hence (Q,P ∗ (D)) is not a Fischer pair.

3. Hayman’s conjecture for polynomials

Let us recall the assumptions in Hayman’s conjecture: a polyharmonic function f :
Rn → C of order k vanishes on k different ellipsoids S1, ..., Sk. Hence we can find irreducible
polynomials ψ1, ..., ψk ∈ R [x1, ..., xn] of degree 2 such that

Sj := {x ∈ Rn : ψj (x) = 0} for j = 1, ..., k,

and it is clear that each ψj, j = 1, ..., k, changes sign on Rn. Since S1, ..., Sk are pairwise
different it is also clear that ψj is not a scalar multiple of ψl for k 6= l. We want to prove
that f is identical zero.

These remarks motivate the following terminology:

Definition 5. Let ψ ∈ R [x1, ..., xn] be a polynomial and write ψ = ψ1...ψr as a product of
irreducible polynomials in R [x1, ..., xn]. Then ψ is called square-free if no ψj is a multiple
of some ψl for l 6= j. In other words: ψ does not have multiple prime factors. The
polynomial ψ is called non-degenerate if each irreducible factor ψj changes sign on Rn for
j = 1, ..., r.
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Let us emphasize that the zero set Zψ := {x ∈ Rn : ψ (x) = 0} of a polynomial ψ ∈
R [x1, ..., xn] is in general not connected, even if ψ is irreducible, cf. the examples on p.
60 in [13]. Theorem 4.5.1 in [13] shows that an irreducible polynomial ψj changes sign on
Rn if and only if the zero set

Zψj
:= {x ∈ Rn : ψj (x) = 0}

has dimension n− 1, and it is also equivalent to the fact that ψj has a nonsingular zero.
Hence the notion of a non-degenerate square-free polynomial incorporates the fact that
we are dealing with a finite union of pairwise different hypersurfaces. The following is a
simple extension of Theorem 4.5.1 in [13]:

Theorem 6. Let ψ ∈ R [x1, ..., xn] be square-free and assume that each irreducible factor
ψj, j = 1, ..., r, changes sign on given open sets Uj for j = 1, ..., r. Suppose that f ∈
R [x1, ..., xn] vanishes on Zψj

∩ Uj for j = 1, ..., r. Then there exists q ∈ R [x1, ..., xn] such
that f = qψ1...ψr.

Now we can give an affirmative answer to the conjecture of W. Hayman for the class
of all polyharmonic polynomials. Let us recall that a nonhyperbolic polynomial has even
degree.

Theorem 7. Let ψ ∈ R [x1, ..., xn] be square-free, nonhyperbolic and assume that each
irreducible factor ψj, j = 1, ..., r, changes sign on given open sets Uj for j = 1, ..., r.
Suppose that f ∈ R [x1, ..., xn] vanishes on Zψj

∩ Uj for j = 1, ..., r. If ∆kf = 0 with

k = 1
2
degψ then f = 0.

Proof. Suppose that f 6= 0. By Theorem 6 we can write f = qψ for some polynomial q 6= 0.
Theorem 3 shows that ∆k (f) = ∆k (ψq) 6= 0. This contradiction shows that f = 0. �

As mentioned in the introduction, a positive solution to Hayman’s conjecture for the
case n = 2 has been given in [9] and [10]. However, for the polynomial case our result is
stronger since in [9] it is assumed that ψ is elliptic on R2. So the following example is not
covered by their results:

Example 8. Let ψ1, ..., ψk be nonhyperbolic, sign-changing irreducible polynomials in n
variables of degree 2 (e.g. paraboloids). If the polynomial f vanishes on the pairwise dif-
ferent sets Zψj

= {x ∈ Rn : ψj (x) = 0} for j = 1, ..., k, and ∆kf = 0 then f is identically
zero.

The result in Example 8 was proved for k = 1 in [6], p. 643; it generalizes a result in
[28] saying that a harmonic polynomial p (x, y) in two variables x, y which vanishes on the
parabola x = y2 must be identically zero. Moreover, the authors in [28] have shown that
there exists a non-zero harmonic function f on the space R2 vanishing on the parabola
x = y2 (while this is not possible for the curves x = ym for m > 2). This shows that
Theorem 7 does not hold for harmonic functions f : Rn → C (for k = 1). We shall show
that an analog of Theorem 7 for polyharmonic functions f : Rn → C is valid if we assume
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that ψ is elliptic. However, this needs some more efforts to be carried out in the next
sections.

4. Homogeneous Fischer pairs for A (BR)

In this section we want to prove that (P,∆k) is a Fischer pair for the algebra A (BR)
whenever P is a homogeneous elliptic polynomial of degree 2k. At first we need estimates
between the norm ‖fm‖ defined in (4) of a homogeneous polynomial fm of degree m and
the maximum norm on the sphere. Let us define

Im :=

∫ ∞

0

e−r
2

rmdr for m ∈ N0.

This integral can be computed explicitly: for the even case (see p. 265 in [54]) we have

(9) I2m =

√
π

2

(2m)!

m!
2−2m =

√
π

2

1 · 3 · 5 · ... · (2m− 1)

2m
≤ m!

while in the odd case a simple substitution argument gives

(10) I2m+1 =

∫ ∞

0

e−r
2

r2m+1dr =
1

2

∫ ∞

0

e−xxmdx =
1

2
m!.

We need some elementary estimates, and for convenience of the reader, we include the
proof.

Proposition 9. For n ≥ 1 define n∗ := n
2
− 1 ≥ 0 for even n, and n∗ := (n− 1) /2 ≥ 0

for odd n. Then for any m ≥ 0

(11)
1

4
(m+ n∗ − 1)! ≤ I2m+n−1 ≤ (m+ n∗)!

where we define (−1)! := 2. For m, k ∈ N0 with m+ n∗ ≥ k the following estimates

(12)
1

2
≤ (m+ n∗ − 1)!

(m+ n∗ − k − 1)!
≤ I2m+n−1

I2m−2k+n−1

≤ (m+ n∗)!

(m+ n∗ − k)!

hold.

Proof. If n is even then 2m + n − 1 = 2l + 1 for some l ∈ N0, so m + n∗ = l. Then
I2m+n−1 = 1

2
(m+ n∗)! for each m ≥ 0 by (10). Clearly I2m+n−1 ≥ 1

2
(m+ n∗ − 1)! for

m + n∗ ≥ 1. For m + n∗ = 0 we have I2m+n−1 = 1
2
, and with the convention (−1)! := 2,

one obtains that (11) also holds in this case. The inequality (12) follows from the fact

that I2m+n−1

I2m−2k+n−1
= (m+n∗)!

(m+n∗−k)! .

If n is odd then 2m+n− 1 = 2l, so m+n∗ = l. Then I2m+n−1 ≤ (m+ n∗)! by (9). For
the lower estimate in (11) note that for m+ n∗ ≥ 1

I2m+n−1 =

√
π

2

1 · 3 · 5 · ... · (2 (m+ n∗)− 1)

2m+n∗
≥
√
π

4
(m+ n∗ − 1)!.
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If m+ n∗ = 0 then I2m+n−1 =
√
π

2
≥ 1

4
(−1)!. The upper estimate in (12) follows from the

identity

I2m+n−1

I2m−2k+n−1

=
1

2k
(2m+ 2n∗ − 2k + 1) (2m+ 2n∗ − 2k + 3) .... (2m+ 2n∗ − 1) .

If m + n∗ − k ≥ 1 one obtains the lower estimate as well. If m + n∗ − k = 0 one
has to be careful with the first factor, but the lower estimate is valid by interpreting
(m+ n∗ − k − 1)! = (−1)! = 2. �

The next estimate is straightforward:

Proposition 10. Let fm be a homogeneous polynomial of degree m. Then

(13) ‖fm‖ ≤
√
ωn−1

√
I2m+n−1 max

θ∈Sn−1
|fm (θ)| .

Proof. Let us take spherical coordinates x = rθ where r > 0 and θ ∈ Sn−1. By homogene-
ity of fm we have fm (rθ) = rmf (θ) for all r > 0 and θ ∈ Sn−1. Thus

(14) 〈fm, fm〉 =

∫
Rn

|fm (x)|2 e−|x|
2

dx = I2m+n−1

∫
Sn−1

|fm (θ)|2 dθ.

