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Abstract

It is known that corners of interior angle less than π/2 in the bound-
ary of a plane domain are initially stationary for Hele Shaw flow arising
from an arbitrary injection point inside the domain. This paper es-
tablishes the corresponding result for Laplacian growth of domains in
higher dimensions. The problem is treated in terms of evolving families
of quadrature domains for subharmonic functions.

1 Introduction

Let p ∈ Ω0, where Ω0 is a bounded domain in Euclidean space RN (N ≥ 2),
and let µt = λ|Ω0 + tδp (t > 0), where λ denotes Lebesgue measure on RN
and δp is the unit measure at p. This paper studies quadrature domains
for subharmonic functions with respect to µt, by which we mean domains Ω
that contain Ω0 and satisfy∫

Ω
s dλ ≥

∫
s dµt for all λ-integrable subharmonic functions s on Ω.

It is known (see Sakai [18]) that such domains exist and are unique up to
λ-null sets, and that there is a smallest one, which we will denote by Ωt.

When N = 2 the family {Ωt : t ≥ 0} models Hele Shaw flow with initial
domain Ω0 and injection point p. In this case it has been shown (see Sakai
[20] and earlier work of King, Lacey and Vázquez [14]) that, if the boundary
of the domain Ω0 has a corner q with interior angle less than π/2, then this
point is (initially) stationary for {Ωt : t ≥ 0}; that is, there exists ε > 0 such
that q ∈ ∂Ωt when 0 < t < ε. Further, corners of angle greater than π/2 are
not stationary, and corners of angle π/2 may or may not be stationary.

The purpose of this paper is to establish corresponding results in higher
dimensions, where the geometry is more complicated and the available tools
are more restricted. As in the case of the plane, this models a type of
free boundary problem with Laplacian growth where the evolution is driven
by a source term. Gustafsson [10] has expounded the connection between
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this problem and the study of fluid flow in a porous medium, as governed
by Darcy’s law. As we will observe later (in Lemma 14), the notion of a
boundary point being initially stationary is independent of the choice of
the point p in the domain Ω0. We will therefore omit reference to p in the
statements of our main results. For a conical vertex it turns out that the
critical aperture is where the interior half-angle is cos−1(1/

√
N). Of course,

when N = 2, this corresponds to a corner of angle π/2, as discussed above.
For a wedge-shaped part of the boundary, the critical aperture remains π/2.
These are simple special cases of the general results we will present below.

Let B(x, r) denote the open ball in RN of centre x and radius r, and let
S(x, r) = ∂B(x, r), B = B(0, 1) and S = S(0, 1). We will use σ to denote
surface area measure (when it exists) on a given surface, and σ̂ its normal-
ization to a unit measure. For a function f : S → R and x ∈ S we define
(∇Sf)(x) and (∆Sf)(x) to be (∇f∗)(x) and (∆f∗)(x) respectively, where f∗
is the extension of f from S to RN\{0} defined by f∗(y) = f(y/|y|). Thus
∆S is the Laplace-Beltrami operator on S. If ω is a non-empty relatively
open subset of S, we define

l(ω) = inf

{∫
S |∇Sf |

2 dσ∫
S f

2 dσ

}
,

where the infimum is taken over all Lipschitz functions f : S → [0,∞) which
vanish on S\ω but not on all of S. If, further, ω is connected, the quantity
l(ω) is the first eigenvalue of −∆S (see Section 5) and, using u to denote
a corresponding eigenfunction, the function y 7−→ |y|α u∗(y) is harmonic on
the conical set {rx : x ∈ ω, r > 0} if and only if α(α + N − 2) = l(ω). The
characteristic constant α(ω) of ω is defined to be the non-negative root of
this last equation. (If N = 2 and ω is an arc of length θ, then α(ω) = π/θ.)
It is easy to see that α(ω1) ≥ α(ω2) when ∅ 6= ω1 ⊂ ω2 ⊂ S. For any
compact subset L of S we next define

α(L) = sup{α(ω) : ω is relatively open in S and L ⊂ ω}.

These notions are extended to relatively open (or closed) subsets E of S(0, r),
for any r > 0, by defining α(E) to be α({y/r : y ∈ E}).