A standard estimate for the last integral gives now (13). �

Theorem 11. Let n ∈ N be fixed. Then for all homogeneous polynomials fm of degree
m ∈ N0 and for all θ ∈ Sn−1

(15) |fm (θ)| ≤
√

2ωn−1
(1 +m)(n−1)/2

√
I2m+n−1

‖fm‖ .

Proof. In this proof we use several results from the theory of spherical harmonics which
can be found in [5]: By the Gauß decomposition we can write f = hm + hm−2 |x|2 +
....+hm−2m2 |x|

2m2 with harmonic homogeneous polynomials hm−2j of degree m− 2j, and
m2 :=

[
m
2

]
where [x] denotes the largest integer ≤ x. Then

(16) f (θ) = hm (θ) + hm−2 (θ) + ....+ hm−2m2 (θ) ,

and |f (θ)|2 =
∑m2

j,l=0 hm−2j (θ)hm−2l (θ). Since hm−2j and hm−2l are harmonic and homo-
geneous polynomials of degree m− 2j and m− 2l the orthogonality relations imply

(17)

∫
Sn−1

|f (θ)|2 dθ =

m2∑
j=0

∫
Sn−1

|hm−2j (θ)|2 dθ.

Let Zm (η, θ) be a zonal harmonic of degree m with pole at θ ∈ Sn−1, so for each harmonic
polynomial h of degree m the following identity

(18) h (θ) =

∫
Sn−1

h (η)Zm (η, θ)dη
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holds. Then f (θ) =
∑m2

j=0

∫
Sn−1 hm−2j (η)Zm−2j (η, θ)dη by (16) and (18). The Cauchy-

Schwarz inequality, applied to each summand, yields

|f (θ)| ≤
m2∑
j=0

(∫
Sn−1

|hm−2j (η)|2 dη
) 1

2 √
am−2j.

where
∫

Sn−1 |Zm−2j (η, θ)|2 dη = am−2j for j = 0, ...,m2, and am is the dimension of the
space of all harmonic polynomials of degree m. The Cauchy-Schwarz inequality for Rn

yields

(19) |f (θ)| ≤ (

m2∑
j=0

∫
Sn−1

|hm−2j (η)|2 dη)
1
2 · (

m2∑
j=0

am−2j)
1
2 .

Since
∑m2

j=0 am−2j ≤ (m+ 1) am, (17) and (19) lead to

|f (θ)| ≤
√

(1 +m) am(

∫
Sn−1

|f (η)|2 dη)
1
2 .

Now we use the estimate am ≤ 2 (m+ 1)n−2, so with (14) we arrive at (15). The former
estimate can be derived in the following way: For n > 2 it is proved in [5] that

am =
(n+m− 3)!

(n− 2)!m!
(n+ 2m− 2) =

n− 2 + 2m

n− 2

n−3∏
l=1

m+ l

l
.

For l > 1 and m > 1 we have m (l − 1) ≥ 2 (l − 1) ≥ l, so l + m ≤ m · l. Since
n − 2 + 2m ≤ 2 (m+ 1) (n− 2) for n > 2 the result easily follows for l > 1 and m > 1.
Clearly this estimate is also valid for m = 0 and m = 1. In case of dimension n = 2 it is
well known that am = 2 for all m ≥ 1. �

The following result is the analogue of Lemma 1 in [56].

Proposition 12. Suppose that fm are homogeneous polynomials of degree m for m ∈ N0.
Then

∑∞
m=0 fm converges compactly in BR if and only if

(20) lim sup
m7−→∞

(
max
θ∈Sn−1

|fm (θ)|
)1/m

≤ R−1

if and only if

(21) lim sup
m7−→∞

(
‖fm‖√
m!

)1/m

≤ R−1.

Proof. Suppose that
∑∞

m=0 fm converges compactly in BR. Let ρ < R. Then there exists
M > 0 such that

∑∞
m=0 |fm (x)| ≤M for all |x| ≤ ρ, in particular

ρm |fm (θ)| ≤M
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for all θ ∈ Sn−1. This implies lim supm7−→∞(maxθ∈Sn−1 |fm (θ)|)1/m ≤ ρ−1. Since this holds
for any ρ < R we arrive at (20).

We show now that (20) implies (21). By (13) and the inequality I2m+n−1 ≤ (m+ n∗)! ≤
m! (m+ n∗)n

∗
(see (11)) we obtain(

‖fm‖√
m!

)1/m

≤ ω
1/2m
n−1 (m+ n∗)n

∗/2m max |fm (θ)|1/m .

By taking the limit superior m 7−→ ∞ and using assumption (20) one obtains (21).
Suppose that (21) holds. Let ρ < R and take δ > 0 so small such that ρ

R−δ < 1. Since

R−1 < (R− δ)−1, there exists m0 such that ‖fm‖ /
√
m! ≤ (R− δ)−m for all m ≥ m0.

Since I2m+n−1 ≥ 1
4
(m− 1)! we obtain from (15)

|fm (θ)| ≤
√

2ωn−1 (1 +m)(n−1)/2

√
I2m+n−1

‖fm‖ ≤ 2

√
2ωn−1 (1 +m)n/2√

m!
‖fm‖

≤ 2
√

2ωn−1 (1 +m)n/2 (R− δ)−m .

Let x = rθ with r ≤ ρ. Then
∞∑
m=0

rm |fm (θ)| ≤ 2
√

2ωn−1

∞∑
m=0

(1 +m)n/2
(

ρ

R− δ

)m
clearly converges uniformly for r ≤ ρ, so

∑∞
m=0 fm (x) converges uniformly for |x| ≤ ρ. �

The following is the main result of this section:

Theorem 13. Let 0 < R ≤ ∞ and P2k be a homogeneous polynomial of degree 2k such
that CP2k (x) ≥ |x|2k for all x ∈ Rn for some constant C > 0. Then (P2k,∆

k) is a Fischer
pair for A (BR).

Proof. For f ∈ A (BR) write f =
∑∞

m=0 fm where fm are homogeneous polynomials of
degree m. Assume that m ≥ 2k. By Theorem 3 (P2k,∆

k) is Fischer pair for C [x1, ..., xn]
hence we can write

(22) fm = P2k · T (fm) + rm

where T (fm) is homogeneous of degree m− 2k, and rm is homogeneous of degree m, see
Theorem 37 in the appendix. Since ∆krm = 0, Theorem 2 yields 〈rm, T (fm)〉 = 0 (note
that deg T (fm) < deg rm − 2 (k − 1)). Then

(23) C 〈fm, T (fm)〉 = C 〈P2kT (fm) , T (fm)〉 ≥
〈
|x|2k T (fm) , T (fm)

〉
,

where we have used for the last inequality our assumption CP2k (x) ≥ |x|2k. Further we
know that (cf. formula (14))

(24)
I2m−4k+n−1

I2m−2k+n−1

〈
|x|2k T (fm) , T (fm)

〉
= 〈T (fm) , T (fm)〉 .
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Now (24) and (23) and the Cauchy-Schwarz inequality imply

(25) ‖T (fm)‖2 ≤ C
I2m−4k+n−1

I2m−2k+n−1

‖fm‖ · ‖T (fm)‖ .

Thus we have proved the fundamental inequality

(26) ‖T (fm)‖ ≤ C
I2m−4k+n−1

I2m−2k+n−1

‖fm‖

which will be used later frequently. Since I2m−4k+n−1 ≤ 2I2m−2k+n−1 by (12) one arrives
at the weaker estimate

(27) ‖T (fm)‖ ≤ 2C ‖fm‖ .

Note that m! ≤ (m− 2k)!m2k for m ≥ 2k. It follows that(
‖T (fm)‖√
(m− 2k)!

)1/(m−2k)

≤ (2C)1/(m−2k)m2k/(m−2k)

(
‖fm‖√
m!

)1/(m−2k)

.

It is not difficult to see that the limit superior of the right hand side is less than or equal
to R−1 since f ∈ A (BR) . By Proposition 12, q :=

∑∞
m=2k T (fm) converges on compact

subsets of BR, so q is in A (BR). It follows from (22) that r :=
∑∞

m=0 rm converges
compactly in BR and that f = P2kq + r. Since the locally uniform limit of polyharmonic
functions is polyharmonic, we infer ∆kr = 0. The proof is complete. �

In order to conclude that (P,Q (D)) is a Fischer pair for A (BR) it is not sufficient that
(P,Q (D)) is a Fischer pair for C [x1, ..., xn]. A counterexample is constructed in [56],
p. 532, for the space A (R2) with the homogeneous polynomials Q (x, y) = x2 + y2 and
Pt (x, y) = y (tx− y) for suitable t ∈ R.

5. Uniqueness of decompositions

It follows from Theorem 3 that (P2k − d,∆k) is a Fischer pair for C [x1, ..., xn] for all
real numbers d if P2k is non-negative. At first it might be a temptation to conjecture
that (P2k − d,∆k) is a Fischer pair for A (BR) for any R > 0 and any real number d.
However the following simple example shows that this far from being true: If d ≥ R2k

then P := |x|2k − d is invertible in A (BR) and we can write for any f ∈ A (BR) the
following trivial and useless decomposition

f = u+ Pq with q := (f − u)P−1 ∈ A (BR)

where u ∈ A (BR) is an arbitrary harmonic function. Thus uniqueness fails, a sharp
contrast to the polynomial case where existence and uniqueness are related, see Theorem
37. On the other hand, Theorem 19 in this section will show us that (|x|2k − d,∆k) is a
Fischer pair for A (BR) whenever d < R2k.
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It is also very instructive to consider the one-dimensional case: then ∆k is just the

operator d2k

dx2k and a function ϕ is in A (BR) if and only if its power series converges in
{x ∈ R : |x| < R} .
Theorem 14. Let n = 1 and let P be a polynomial of exact degree 2k in one variable,
and let R > 0. Then (P,∆k) is a Fischer pair for A (BR) if and only if all zeros of the
polynomial P in the complex plane are contained in the disk {z ∈ C : |z| < R} .
Proof. Let z1, ..., z2k be the zeros of P . Suppose that there exists a zero of P, say z1, which
is not in {z ∈ C : |z| < R} and that (P,∆k) is a Fischer pair for A (BR) . Then u (x) :=
(x− z2) ... (x− z2k) has the property that d2ku/dx2k = 0, so we can write u = 0P +u. On
the other hand, the decomposition u = P 1

x−z1 +0 holds since 1/ (x− z1) is in A (BR) . This
contradicts to the uniqueness of the Fischer decomposition. For the converse, note that
the existence of the Fischer decomposition follows from standard interpolation theory.
For uniqueness, suppose that f = Pq1 + u1 = Pq2 + u2. Then Pϕ = u with ϕ = q1 − q2
and u := u2 − u1 and d2ku/dx2k = 0. It follows that u (zj) = 0 for j = 1, ..., 2k. Since u
has degree 2k − 1 this yields u = 0, hence ϕ = 0. �

Let us turn now to the question of uniqueness of the Fischer decomposition. The next
theorem shows that a solution ϕ ∈ A (BR) of the equation Pϕ = u for a function u defined
in neighborhood of 0 satisfying ∆ku = 0, must be zero if the radius R is sufficiently large.
This yields the uniqueness of Fischer decompositions in the space A (BR) for large radii
since f = Pq1 + u1 = Pq2 + u2 implies that Pϕ = u with ϕ = q1 − q2 and u := u2 − u1

and ∆ku = 0.
It is instructive to consider in Theorem 15 the case n = 1 again: Then P is a univariate

polynomial of degree 2k and it is assumed that ϕ is of the form

ϕ (x) =
u (x)

P (x)

where u is a polynomial of degree < 2k. The conclusion of the theorem is that the
convergence radius of ϕ is bounded by a number given in terms of the coefficients of
the polynomial P. Note that the assumption deg u < degP = 2k is essential in order to
guarantee that ϕ 6= 0 has a singularity.

Theorem 15. Let P be polynomial of degree 2k, let P = P2k + ... + P0 be its homo-
geneous decomposition, and assume that CP2k (x) ≥ |x|2k for all x ∈ Rn. Let EP :=
{s ∈ {0, ..., 2k − 1} : Ps 6= 0} and lP the cardinality of EP ; further α denotes the smallest
and β the largest element in EP . Define

D := max
s=0,...,2k−1

max
θ∈Sn−1

|Ps (θ)| .

If ϕ ∈ A (BR) , ϕ 6= 0, is a solution of the equation Pϕ = u in a neighborhood of zero for
some real analytic function u with ∆ku = 0 then

Rγ ≤ lPCD for some γ with 2k − β ≤ γ ≤ 2k − α.
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Proof. Using the technique provided in (14) we obtain for any homogeneous polynomial
ϕm+j of degree m+ j

‖P2k−jϕm+j‖2 ≤ I4k+2m+n−1

I2m+2j+n−1

max
θ∈Sn−1

|P2k−j (θ)|2 ‖ϕm+j‖2 .

Further by (12) for j = 1, ..., 2k

I4k+2m+n−1

I2m+2j+n−1

≤ (m+ n∗ + 2k)!

(m+ j + n∗)!
≤ (m+ n∗ + 2k)2k−j .

Hence we have the estimate

(28) ‖P2k−jϕm+j‖ ≤ D2k−j (m+ n∗ + 2k)k−
1
2
j ‖ϕm+j‖ .

The equation Pϕ = u, valid in a neighborhood of 0, implies that P2kϕm+ ....+P0ϕm+2k =
um+2k where we have written ϕ =

∑∞
m=0 ϕm and u =

∑∞
m=0 um, and ϕm and um are

homogeneous polynomials of degree m. Since ϕ 6= 0 there exists a natural number m with
‖ϕm‖ 6= 0. Note that ∆ku = 0 implies that ∆kum+2k = 0. By Theorem 2 we conclude
that 〈um+2k, ϕm〉 = 0, and therefore 〈P2kϕm + ....+ P0ϕm+2k, ϕm〉 = 0. It follows that

|〈P2kϕm, ϕm〉| ≤
∑2k

j=1 |〈P2k−jϕm+j, ϕm〉|. The Cauchy-Schwarz inequality and division

by ‖ϕm‖ implies

|〈P2kϕm, ϕm〉|
‖ϕm‖

≤
2k∑
j=1

‖P2k−jϕm+j‖ .

On the other hand,

C 〈P2kϕm, ϕm〉 ≥
〈
|x|2k ϕm, ϕm

〉
=
I2k+2m+n−1

I2m+n−1

‖ϕm‖2 .

Hence the last two equations imply that

(29) C−1 I2k+2m+n−1

I2m+n−1

‖ϕm‖ ≤
2k∑
j=1

‖P2k−jϕm+j‖ .

By (12), for m ≥ 1

(30)
I2k+2m+n−1

I2m+n−1

≥ (k +m+ n∗ − 1)!

(m+ n∗ − 1)!
≥ (m+ n∗)k ≥ mk.

With (29) and (30) and (28) we arrive at the inequality

(31) C−1mk ‖ϕm‖ ≤
2k∑
j=1

(m+ n∗ + 2k)k−
1
2
j D2k−j ‖ϕm+j‖ .

Note that the last sum has exactly lP summands. Further we can estimate D2k−j ≤ D
for the coefficients with D2k−j 6= 0. For an inequality of the type a ≤ b1 + ... + bl with
positive entries it is trivial to conclude that there must exists an index s ∈ {1, ..., l} such
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that a ≤ lbs. Thus for given m there exists m1 > m and m1 ≤ m+2k (writing m1 = m+j
with 0 < j ≤ 2k) such that

C−1mk ‖ϕm‖ ≤ DlP (m+ n∗ + 2k)k−
1
2
(m1−m) ‖ϕm1‖ .

Repeating this argument for ϕm1 (note that ‖ϕm1‖ 6= 0), one obtains m2 > m1 and
m2 ≤ m1 + 2k such that

C−1mk
1 ‖ϕm1‖ ≤ DlP (m1 + n∗ + 2k)k−

1
2
(m2−m1) ‖ϕm2‖ .