Since the plane case has already been extensively investigated we will
assume from now on that Ω0 is a bounded domain in RN (N ≥ 3). For
ease of notation we will further assume that 0 ∈ ∂Ω0 and will investigate
when this point is initially stationary for {Ωt : t ≥ 0}. Given an increasing
continuous function φ : (0,∞) → (0, 1/2] satisfying the doubling condition
φ(2t) < Cφ(t) for some C > 1, we define the enlarged domain

Ω(φ) = {x ∈ RN\{0} : dist(x,Ω0) < |x|φ(|x|)},

which also has 0 as a boundary point.
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Theorem 1 Let Ω0 and φ be as above, and let p0 ∈ Ω0. If there is a positive
constant C0 such that

φ(ρ) ≥ C0 exp

{
1

N

∫ |p0|

ρ

2− α(Ω(φ) ∩ S(0, t))

t
dt

}
(0 < ρ < |p0|), (1)

then there exists ε > 0 such that Ωt ⊂ Ω(φ) when 0 < t < ε. In particular,
0 is initially stationary for {Ωt : t ≥ 0}.

To any subset E of S we associate the conical set

K(E) = {ry : r > 0, y ∈ E}.

The complement of a set A in RN will be denoted by Ac.

Corollary 2 Let L be a compact subset of S such that α(L) > 2, and sup-
pose there exists r0 > 0 such that Ω0 ∩B(0, r0) ⊂ K(L). Then 0 is initially
stationary for {Ωt : t ≥ 0}.

As will be seen from Theorem 4(a) below we cannot relax the above
hypotheses to allow α(L) = 2. The next result sheds more light on this
critical case.

Theorem 3 Let ω be a domain relative to S, with Lipschitz boundary, such
that α(ω) = 2. Then there is a constant C(ω) > 1 such that 0 is initially
stationary for {Ωt : t ≥ 0}, where

Ω0 =

{
x ∈ B

(
0, e−2C(ω)

)
: dist(x,K(ω)c) >

C(ω) |x|
log(1/ |x|)

}
. (2)

The denominator in (2) can be replaced by log(1/ |x|) log(log(1/ |x|)) or
similar expressions involving further iterated logarithmic factors: the same
argument applies. However, part (b) of the next result shows that it cannot
be replaced by (log(1/ |x|))a or log(1/ |x|) (log(log(1/ |x|)))a, where a > 1.
Thus we have a result which is close to being sharp.

Theorem 4 Let ω be a domain relative to S with C1,β boundary.

(a) If α(ω) ≤ 2, and K(ω) ∩B(0, r0) ⊂ Ω0 for some r0 > 0, then 0 is not
initially stationary for {Ωt : t ≥ 0}.

(b) Further, if α(ω) = 2 and ψ : (0, 1]→ (0, 1/2] is increasing and satisfies∫ 1
0 t
−1ψ(t)dt < ∞, then 0 is not initially stationary for {Ωt : t ≥ 0},

where
Ω0 = {x ∈ B : dist(x,K(ω)c) > |x|ψ(|x|)} .
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Example 1. Let 0 < θ0 < π/2 and consider the truncated cone

Ω0 = {(x1, ..., xN ) ∈ B(0, 2) : xN > (cos θ0) |x|}.

Then 0 is initially stationary for Ω0 if and only if θ0 < cos−1(1/
√
N). To see

this, we note that the homogeneous quadratic polynomial given by u(x) =
Nx2

N − |x|
2 is positive and harmonic on the infinite cone about the xN -axis

of half-angle cos−1(1/
√
N), and vanishes on its boundary. It follows that

u|S is a strictly positive eigenfunction for −∆S on the spherical cap Ω0 ∩S,
and hence (see Section 5) that α(Ω0 ∩ S(0, t)) = 2 (0 < t < 2). We can now
appeal to Corollary 2 and Theorem 4(a) to reach the desired conclusion.

Example 2. Let 0 < θ0 < π and consider the truncated wedge

Ω0 = {(x1, ..., xN−2, r cos θ, r sin θ) : 0 < r < 2, 0 < θ < θ0}.

Then 0 is initially stationary for Ω0 if and only if θ0 < π/2. This follows by
reasoning similar to the previous example, except that the relevant polyno-
mial is now given by u(x) = xN−1xN .

The above results will be established in Sections 4 and 5, following
preparatory material in the next two sections. We will employ a range
of concepts from potential theory. In particular, we will make crucial use of
the technique of partial balayage and the associated notion of localization.
Other key tools include a convexity result of Huber, and a Hadamard-type
estimate for eigenvalues of the Laplace-Beltrami operator on spherical do-
mains.

The authors are grateful to the referee for a careful reading of the paper,
and for many helpful suggestions that have improved the exposition.

2 Tools from potential theory and partial balayage

The fine topology on RN is the coarsest topology for which all subharmonic
functions are continuous. A function s on RN is called δ-subharmonic if it
can be expressed as s = s1−s2, where s1, s2 are subharmonic functions. If s
is δ-subharmonic, then the distributional Laplacian ∆s is (locally) a signed
measure µs. A δ-subharmonic function s = s1 − s2 will be undefined on the
polar set Z where s1 = −∞ = s2. However, as noted in [8], s has a fine limit
|µs|-almost everywhere, as well as being finely continuous at all points of Zc.
We assign s this limiting value wherever it exists and, with this convention,
reformulate a result of Brezis and Ponce [4] as follows. A short proof of it
may be found in [8].

Theorem 5 (Kato’s inequality) If s is a δ-subharmonic function, then
∆s+ ≥ (∆s)

∣∣{s≥0} .
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We will say that a (positive) measure µ on RN (N ≥ 3) is carried by a
Borel set A if µ(Ac) = 0. The Newtonian potential of a measure µ is given
by

Uµ(x) = cN

∫
|x− y|2−N dµ(y),

where the dimensional constant cN is chosen to yield the distributional iden-
tity −∆Uµ = µ. If A ⊂ RN and Uµ 6≡ ∞, we define the swept measure
µA = −∆R̂AUµ, where R̂

A
v denotes the lower semicontinuous regularization

of the reduction RAv of a positive superharmonic function v relative to A in
RN , given by

RAv = inf{u : u is positive and superharmonic on RN and u ≥ v on A}.

If V is an open set and x ∈ V , then δV cx is the harmonic measure for V and
x. Later, we will use the fact that δV

c

x ⊥ λ, and more generally that, if µ is
carried by an V , then µV

c ⊥ λ. (See [3] or, more generally, [12].)
We now recall, without proofs, some basic facts about the notion of

partial balayage, which was originally developed by Gustafsson and Sakai
(see, for example, [11]). A recent exposition of it may be found in [7],
which also contains an application to prove the aforementioned singularity
of harmonic measure with respect to λ.

Given a positive measure µ with compact support we define

V µ(x) = sup

{
v(x) : v is subharmonic and v ≤ Uµ+

|·|2

2N
on RN

}
− |x|

2

2N

and then Bµ = −∆V µ. Thus V µ = U(Bµ). A crucial property here is the
“structure formula”

Bµ = λ|ω(µ) + µ|ω(µ)c ≤ λ, where ω(µ) = {V µ < Uµ}.

The set ω(µ) is bounded and open. It will be convenient to define

Wµ = Uµ− V µ,

whence Wµ is the smallest lower semicontinuous function w that satisfies
−∆w ≥ µ− λ and w ≥ 0. It follows from the structure formula that

−∆Wµ = (µ− λ)|ω(µ). (3)

For future reference we assemble below some further useful facts about par-
tial balayage.

Lemma 6 Let ν, µ and µ(n) (n ∈ N) be positive measures with compact
support, and let Ω and Ω(n) (n ∈ N) be bounded domains in RN .
(i) If ν ≤ µ, then V ν ≤ V µ, Wν ≤Wµ and ω(ν) ⊂ ω(µ).
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(ii) If µ(n) ↑ µ, then ω(µ(n)) ↑ ω(µ).
(iii) If Ω(n) ↑ Ω, p ∈ Ω(1) and t > 0, then

∞⋃
n=1

ω (λ|Ω(n) + tδp) = ω (λ|Ω + tδp) .

(iv) For any x ∈ RN and ρ > 0,

µ(B(x, ρ)) > (2ρ)Nλ(B) =⇒ B(x, ρ) ⊂ ω(µ). (4)

(v) In the case where µ = µt = λ|Ω0 + tδp we have

Ω0 ⊂ Ωt = ω(µt) = ω(λ|Ω0 + tδ
Ωc0
p ) (t > 0). (5)

In particular, Bµt = λ|ω(µt)
.

Proof. (i) This follows immediately from the above definitions and the
characterization of Wµ.

(ii) Let x ∈ ω(µ), whence V µ(x) < Uµ(x). Since Uµ(n) ↑ Uµ, there
exists n ∈ N such that Uµ(n)(x) > V µ(x). Hence Uµ(n)(x) > V µ(n)(x), by
part (i), and so x ∈ ω(µ(n)). This, together with (i), yields the result.