Let us define m0 := m. By induction we obtain a sequence mj for j = 1, 2, ... such that

(32) C−jmk
0...m

k
j−1 ‖ϕm‖ ≤ DjljP

∥∥ϕmj

∥∥ j∏
r=1

(mr−1 + n∗ + 2k)k−
1
2
(mr−mr−1) .

Note that mj−1 < mj, so mj → ∞ for j → ∞. It is easy to see from the construction
of mj and (31) that mj ≤ mj−1 + 2k − α and mj ≥ mj−1 + 2k − β. It follows that
mj ≤ m+ (2k − α) j and mj ≥ m+ j (2k − β) for all j.

Further (32) implies that ∥∥ϕmj

∥∥√
mj!

≥ bj
1

(lPCD)j
‖ϕm‖

where we have defined

bj :=
mk

0m
k
1...m

k
j−1√

mj!

j∏
r=1

(mr−1 + n∗ + 2k)
1
2
(mr−mr−1)−k .

Note that for j ≥ 2

bj = bj−1

mk
j−1√

(mj−1 + 1) ....mj

(mj−1 + n∗ + 2k)
1
2
(mj−mj−1)−k

= bj−1
1(

1 + n∗

mj−1
+ 2k

mj−1

)k
√

(mj−1 + n∗ + 2k)mj−mj−1

(mj−1 + 1) ....mj

.

Since (mj−1 + n∗ + 2k)mj−mj−1 ≥ (mj−1 + 1) ....mj we have

bj ≥ bj−1

(
1 +

n∗

mj−1

+
2k

mj−1

)−k
.

Let now ε > 0. Then there exists j0 ∈ N such that 1+ n∗

mj−1
+ 2k

mj−1
≤ (1 + ε) for all j ≥ j0.

It follows that bj ≥ (1 + ε)−k(j−j0) bj0 and∥∥ϕmj

∥∥√
mj!

≥ (1 + ε)−k(j−j0) bj0
1

(lPCD)j
‖ϕm‖
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for j ≥ j0. Since mj →∞ it is clear that mj

√
‖ϕm‖ → 1. Since mj/j is a bounded sequence

there exists a subsequence such that γ := limmjr/jr. Clearly 2k− β ≤ γ ≤ 2k−α. Then

lim
r→∞

sup mjr

√∥∥ϕmjr

∥∥√
mjr !

≥ (1 + ε)−
k
γ

(
1

lPCD

)1/γ

.

Proposition 12 implies R−1 ≥ (1 + ε)−k/γ
(

1
lPCD

)1/γ

. Now let ε→ 0. �

It is instructive to consider the special case P = P2k − 1. Then lP = 1 and D = 1, and
α = β = 0. Then we obtain the following result:

Theorem 16. Let P be a homogeneous polynomial of degree 2k such that CP (x) ≥ |x|2k
for all x ∈ Rn. Suppose that ϕ ∈ A (BR) , ϕ 6= 0, satisfies the equation (P − 1)ϕ = u for
some function u with ∆ku = 0 in a neighborhood of 0. Then R2k ≤ C.

6. Inhomogeneous Fischer pairs

In the following it is convenient to introduce a new notation: If (P,Q(D)) is a Fischer
pair there exist for each polynomial f unique polynomials q and r such that f = Pq +
r with Q (D) r = 0. Since the decomposition is unique we can define operators TP :
C [x1, ..., xn] → C [x1, ..., xn] and RP : C [x1, ..., xn] → C [x1, ..., xn] by putting TP (f) := q
and RP (f) := r. So we write now

(33) f = P · TP (f) +RP (f) .

It is easy to see that TP and RP are linear operators. Let

(34) P (x) = Pk −
k−1∑
s=0

Ps

be the decomposition into a sum of homogeneous polynomials. We consider the polyno-
mials Ps in (34) as multiplication operators Ps : C [x1, ..., xn] → C [x1, ..., xn] defined by
Ps (f) = Psf.

In the next theorem we describe the operator TP via the simpler operator T := TPk
.

Theorem 17. Let Q be a homogeneous polynomial of degree k and P be a polynomial of
degree k of the form (34) and assume that (Pk, Q (D)) is a Fischer pair. With the above
notations the identity

(35) TP (fm) =
m∑

j=−1

Λj (fm)

holds for all homogeneous polynomials fm of degree m where

(36) Λj (fm) :=
k−1∑
s0=0

k−1∑
s1=0

...

k−1∑
sj=0

TPsj
....TPs0Tfm
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with the convention that Λ−1 (fm) := Tfm

Proof. The proof follows by induction over the degree m. �

Theorem 18. Let P a be polynomial of degree 2k and P = P2k−...−P0 be its homogeneous
decomposition, and assume that CP2k (x) ≥ |x|2k for all x ∈ Rn. With the notations of
Theorem 15 assume that R is so large such that

(37) lPCD < Rγ for all γ with 2k − β ≤ γ ≤ 2k − α.

Then (P,∆k) is a Fischer pair for A (BR) .

Proof. 1. It follows from Theorem 15 that condition (37) implies the uniqueness of the
Fischer decomposition. Next we show that (37) implies

(38) CD <
R2k∑
s∈EP

Rs
.

Recall that EP := {s ∈ {0, ..., 2k − 1} : Ps 6= 0} , and α is the smallest and β the largest
element of EP . If R ≥ 1 then

∑
s∈EP

Rs ≤ lPR
β. Then

R2k∑
s∈EP

Rs
≥ 1

lP
R2k−β > CD

where we have used for the last inequality the condition (37) for γ = 2k− β. Similarly, if
R < 1, then

∑
s∈EP

Rs ≤ lPR
α, and as above one proves that (38) is fulfilled as well. In

the sequel we shall show that (38) implies the existence of the Fischer decomposition.
2. Let f ∈ A (BR), and write f =

∑∞
m=0 fm with homogeneous polynomials fm of degree

m.We want to estimate the summands TP (fm) , and we are doing this by estimating norms
of the summands occuring in (36). We may assume that m ≥ 8k which clearly implies
that

(39)
m+ n∗

m− 4k + n∗
≤ 2.

Consider the tuple (sj, ..., s0) as fixed and define

(40) dr := degPsrT....Ps0Tfm = m+ s0 + ...+ sr − 2k (r + 1)

for r = 0, ..., j. Note that dr = dr−1 + sr − 2k. Further sr ≤ β < 2k for r = 0, ..., j. So
it is clear that dj < dj−1 < ... < d0. If dj > 0 and dj − 2k is negative, this means that
the polynomial T

[
Psj

T....Ps0Tfm
]

is the zero polynomial, so we have only to consider the
case that dj − 2k ≥ 0. Further for l = 0, ..., r one has with b := 2k − β

(41) dj−l ≥ 2k + lb,

which follows by induction over l, namely dj−(l+1) = dj−l − sj−l + 2k ≥ 2k + bl − β + 2k.
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Next we shall prove that for each ε > 0 there exists a constant Aε > 0 (not dependent
on (sj, ..., s0)) such that for all m ≥ 8k

(42)

∥∥TPsj
T....Ps0Tfm

∥∥√
(dj − 2k)!

≤ 4Cj+2Dj+1 (m+ n∗)k
2kAε (1 + ε)k(j+1)√

(m− 4k)!
‖fm‖ .

3. Let us prove (42). By the fundamental inequality (26) we have∥∥TPsj
T....Ps0Tfm

∥∥ ≤ C
I2dj−4k+n−1

I2dj−2k+n−1

∥∥Psj
T....Ps0Tfm

∥∥ .
Moreover ∥∥Psj

T....Ps0Tfm
∥∥2 ≤ D2 I2dj+n−1

I2(dj−sj)+n−1

∥∥TPsj−1
T....Ps0Tfm

∥∥2
.

It follows that ∥∥TPsj
T....Ps0Tfm

∥∥ ≤ CDEj
∥∥TPsj−1

T....Ps0Tfm
∥∥

where

(43) Ej :=
I2dj−4k+n−1

I2dj−2k+n−1

√
I2dj+n−1

I2(dj−sj)+n−1

.