(iii) This is a special case of part (ii).
(iv) This implication was established in Theorem 2 of Sakai [19].
(v) Let u = W (λ|Ω0 + tδ

Ωc0
p ) and Z denote the set of irregular boundary

points of Ω0. From the structure formula and the fact that δΩc0
p ⊥ λ, we see

that ω(λ|Ω0 + tδ
Ωc0
p ) carries δΩc0

p , and so certainly intersects ∂Ω0. Thus u,
which is non-negative and superharmonic on Ω0, must be strictly positive
on all of Ω0; that is, Ω0 ⊂ ω(λ|Ω0 + tδ

Ωc0
p ). If u(y) = 0 for some y ∈ Z, then

(by fine continuity and Lemma 7.4.1 of [2]) we can find an open subset V
of Ω0 such that u(x) → 0 as x → y along V and V c is thin at y; this is a
contradiction, since u would then be a barrier for V at y, yet y is an irregular
boundary point of V by the thinness of V c there. Hence u > 0 on Ω0 ∪ Z.
Since u + tU(δp − δ

Ωc0
p ) ≥ W (λ|Ω0 + tδp), and the Dirichlet modification of

W (λ|Ω0 +tδp) with respect to Ω0 majorizes u, we see that u ≤W (λ|Ω0 +tδp)

with equality on (Ω0 ∪ Z)c. Thus ω(µt) = ω(λ|Ω0 + tδ
Ωc0
p ). Further, clearly

Bµt = λ|ω(µt)
.

Finally, if D is a quadrature domain for subharmonic functions with
respect to µt, then Uµt − U(λ|D) ≥ 0, with equality outside D, so Uµt −
U(λ|D) ≥Wµt and ω(µt) ⊂ D. It follows that Ωt = ω(µt).

3 Localization

We will now develop the notion of localization, which was introduced by
Gustafsson and Sakai [11]. If U is an open set in RN we denote by Ũ the
union of U with the boundary points of U that are irregular for the Dirichlet
problem. Thus Ũ differs from U by at most a polar set.
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Theorem 7 (Localization Theorem) Let U be an open set and µ = µ1+
µ2, where µ1, µ2 are positive measures with compact support, µ2 is carried
by U , and Uµ1 is continuous on U and everywhere finite. Then there is a
measure η, carried by ∂U ∩ ω(µ) and singular with respect to λ, such that

(a) B(µ1 + η) ≤ Bµ;

(b) ω(µ1 + η)\Ũ = ω(µ)\Ũ , and so (B(µ1 + η)) |Uc = (Bµ) |Uc;

(c) (µ2|R)R
c ≤ η ≤ (µ2|O)O

c
on ∂U , where R = ω(µ1 + η) ∩ U and

O = ω(µ) ∩ U .

Proof. Let

ψ =

{
Wµ in U c

Wµ1 in U

and u denote the lower semicontinuous regularization of inf Φ, where

Φ = {v is δ-subharmonic : v ≥ ψ and −∆v ≥ µ1 − λ} .

Since v ∈ Φ if and only if

v − | · |2/2N ≥ ψ − | · |2/2N and −∆(v − | · |2/2N) ≥ µ1,

we can use a standard result about infima of locally uniformly lower bounded
families of superharmonic functions to see that u = inf Φ quasi-everywhere.
Further,

−∆u ≥ µ1 − λ. (6)

Since Wµ ∈ Φ and Wµ1 ≤Wµ, we see that

Wµ1 ≤ u ≤Wµ.

The right hand inequality above is an equality everywhere on U
c
and quasi-

everywhere on U c.
Kato’s inequality (Theorem 5), applied to the nonpositive function s =

u−Wµ, shows that

0 ≥ (∆u−∆Wµ) |{u−Wµ=0}.

Also, by (3), (6) and the fact that ω(µ)c ⊂ {u−Wµ = 0},

(∆u−∆Wµ) |Uc\{u−Wµ=0} ≤ µ2|Uc\{u−Wµ=0} = 0,

since µ2(U c) = 0. Hence we can define a positive measure η by writing

η = (∆Wµ−∆u)|Uc . (7)
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Since u = Wµ on U
c
, we see that η is carried by ∂U . Further, since u = Wµ

quasi-everywhere on ∂U and µ does not charge polar subsets of ∂U , we can
solve the Dirichlet problem on U to see that

(∆Wµ−∆u)|Uc = − ((∆Wµ−∆u)|U )U
c

,

whence η is singular with respect to λ. (See Section 2.)
It follows from (7) and (3) that

(−∆u) |Uc = (µ− λ)|{Wµ>0}\U + η

= (µ1 − λ)|{Wµ>0}\U + η

= (µ1 − λ)|{u>0}\U + η, (8)

since µ2(U c) = 0 and µ1 does not charge polar sets. Now u ≥ 0, so

(∆u)|{u=0} ≥ 0 and (∆u)|{u=0} ⊥ λ (9)

by the same arguments as we used above for η (using Kato’s inequality and
solving the Dirichlet problem on {u > 0}). Thus, by (7) and (3) again,

0 ≤ η ({u = 0})
= (∆Wµ−∆u) ({u = 0}\U)

≤ (∆Wµ) ({u = 0}\U)

≤ λ({u = 0} ∩ {Wµ > 0} ∩ U c) = 0. (10)

Since u ≤ Wµ, this shows that η is carried by ∂U ∩ ω(µ). Further, (10)
shows that we can rewrite (8) as

(−∆u) |Uc = (µ1 + η − λ)|{u>0}\U . (11)

Also, since ∆u ≤ λ, by (6), we see from (9) that

(∆u) |{u=0} = 0. (12)

By a Poisson integral modification argument and the continuity of Wµ1

on U , we see that

−∆u = µ1 − λ on the open set {u > Wµ1} ∩ U. (13)

On the other hand, we can apply Kato’s inequality to the non-positive func-
tion Wµ1 − u to see that

(−∆u) |{u=Wµ1} ≤ (−∆Wµ1)|{u=Wµ1} = (µ1 − λ)|{u=Wµ1}∩ω(µ1),

and so, by (6),

−∆u = µ1 − λ on {u = Wµ1 > 0}. (14)
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Combining (12) —(14), we obtain

(−∆u)|U = (µ1 − λ)|{u>0}∩U , (15)

and from (11) we conclude that

−∆u = (µ1 + η − λ)|{u>0}. (16)

We now claim that u = W (µ1 +η). To see this we note that, on {u = 0},
we have Wµ1 = 0, so µ1 ≤ λ there by the structure formula, and also η = 0
there by (10). Hence −∆u ≥ µ1 + η− λ, by (16) (which contains (12)), and
since u ≥ 0 we see that

u ≥W (µ1 + η). (17)

Let w = u−W (µ1 + η). By (16), (3) and (17),

−∆w = (µ1 + η − λ)|{u>0}\{W (µ1+η)>0} ≤ 0,

because µ1 + η ≤ λ on {W (µ1 + η) = 0}. Hence w is subharmonic. Since it
also has compact support, w ≡ 0 and the claim is proved.

It follows, by the structure formula and (10), that

B(µ1 + η) = λ|{u>0} + (µ1 + η)|{u=0} = λ|{u>0} + µ1|{u=0} ≤ λ

and
Bµ = λ|{Wµ>0} + µ|{Wµ=0}.

Since u ≤ Wµ and µ1 ≤ µ, we now see that B(µ1 + η) ≤ Bµ, so part (a) of
the theorem is proved.

On U c, we know that µ = µ1 and u = Wµ quasi-everywhere. Thus
u = Wµ on Ũ c, since U c is non-thin at each point of Ũ c. Part (b) now also
follows.

It remains to establish (c). We note that O = {Wµ > 0} ∩ U , that
u = Wµ = 0 on Oc ∩ U , and that u = Wµ quasi-everywhere on Oc ∩ U c
(which equals U c). Hence Wµ− u vanishes quasi-everywhere on Oc, and so
we can solve the Dirichlet problem in O to see that

(−∆(Wµ− u))O
c

= 0.

By assumption µ does not charge polar subsets of U c. Since u = W (µ1+η) ≤
Wµ, we see from part (a) that U(µ1 + η) ≤ Uµ, and it follows that ∆u also
does not charge polar subsets of U c (see Theorem 1.XI.4(c) of [5]). Thus,
by (3), (15), (16), we have

(((µ− λ)|{Wµ>0} − (µ1 − λ)|{u>0})|O)O
c

= −
(
(µ− λ)|{Wµ>0} − (µ1 + η − λ)|{Wµ>0}

)
|Oc

= η|Uc∩ω(µ) = η,
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in view of (7) and (10). Now