Iterating this argument we arrive at the estimate

(44)
∥∥TPsj

T....Ps0Tfm
∥∥ ≤ Cj+1Dj+1Ej...E0 ‖Tfm‖ .

Recall that ‖T (fm)‖ ≤ 2C ‖fm‖, see (27). If we can prove that for all m ≥ 8k

(45) Bj :=
Ej...E0√
(dj − 2k)!

≤ (m+ n∗)k
2k+1Aε (1 + ε)k(j+1)√

(m− 4k)!

then (44) implies our claim (42).
4. Let us prove (45). Since dr = dr−1 +sr−2k and 2k ≤ dj < dr < dr−1 we first observe

that for r = 1, ..., j

(46) (dr−1 − 2k)! ≤ (dr − 2k)! · (dr−1 − 2k)2k−sr .

Note that dr−1 − 2k = dr − sr, hence (46) implies that for r = 1, ..., j

(47) Br =

√
(dr−1 − 2k)!√
(dr − 2k)!

ErBr−1 ≤ (dr − sr)
k− 1

2
sr ErBr−1.

Using (12) we obtain for Er defined in (43) the estimate

(48) Er ≤
(dr − 2k + n∗ − 1)!

(dr − k + n∗ − 1)!
(dr + n∗)

1
2
sr .
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Since (dr + n∗)/(dr − sr) ≥ 1 and 0 ≤ sr ≤ 2k we have

(dr + n∗)
1
2
sr

(dr − sr)
1
2
sr
≤ (dr + n∗)k

(dr − sr)
k
.

Thus (48) and the last inequality imply

(49) (dr − sr)
k− 1

2
sr Er ≤ (dr + n∗)k

(dr − 2k + n∗ − 1)!

(dr − k + n∗ − 1)!
.

If dr > 2k (e.g for all r = 0, ..., j−1) then dr−2k+n∗−1 ≥ n∗ ≥ 0 and dr−k+n∗−1 >
k + n∗ − 1 ≥ 0 for all r = 0, ..., j. Hence we can estimate

(50)
(dr − 2k + n∗ − 1)!

(dr − k + n∗ − 1)!
≤ 1

(dr − 2k + n∗)k
.

For the special case dj = 2k we obtain from (49) that (using dj ≤ d0 ≤ m)

(dj − sj)
k− 1

2
sj Ej ≤

(n∗ − 1)!

(k + n∗ − 1)!
(dj + n∗)k ≤ 2 (m+ n∗)k .

It follows that in both cases, dj = 2k and dj > 2k (for the latter case use (49) and the
fact that dj − 2k + n∗ ≥ 1 + n∗ in (50)), the estimate

(dj − sj)
k− 1

2
sj Ej ≤ 2 (m+ n∗)k

holds. For r = 0, ..., j − 1 we have dj > 2k, so (47), (49) and (50) imply that

(51) Bj ≤ 2 (m+ n∗)k
j−1∏
r=1

(dr + n∗)k

(dr − 2k + n∗)k
B0.

Note that m − 2k ≤ d0 ≤ m by (40), so d0 − 2k ≥ m − 4k. Then the definition of B0 in
(45) and the estimates (48) and (50) for E0 yields

(52) B0 ≤
1√

(m− 4k)!

(m+ n∗)
1
2
s0

(m− 4k + n∗)k
.

Now we still have to estimate

πj :=

j−1∏
r=1

(dr + n∗)k

(dr − 2k + n∗)k
=

j−1∏
l=1

(dj−l + n∗)k

(dj−l − 2k + n∗)k

Since the function x 7−→ (x+ n∗) / (x− 2k + n∗) is decreasing for x ≥ x0 := 2k−n∗, and
x0 ≤ 2k ≤ dr and dj−l ≥ 2k + bl, see (41), we obtain

πj ≤
j−1∏
l=1

(
2k + bl + n∗

bl

)k
.
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Let now ε > 0, and choose lε ∈ N so large such that 2k + n∗ ≤ εblε. Define

Aε :=
lε∏
l=1

(
1 +

2k + n∗

bl

)k
.

Then πj ≤ Aε for all j = 0, .., lε + 1; for j − 1 ≥ lε we have

πj ≤ Aε ·
j−1∏
l=lε

(
1 +

2k + n∗

bl

)k
≤ Aε (1 + ε)k(j+1) .

Then (51) and (52) show that

Bj ≤ 2 (m+ n∗)k
Aε (1 + ε)k(j+1)√

(m− 4k)!

(m+ n∗)
1
2
s0

(m− 4k + n∗)k
.

Note that s0 < 2k and use now (39) to estimate the last factor by 2k. Hence we obtain
(45).

5. Now we want to estimate
∣∣TPsj

T....Ps0Tfm (x)
∣∣ for x = rθ with θ ∈ Sn−1 and

0 ≤ r ≤ ρ < R. Define FP (r) :=
∑

s∈EP
rs. By continuity of (r, ε) 7−→ FP (r) (1 + ε)k /r2k

and (38) one may take ρ < R so large and ε > 0 so small such that

CD
F (ρ) (1 + ε)k

ρ2k
< 1.

By (15) we can estimate for |x| = r ≤ ρ∣∣TPsj
T....Ps0Tfm (x)

∣∣ = rdj−2k max
θ∈Sn−1

∣∣TPsj
T....Ps0Tfm (θ)

∣∣
≤

√
2ωn−1r

dj−2k (1 + dj − 2k)(n−1)/2√
I2(dj−2k)+n−1

∥∥TPsj
T....Ps0T

∥∥ .
Note that dj ≤ m, so 1 + dj − 2k ≤ 1 + m. Further I2(dj−2k)+n−1 ≥ 1

4
(dj − 2k − 1)! by

(11). Since 1/ (s− 1)! ≤ 21+s
s!

for s ≥ 0, we have

1√
I2(dj−2k)+n−1

≤ 2
√

2

√
1 + (dj − 2k)√

(dj − 2k)!
≤ 2

√
2

√
1 +m√

(dj − 2k)!
.

Now (42) shows that

(53)
∣∣TPsj

T....Ps0Tfm (rθ)
∣∣ ≤ (1 + ε)k(j+1)Cj+2Dj+1rdj−2k ‖fm‖Um.

where

(54) Um := 4
√
ωn−1 (1 +m)n/2 (m+ n∗)k

2k+2Aε√
(m− 4k)!

.
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Using (40) it follows that

|Λjfm (rθ)| ≤ C
[
(1 + ε)k CD

]j+1

rm−2k(j+1) ‖fm‖Um
∑
s0∈EP

..
∑
sj∈EP

rs0+...+sj .

Since
∑

s0∈EP
...
∑

sj∈EP
rs0+...+sj = [F (r)]j+1 one arrives for r ≤ ρ at

|TPfm (rθ)| ≤
m∑

j=−1

|Λjfm (rθ)| ≤ ‖fm‖UmCρmHm (ρθ)

where we have defined

Hm (rθ) :=
m∑

j=−1

[
(1 + ε)k CDF (r)

r2k

]j+1

.

Since (1 + ε)k CDF (ρ) < ρ2k there exists a constant M > 0 such that Hm (ρθ) ≤ M for
all θ ∈ Sn−1 and for all m ∈ N. Thus we have for 0 ≤ r ≤ ρ

∞∑
m=8k

|TPfm (rθ)| ≤ CM
∞∑

m=8k

ρm ‖fm‖Um.

It is easy to see that the latter sum converges since f ∈ A (BR) , cf. Proposition 12 and
the definition of Um. �

The following result illustrates the last theorem:

Theorem 19. Let D be a real constant and let P2k be a homogeneous polynomial of
degree 2k such that CP2k (x) ≥ |x|2k . If R2k > CD then (P2k −D,∆k) is a Fischer pair
for A (BR) .