(µ− λ)|{Wµ>0} − (µ1 − λ)|{u>0} = µ2|{Wµ>0} + (µ1 − λ)|{Wµ>0}\{u>0}

≤ µ2|{Wµ>0} ≤ µ2,

since µ1 ≤ λ on {u = 0}. Thus η ≤ (µ2|O)O
c
, and the second inequality of

part (c) is established.
On R we have −∆Wµ = µ−λ, and −∆u = µ1−λ by (15), so −∆(Wµ−

u) = µ2 there. By the minimum principle, Wµ−u ≥ GR(µ2|R) everywhere,
where GRν denotes the Green potential of a measure ν in R and is assigned
the value 0 outside R. Also, by Kato’s inequality,

−∆ (Wµ− u−GR(µ2|R)) ≤ 0 on ∂U ∩ ∂R,

since the left hand side does not charge polar subsets of U c. (Recall that
u = Wµ quasi-everywhere on ∂U , and GR(µ2|R) = 0 quasi-everywhere on
∂R.) Hence

(µ2|R)R
c |∂U = (∆GR(µ2|R))|∂U ≤ (∆(Wµ− u)) |∂U∩∂R ≤ η,

by (7), and the left hand inequality of part (c) also holds on ∂U .

Corollary 8 Let p ∈ Ω ⊂ U , where Ω is a domain and U is open, and let
t > 0. Then

ω(λ|Ω + tδp)\Ũ ⊂ ω(λ|Ω + (tδp)
Uc). (18)

In particular, if ω((tδp)
Uc) ∩ Ω = ∅, then

ω(λ|Ω + tδp) ⊂ ω((tδp)
Uc) ∪ Ũ .

Proof. We apply the Localization Theorem with µ1 = λ|Ω and µ2 = tδp.
By part (b) of that result

ω(λ|Ω + tδp)\Ũ = ω(λ|Ω + η)\Ũ ,

where, by part (c),
η ≤ (tδp)

Oc |∂U ≤ (tδp)
Uc .

Hence (18) holds. In the particular case,

W (λ|Ω + (tδp)
Uc) = W ((tδp)

Uc), and so ω(λ|Ω + (tδp)
Uc) = ω((tδp)

Uc),

whence

ω(λ|Ω + tδp) ⊂ ω(λ|Ω + (tδp)
Uc) ∪ Ũ = ω((tδp)

Uc) ∪ Ũ .
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Lemma 9 If µ1, µ2 are measures with compact support, then

V (Bµ1 + µ2) = V (µ1 + µ2), and so B(Bµ1 + µ2) = B(µ1 + µ2).

Proof. Let v be an upper semicontinuous function such that v ≤ U(µ1 +µ2)
and −∆v ≤ λ. Then v ≤ U(Bµ1 + µ2) on ω(µ1)c and

−∆v ≤ λ ≤ λ+ µ2 = −∆U(Bµ1 + µ2) on ω(µ1).

Hence v ≤ U(Bµ1 + µ2) everywhere, by the minimum principle, and so
V (µ1 + µ2) ≤ V (Bµ1 + µ2). The reverse inequality is trivial.

Lemma 10 If µ is a non-zero measure with compact support, and r > 0 is
chosen to satisfy ||µ|| = rNλ(B), then

ω(µ) ⊂
⋃

x∈suppµ

B(x, r).

Proof. Let ε > 0. We can choose a finite covering of suppµ of the form
{B(xj , ε) : j = 1, ...,m}, where xj ∈ suppµ for each j. Let

µj = µ

∣∣∣∣B(xj ,ε)\
⋃j−1

i=1
B(xi,ε)

and aj =

∥∥µj∥∥
‖µ‖ (j = 1, ...,m).

We discard any balls B(xj , ε) for which aj = 0, and then renumber the
remaining m′ balls so that aj > 0 for each j = 1, ...,m′. The measure
µ is supported by the union of the remaining balls. Thus

∑
µj = µ and∑

aj = 1. Now let

v =

m′∑
j=1

ajW (a−1
j µj).

It follows from Theorem 1 in Sakai [19] that, if µ0 is a measure with sup-
port in B(x0, r0) and ρNλ(B) = ‖µ0‖, then ω(µ0) ⊂ B(x0, r0 + ρ). Hence
ω(a−1

j µj) ⊂ B(xj , r + ε) for each j. Since v ≥ 0 and

−∆v ≥
m′∑
j=1

aj

(
a−1
j µj − λ

)
= µ− λ,

we see that v ≥Wµ. Hence

ω(µ) ⊂ {v > 0} =
m′⋃
j=1

ω(a−1
j µj) ⊂

m′⋃
j=1

B(xj , r + ε).

The result now follows from the compactness of suppµ and the arbitrary
nature of ε.

11



Lemma 11 Suppose that µ is a measure with compact support of the form
µ =

∑∞
j=1 µj, where each µj is a measure, µj ⊥ λ for each j, and there

exists κ ∈ N such that, if j1 < j2 < . . . < jκ < jκ+1, then

κ+1⋂
i=1

ω(µji) = ∅.

Then

W (µ/κ) ≤ 1

κ

∞∑
j=1

Wµj and ω(µ/κ) ⊂
∞⋃
j=1

ω(µj).

Proof. Since µj ⊥ λ, we see from the structure formula that −∆Wµj =
µj − λ|ω(µj)

. Hence

−∆

1

κ

∞∑
j=1

Wµj

 =
1

κ

∞∑
j=1

(
µj − λ|ω(µj)

)
≥ 1

κ

∞∑
j=1

µj − λ = µ/κ− λ.

The result follows since κ−1
∑
Wµj ≥ 0.

Lemma 12 Let Ω be a bounded domain in RN , and let p1, p2 ∈ Ω. If C > 0
and K is a compact subset of Ω such that

GΩ(p1, x) ≥ CGΩ(p2, x) (x ∈ Ω\K),

then
ω(λ|Ω + Ctδp2) ⊂ ω(λ|Ω + tδp1) (t > 0).

Proof. If we extend the function GΩ(δp1 − Cδp2) to be zero in Ωc, and
then take its upper semicontinuous regularization, the resulting function is
subharmonic on (K ∪ {p1})c. Hence (δp1)Ωc − (Cδp2)Ωc ≥ 0, which yields
the desired result, in view of parts (i) and (v) of Lemma 6.

Lemma 13 Let Ω be a bounded domain in RN , let p ∈ Ω and r > 0, and
let rΩ = {rx : x ∈ Ω}. Then

ω(λ|rΩ + rN tδrp) = rω(λ|Ω + tδp) (t > 0).

Proof. Using a change of variables we see that

U(λ|rΩ + rN tδrp)(rx) = r2U(λ|Ω + tδp)(x)

and
U(λ|rω(λ|Ω+tδp))(rx) = r2U(λ|ω(λ|Ω+tδp))(x).

The result follows, since U(λ|Ω + tδp) ≥ U(λ|ω(λ|Ω+tδp)), with equality pre-
cisely on ω(λ|Ω + tδp)

c.

12



4 Proofs of Theorem 1 and Corollary 2

Lemma 14 The notion of a boundary point of a bounded domain Ω0 being
initially stationary is independent of the choice of the point p in the definition
of Ωt (t > 0).

Proof. Let p1, p2 ∈ Ω0 and let Ωt,i denote the smallest quadrature domain
for subharmonic functions with respect to λ|Ω0+tδpi (i = 1, 2). By Harnack’s
inequality there is a positive constant C such that µ(1) ≤ Cµ(2) on ∂Ω0,
where µ(i) denotes harmonic measure for Ω0 and pi. From (5),

Ω0 ⊂ Ωt,1 = ω(λ|Ω0 + tµ(1)) ⊂ ω(λ|Ω0 + Ctµ(2)) = ΩCt,2.

Thus, if a boundary point of Ω0 is initially stationary for p = p2, then the
same is true for p = p1. The lemma follows, on reversing the roles of p1 and
p2.

Proof of Theorem 1. Let Ω0, φ and p0 be as in the statement of the
theorem. Then there is a constant C > 1 such that φ(2t) < Cφ(t) for
all t > 0. We define φ1 = φ/(4C). By Lemma 14 we may assume that
p = p0. We denote by u the upper semicontinuous regularization of the
function defined to be equal to the Green function GΩ(φ1)(p, ·) in Ω(φ1) and
0 elsewhere. Then u is subharmonic on RN\{p}. Let 0 < 2ρ < r0 < |p|. A
corollary of a result of Huber [13], as noted by Friedland and Hayman (see
p.137 of [6]), tells us that

2

∫
S(0,r0)

u2 dσ̂ ≥
{∫

S(0,ρ)
u2 dσ̂

}
exp

{
2

∫ r0/2

ρ

A(t)

t
dt

}
,

where A(t) = α(Ω(φ1)∩ S(0, t)). If we denote the quantity on the left hand
side above by a, then the Cauchy-Schwarz inequality yields