7. The Almansi theorem revisited

In this section we will present an Almansi-type theorem where we replace the polynomial
|x|2 in formula (1) by an elliptic homogeneous polynomial P (x) of degree 2k; the coefficient
functions hj will be solutions of the equation ∆khj = 0. We start with the following
observation:

Proposition 20. Let (P,Q (D)) be a Fischer pair for a space E, and let T : E → E and
R : E → E be defined by the equation f = PT (f)+R (f) with R (f) ∈ E, Q (D)R (f) = 0.
Then for each f ∈ E and each natural number N there exists h0, ...., hN ∈ E with

(55) f = h0 + Ph1 + ....+ PNhN + PN+1TN+1f

and Q (D)hj = 0 for j = 0, ..., N. Furthermore hj = R (T jf) for j = 0, ..., N.
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Proof. For N = 0, the statement follows from the fact that (P,Q (D)) is a Fischer pair.
We apply now the induction principle and assume that the statement is true for N. Since
(P,Q (D)) is a Fischer pair we can write TN+1f = PT

(
TN+1f

)
+R

(
TN+1f

)
. Insert this

in (55) and define hN+1 := R
(
TN+1f

)
. �

Note that for E = C [x1, ..., xn] and f ∈ C [x1, ..., xn] one may take Nf so large such
that TNf+1f = 0 since T diminishes the degree of f. So the last proposition can be seen
as a generalized Gauß decomposition.

Theorem 21. Let 0 < R ≤ ∞ and P be a homogeneous polynomial of degree 2k such
that CP (x) ≥ |x|2k for all x ∈ Rn for some constant C > 0. Then for each f ∈ A (BR)
there exists a sequence of function hj ∈ A (BR) , j ∈ N0 such that ∆khj = 0 for all j ∈ N0

and

f (x) =
∞∑
j=0

hj (x)P j (x)

for all |x| < R/ 2k
√
CM where M := maxθ∈Sn−1 |P (θ)| .

Proof. 1. We define hj as in Proposition 20. By the formula (55) it suffices to show that∣∣PNTNf (x)
∣∣ → 0 for |x| ≤ ρ < R/ 2k

√
CM for N → ∞. Let us write f =

∑∞
m=0 fm

with homogeneous polynomials fm of degree m. Now we use results from the proof of
Theorem 18. We take the tuple (s0, ..., sj) = 0 and Psr = 1 for r = 0, ..., j. Then D := 1,
dj = m− 2k (j + 1) and TPsj

T....Ps0Tfm = T j+2fm.

2. It is easy to see that CM > 1. Let ρ < R/ 2k
√
CM and r ≤ ρ. Take δ > 0

such that ρ2k < (R− δ)2k /CM, and take ε > 0 and ε2 > 0 so small such that w :=
ρ (1 + ε2) / (R− δ) < 1 and

(56) (1 + ε)k CMw2k < 1.

By (53) there exists Aε > 0 such that for all m ≥ 8k∣∣T j+2fm (rθ)
∣∣ ≤ (1 + ε)k(j+1)Cj+2rmr−2k(j+2) ‖fm‖Um.

From the definition of Um in (54) we see that Um
√
m! ≤ C1m

α for all m ≥ max {n∗, 1}
where α = 3k+ 1

2
n. Sincem

α
m → 1 there existsm0 such thatm

α
m ≤ (1 + ε2) for allm ≥ m0.

Since R−1 < (R− δ)−1 and f ∈ A (BR) there exists m1 such that ‖fm‖√
m!

≤ (R− δ)−m for

m ≥ m1. It follows that for all m ≥ max {m0,m1}∣∣T j+2fm (rθ)
∣∣ ≤ C1 (1 + ε)k(j+1)Cj+2rmr−2k(j+2)

(
1 + ε2

R− δ

)m
.

Since |P (rθ)| ≤ Mr2k for all r > 0 and θ ∈ Sn−1 it is now easy to see that for r ≤ ρ and
m ≥ max {m0,m1}∣∣P j+2 (rθ)T j+2fm (rθ)

∣∣ ≤ C1

[
(1 + ε)k CM

]j+2

ρm
(

1 + ε2

R− δ

)m
.
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3. Let us take now j so large such that 2k (j + 2) ≥ max {m0,m1} . Since T j+1fm = 0 for
m < 2k (j + 2) it follows that∣∣P j+2 (rθ)T j+2f (rθ)

∣∣ ≤ ∞∑
m=2k(j+1)

∣∣P j+2 (rθ)T j+2fm (rθ)
∣∣ ,

so the index m of each summand satisfies m ≥ max {m0,m1} . Thus we have with w :=
ρ (1 + ε2) / (R− δ)∣∣P j+2 (rθ)T j+2f (rθ)

∣∣ ≤ C1

[
(1 + ε)k CM

]j+2
∞∑

m=2k(j+2)

wm

= C1

[
(1 + ε)k CMw2k

]j+2 1

1− w
.

Since (1 + ε)k CMw2k < 1 by (56) we see that |P j+2 (rθ)T j+2f (rθ)| converges to 0 for
all r ≤ ρ. The proof is complete. �

8. Fischer pairs for entire functions

In this section we want to discuss the algebra A (BR) from the viewpoint of complex
analysis. Let us recall some notations: For z = (z1, ...., zn) ∈ Cn we define |z|2 = |z1|2 +
...+ |zn|2 and q (z) = z2

1 + ...+ z2
n. The set

B̂R :=

{
z ∈ Cn : |z|2 +

√
|z|4 − |q (z)|2 < R2

}
is called the harmonicity hull of BR, see [4]. The set B̂R for R = 1 is identical with the
classical domain RIV of E. Cartan (see [4, p. 59]), or the Lie ball in [38]. It is well known
that

(57) BC
R/
√

2
:=
{
z ∈ Cn : |z| < R/

√
2
}
⊂ B̂R.

As pointed out in [59], the following equality

max{|f (z)| : z ∈ B̂R} = max {|f (x)| : x ∈ BR}

is valid for each homogeneous polynomial f (x) and the following result holds, see [59]:

Theorem 22. The algebra A (BR) is isomorphic to the space of all holomorphic function

on B̂R. In particular, A (Rn) is isomorphic to En.

From this the following is immediate:

Theorem 23. Let P be an elliptic polynomial of degree 2k. Then (P,∆k) is a Fischer
pair for the algebra En of all entire functions.
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9. Hayman’s conjecture for entire functions

In this section we extend the results of Section 3 to polyharmonic functions f : Rn → C.
Roughly speaking, analogous results are valid under the stronger assumption that the
polynomial ψ is elliptic.

The following result is the analog of Theorem 6 for analytic functions. The result
seems to be part of mathematical folklore and we refer to [31] and [62] for the necessary
background in algebraic geometry.

Theorem 24. Let ψ ∈ R [x1, ..., xn] be square-free and assume that each irreducible factor
ψj, j = 1, ..., r, changes sign on the open set Uj in Rn for j = 1, ..., r. Suppose that f :
Cn → C is an entire function which vanishes on {x ∈ Rn : ψj (x) = 0}∩Uj for j = 1, ..., r.
Then there exists an entire function q : Cn → C such that f = qψ1...ψr.

Now let us formulate the main result of this Section:

Theorem 25. Let ψ ∈ R [x1, ..., xn] square-free and elliptic and assume that each ir-
reducible factor ψj, j = 1, ..., r, changes sign on given open sets Uj for j = 1, ..., r.
Suppose that f : Rn → C has an entire extension, and that f vanishes on the sets
{x ∈ Rn : ψj (x) = 0} ∩ Uj for j = 1, ..., r. If ∆kf = 0 with k = 1

2
degψ then f = 0.

Proof. Let f̃ be the entire extension of f. By Theorem 24 we can write f̃ = qψ for some
entire function q. Then f and the restriction of q to Rn are clearly in A (Rn) . Theorem
15 shows that q = 0. �

W. Hayman and B. Korenblum have constructed a non-zero biharmonic function f :
R2 → C which vanishes on infinitely many analytic Jordan curves. So the assumption of
algebraic curves seems to be crucial for this kind of result.

10. Applications to Dirichlet problems

Let Ω be a domain in Rn with boundary ∂Ω. A solution of the Dirichlet problem for
a continuous data function f : ∂Ω → C is any continuous function u : Ω → C which is
differentiable of order 2 on Ω such that ∆u (x) = 0 for all x ∈ Ω and u (ξ) = f (ξ) for all
ξ ∈ ∂Ω. If Ω is bounded the solution is unique by the maximum principle.

The following theorem was proved in [39] for the case R = ∞ by elementary methods
from potential theory; here we identify the space of all entire functions with A (Rn) . We
give a proof (for arbitrary R > 0) by means of the Fischer decomposition, cf. Remark 1
on p. 463 in [39].

Theorem 26. Let Ω be the ellipsoid {x ∈ Rn :
∑n

j=1 a
−2
j x2

j < 1} with aj > 0 for

j = 1, ..., n. If f ∈ A (BR) and
R > max

j=1,...,n
|aj|

then the solution u of the Dirichlet problem for f | ∂Ω extends to a harmonic function on
BR.
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Proof. We apply Theorem 19 to ψ = ψ2 − 1 with ψ2 (x) :=
∑n

j=1 a
−2
j x2

j . Then Cψ2k (x) ≥
|x|2 with C := maxj=1,...,n |aj|2 . Then there exists q, u ∈ A (BR) such that f = (ψ2 − 1) q+
u and ∆u (x) = 0 for all x ∈ BR. Since ψ (x) = 0 for x ∈ ∂Ω, it follows that f (x) = u (x)
for all x ∈ ∂Ω. The proof is complete. �

Since (ψ,∆) is a degree-preserving Fischer pair for the ellipsoid Ω the following well-
known property is easily proved: if f ∈ C [x1, ..., xn] has degree ≤ m then the solution u
of the Dirichlet problem for the data function f | ∂Ω is a polynomial of degree m, see also
[7]. It was proved in [39], p. 467, that this property characterizes ellipsoids in the class of
all bounded domains Ω whose boundary ∂Ω is an irreducible algebraic set, see also [18],
[33], [34] and the recent developments in [22], [23] for rational or algebraic data functions.
We now prove the following stronger result:

Theorem 27. Let ψ1, ..., ψr ∈ R [x1, ..., xn] be irreducible and assume that ψ = ψ1...ψr is
square-free and nonhyperbolic. Let Ω be a domain in Rn with boundary ∂Ω and assume
that for each j = 1, ..., r there exists an open set Uj such that

(58) {y ∈ Rn : ψj (y) = 0} ∩ Uj ⊂ ∂Ω

and ψj changes sign on Uj. If degψ > 2 then there is no polynomial solution of the

Dirichlet problem for the data function |x|2 restricted to ∂Ω.

Proof. Since ψ is nonhyperbolic the degree of ψ must be even, say 2l. Since degψ > 2
we know that l > 1. Suppose that there exists a harmonic polynomial u which is equal
to f (x) := |x|2 on ∂Ω. It follows that f − u vanishes on Zψj

∩ Uj for each j = 1, ..., r.
By Theorem 6 there exists a polynomial q with f − u = ψq. Further f − u 6= 0 since f is
not harmonic. We conclude that q 6= 0. Since l > 1 we have that ∆lf = ∆l |x|2 = 0, so
∆l (ψq) = 0. On the other hand, Theorem 3 implies that 0 6= ∆l (ψq) . This contradiction
proves the theorem. �

As an example, consider the square Ω := (−1, 1) × (−1, 1) in R2 and ψ (x, y) =
(x− 1) (x+ 1) (y − 1) (y + 1) . Clearly ψ is square-free and nonhyperbolic, and condition
(58) is satisfied. Since degψ = 4 it follows that the solution of the Dirichlet problem for
the data function x2 + y2 can not be a polynomial.

Now we turn to Problem (I) mentioned in the introduction:

Theorem 28. Let ψ1, ..., ψr ∈ R [x1, ..., xn] be irreducible and assume that ψ = ψ1...ψr is
square-free and elliptic. Let Ω be a domain in Rn with boundary ∂Ω and assume that for
each j = 1, ..., r there exists an open set Uj such that

(59) {y ∈ Rn : ψj (y) = 0} ∩ Uj ⊂ ∂Ω

and ψj changes sign on Uj. If degψ > 2 then there is no entire solution of the Dirichlet

problem for the data function |x|2 restricted to ∂Ω.
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Proof. The proof of Theorem 27 carries over verbatim if one uses now Theorem 24 and
15. �

The following variation of the Dirichlet problem was discussed in [15] (for the case
n = 2): for f ∈ C [x1, ..., xn] find a differentiable function u : Rn → C of order 2 such that

(60) ∆u (x) = 0 for all x ∈ Rn, and u (ξ) = f (ξ) for all ξ ∈ Zψ
where Zψ = {x ∈ Rn : ψ (x) = 0} and ψ ∈ R [x1, ..., xn] is square-free and non-degenerate.
Note that Rn \ Zψ is in general the union of several disjoint connected components, so
Rn\Zψ is not the boundary of a domain Ω. It was asked in [15] which polynomials ψ solve
the following basic problem: For any polynomial f there exists a polynomial solution u
of (60). It was shown in [15] for n = 2 that the only bounded sets Zψ satisfying the basic
problem are the ellipses. Now we generalize this result to arbitrary dimension.

Theorem 29. Let ψ ∈ R [x1, ..., xn] be square-free and non-degenerate, and assume that
Zψ is compact. Then the following statements are equivalent:

a) ψ is an elliptic polynomial of degree 2.
b) (ψ,∆) is a Fischer pair for C [x1, ..., xn]
c) For every polynomial f there exists a polynomial solution u of (60).
d) For f (x) = |x|2 there exists a polynomial solution u of (60).

Proof. The implication a) → b) follows from Theorem 3. Assume now b), and let f be a
polynomial. Then we can find polynomials q, u such that f = ψq+u and ∆u = 0. Clearly
one has that f (ξ) = u (ξ) for all ξ ∈ Zψ. The implication c) → d) is trivial. Let us assume
now d). Since Zψ is bounded the principal part of ψ or −ψ is non-negative, see Lemma
30. So we may assume that ψ is nonhyperbolic, and the degree of ψ must be even, say
2l. Now we argue as in the proof of Theorem 27: Suppose that degψ > 2, then l > 1.
By assumption d) there exists a harmonic polynomial u which is equal to f (x) := |x|2
on Zψ. It follows that f − u vanishes on Zψ. By Theorem 6 there exists a polynomial q
with f − u = ψq. Further f − u 6= 0 since f is not harmonic, so q 6= 0. Since ∆lf = 0
(recall that l > 1) we obtain that ∆l (ψq) = 0. Theorem 3 implies that 0 6= ∆l (ψq) .
This contradiction shows that degψ ≤ 2. If degψ ≤ 1 it is clear that Zψ is non-compact.
Hence degψ = 2. Using the compactness of Zψ it is easy to see that ψ is elliptic. �

Lemma 30. Let P0, ..., Pk be continuous real-valued functions on the sphere Sn−1 and
define P (rθ) := rkPk (θ) + ... + P0 (θ) . If there exists θ1, θ2 ∈ Sn−1 with Pk (θ1) < 0 <
Pk (θ2) then the set {(r, θ) : P (rθ) = 0} is not bounded.

Proof. Left to the reader. �

Now we consider the polyharmonic equation ∆ku = 0. In analogy to the last results
define the following problem: for f ∈ C [x1, ..., xn] find a differentiable function u : Rn → C
of order 2k such that

(61) ∆ku (x) = 0 for all x ∈ Rn, and u (ξ) = f (ξ) for all ξ ∈ Zψ
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where ψ ∈ R [x1, ..., xn] is square-free and non-degenerate. Then one can prove with the
same methods:

Theorem 31. Let k be a natural number and assume that ψ ∈ R [x1, ..., xn] is square-
free, non-degenerate and nonhyperbolic of degree ≥ 2k. Then the following statements are
equivalent:

a) ψ is an elliptic polynomial of degree 2k.
b) (ψ,∆k) is a Fischer pair for C [x1, ..., xn]
c) For every polynomial f there exists a polynomial solution u of (61).

d) For f (x) = |x|2k there exists a polynomial solution u of (61).

The Dirichlet problem ∆ku = 0 of order k for a domain Ω is defined in [58] in the
following way: Let f : Rn → C be k − 1 times continuously differentiable. Then a
function u : Ω → C is called a solution of the Dirichlet problem for the data function f if
u is k− 1 times continuously differentiable on Ω and 2k times continuously differentiable
on Ω such that ∆ku (x) = 0 for all x ∈ Ω and

(62)
∂α

∂xα
u (x) =

∂α

∂xα
f (x) for all x ∈ ∂Ω and |α| ≤ k − 1.

If the boundary ∂Ω is sufficiently smooth then the Dirichlet problem has a unique solution
u for the data function f, see [58]. For a constructive solution of this problem in case of
concentric spheres we refer to [26].

Consider as an example the domain Ω := {x ∈ Rn : ψ2k (x) < 1} for the polynomial
ψ2k (x) = x2k

1 + ... + x2k
n . Theorem 31 shows that for any polynomial f there exists a

unique polyharmonic polynomial u of order k such that u (x) = f (x) for all x ∈ ∂Ω. On
the other hand, the solution of ∆ku = f for a polyharmonic function u : Ω → C is only
unique if we specify boundary conditions as in (62). Indeed, the polynomial solution u
satisfies the equation f (x) = (ψ2k − 1) q (x) + u (x) for all x ∈ Rn, and from this one can
determine the partial derivatives ∂α

∂xαu (x) .
An analogous result holds for entire functions by using Theorem 18: for any function

f ∈ A (Rn) there exists a unique polyharmonic function r defined on Rn of order k such
that f (x) = r (x) for all x ∈ ∂Ω.

11. Appendix: Fischer pairs for C [x1, ..., xn]

A Fischer pair (P,Q (D)) for C [x1, ..., xn] is called degree preserving if deg r ≤ deg f
in (2). By Pn (k) we denote the set of all homogeneous polynomials of degree k with
complex coefficients. If Q ∈ Pn (k) it is easy to see that Q (D) maps Pn (m) into {0} for
m < k and into Pn (m− k) for m ≥ k. We first cite from p. 168 in [17]:

Proposition 32. If Q ∈ Pn (k) then the map Q (D) : Pn (m) → Pn (m− k) is surjective
for all m ≥ k. In particular, the map Q (D) : C [x1, ..., xn] → C [x1, ..., xn] is surjective.
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The next result, due to A. Meril and D.C. Struppa in [49], gives an operator-theoretic
characterization of Fischer’s pairs:

Theorem 33. Let P,Q be arbitrary polynomials and let E either be C [x1, ..., xn] or En.
Then (P,Q (D)) is a Fischer pair for E if and only if the ”Fischer operator” FQ,P : E → E
defined by FQ,P (q) := Q (D) (P · q) is a bijection.

The following example, taken from [49], is very instructive: it shows that the degrees
of P and Q of a Fischer pair (P,Q (D)) may be different. Moreover in this example
the reversed pair (Q,P (D)) is not a Fischer pair (see [49]) showing that the notion of a
Fischer pair is not symmetric.

Example 34. Let n = 2 and P (x, y) = x − y2 and Q (x, y) = x. Then each f ∈ C [x, y]
can be uniquely written in the form f = (x− y2) q + r for polynomials q and r with
Q (D) r = 0. The function r is given by r (x, y) := f (y2, y), so it satisfies ∂

∂x
r (x, y) = 0.

It follows that (P,Q (D)) is a Fischer pair for C [x1, ..., xn] which is not degree preserving.

The following lemma is part of mathematical folklore, and we include the proof only
for completeness.

Lemma 35. Let (P,Q (D)) be Fischer pair for C [x1, ..., xn] and Q homogeneous. Then
degP ≥ degQ.

Proof. If degP < degQ it follows that Q (D) (P ) = 0 since Q is homogeneous. Then
we can write P = P · 1 + 0 and P = P · 0 + r where r = P satisfies Q (D) r = 0. This
contradicts to the uniqueness property of a Fischer pair. �

Theorem 36. Let (P,Q (D)) be a Fischer pair for C [x1, ..., xn] and P,Q 6= 0 homoge-
neous. Then degP = degQ, and there exists a constant c 6= 0 and a polynomial r such
that Q∗ = cP + r and Q (D) r = 0.

Proof. Let us write Q∗ = Pq+r for some polynomials q and r with Q (D) r = 0. Since Q is
homogeneous it is clear that Q (D) (Q∗) is a positive constant, say c. Thus c = Q (D) (Pq)
and therefore q 6= 0. Suppose that deg (Pq) > degQ. Then Pq has the principal part Pqm
where qm is the principal part of q (note that P is homogeneous). Since Q is homogeneous,
either Q (D) (Pqm) = 0 or it is a polynomial of degree deg (Pqm)−degQ > 0. The latter is
not possible since Q (D) (Pq) is a constant. Now Q (D) (Pqm) = 0 implies that (P,Q (D))
is not a Fischer pair for C [x1, ..., xn] . This contradiction yields degPq ≤ degQ. Hence
degP ≤ degQ, and by Proposition 35 degP = degQ, so deg q = 0. �

Now we give equivalent characterizations for a Fischer pair (P,Q (D)) . By the above
example, the homogeneity is a crucial assumption in the following theorem:

Theorem 37. Let P,Q be homogeneous polynomials of the same degree k. Then the
following statements are equivalent:

a) (P,Q (D)) is a degree preserving Fischer pair for C [x1, ..., xn]
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b) (P,Q (D)) is a Fischer pair for C [x1, ..., xn].
c) For f ∈ C [x1, ..., xn] there exist q, r ∈ C [x1, ..., xn] with f = Pq+r and Q (D) r = 0.
d) The map FQ,P,m : Pn (m) → Pn (m) defined by FQ,P,m (q) := Q (D) (P · q) is a

bijection for any m ∈ N0.
e) Q (D) (P · q) 6= 0 for any non-zero homogeneous polynomial q.

Proof. The implications a) → b) → c) are trivial. Assume that c) holds. Let f ∈ Pn (m)
withm ∈ N0. Let g ∈ Pn (m+ k) withQ (D) g = f. By property c) there exist polynomials

q and r such that g = qP + r and Q (D) r = 0. Write q =
∑N

l=0 ql and r =
∑M

l=0 rl where
ql and rl are homogeneous polynomials of degree l. Since P is homogeneous of degree k
we obtain

tm+kg (x) = g (tx) =
N∑
l=0

tk+lql (x)P (x) +
M∑
l=0

tlrl (x) .

Clearly this implies qlP + rl+k = 0 for l 6= m. Hence g = qmP + rm+k. It follows that
f = Q (D) g = Q (D) (qmP ) , so FQ,P,m is surjective, hence bijective. The equivalence of
d) and e) is evident, so we only have to prove d) → a). Clearly d) implies that FQ,P is
surjective. Suppose that FQ,P (q) = 0 for some polynomial q. Then 0 = qP + r for some
polynomial r with Q (D) r = 0. Using the homogeneity argument given in the proof of
c) → d) one obtains that 0 = qmP + rm+k for the homogeneous polynomials qm and rm.
Then qm = 0 by assumption d) and we conclude that q = 0. By Theorem 33 (P,Q (D)) is
a Fischer pair, and it is degree preserving by property d). �

The extension of the algorithm for polynomials of the form P − h when deg h < deg P
is straightforward: the existence of a decomposition is proved by induction over the total
degree, the uniqueness depends on a homogeneity argument. The details are omitted.

Theorem 38. Let (P,Q (D)) be a Fischer pair for homogeneous polynomials P,Q of the
same degree k ≥ 1. Let h be a polynomial with deg h < deg P. Then (P − h,Q (D)) is a
degree preserving Fischer pair.
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[27] E. Fischer, Über die Differentiationsprozesse der Algebra, J. für Mathematik (Crelle Journal) 148
(1917), 1–78.

[28] L. Flatto, D.J. Newman, H.S. Shapiro, The level curves of harmonic functions, Trans. Amer. Math.
Soc. 123 (1966), 425–436.

[29] T. Futamura, K. Kishi, Y. Mizuta, A generalization of Bôcher’s theorem for polyharmonic functions,
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