∫
S(0,ρ)

u dσ̂ ≤
{∫

S(0,ρ)
u2 dσ̂

}1/2

≤
√
a exp

{
−
∫ r0/2

ρ

A(t)

t
dt

}
. (19)

The Riesz measure µ associated with the subharmonic function u on RN\{p}
coincides with the harmonic measure for Ω(φ1) and p. The hypothesis (1)
and the fact that Ω(φ1) ⊂ Ω(φ) together imply that there is a constant
C1 > 0 such that

exp

{
−
∫ r0/2

ρ

A(t)

t
dt

}
≤ C1ρ

2,

whence

u(0) ≤
∫
S(0,ρ)

u dσ̂ ≤ C1

√
aρ2,

13



in view of (19), and so u(0) = 0. By Corollary 4.4.4 of [2],∫
S(0,ρ)

u dσ̂ = (N − 2)

∫ ρ

0
t1−Nµ(B(0, t)) dt

≥ (N − 2)µ(B(0, ρ/2))

∫ ρ

ρ/2
t1−N dt

= (2N−2 − 1)µ(B(0, ρ/2))ρ2−N . (20)

From (19) and (20) we see that

µ(B(0, ρ/2)) ≤
√
aρN−2 exp

{
−
∫ r0/2

ρ

A(t)

t
dt

}

= C2ρ
N exp

{∫ r0/2

ρ

2−A(t)

t
dt

}
,

where C2 =
√
a(r0/2)−2. By (1) we now have

µ(B(0, ρ/2)) ≤ C2C
−N
3 (ρφ(ρ))N (ρ < r0/2), (21)

where

C3 = C0 exp

{
1

N

∫ |p0|

r0/2

2−A(t))

t
dt

}
.

We choose k0 ∈ N large enough so that 2−k0 < r0/2, and then define

ε = λ(B)C−4N min

{
C−1

2 (C3/16)N ,
(

2−k0−3φ(2−k0−2)
)N}

(22)

and

µk0
= µ|B(0,2−k0−1)c , µk = µ|B(0,2−k)\B(0,2−k−1) (k > k0).

Thus µ =
∑∞

k=k0
µk, since µ({0}) = 0. By (21) and (22),

‖εµk‖ ≤ εµ(B(0, 2−k))

≤ εC2C
−N
3

(
21−kφ(21−k)

)N
<

(
C−12−k−3φ(2−k−2)

)N
λ(B) (k > k0).

The same inequality also holds when k = k0, by (22) and the fact that∥∥µk0

∥∥ ≤ 1. Since φ(t) ≤ 1 and C > 1, it follows from Lemma 10 that

ω(εµk0
) ⊂ B(0, 2−k0−2)c, ω(εµk) ⊂ B(0, 21−k)\B(0, 2−k−2) (k > k0).
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More precisely, if z ∈ ω(εµk), then Lemma 10 shows that there exists
x ∈ suppµk such that

|z − x| < C−12−k−3φ(2−k−2). (23)

Since x ∈ ∂Ω(φ1) there exists y0 ∈ Ω0 such that

|x− y0| = |x|φ1(|x|) =
|x|φ(|x|)

4C
≤ |x− y| (y ∈ Ω0). (24)

Since |z| ≥ |x| /2, we have

|z − y0| ≤ |z − x|+ |x− y0|

<
2−k−3φ(2−k−2)

C
+
|x|φ(|x|)

4C

<
|z|
2
φ(|z|) +

|z|
2
φ(|z|) = |z|φ(|z|).

Hence ω(εµk) ⊂ Ω(φ). Also, for any y ∈ Ω0, we see from (23) and (24) that

|z − y| ≥ |y − x| − |z − x|

>
|x|φ(|x|)

4C
− 2−k−3φ(2−k−2)

C

≥ 2−k−1φ(2−k−1)

4C
− 2−k−3φ(2−k−2)

C
≥ 0,

so ω(εµk) ∩ Ω0 = ∅. Thus

ω(εµk) ⊂ Ω(φ)\Ω0 (k ≥ k0).

By Lemma 11, with κ = 3, we thus see that ω((ε/3)µ) ⊂ Ω(φ)\Ω0. We
can now appeal to (5) and the particular case of Corollary 8, with Ω = Ω0

and U = Ω(φ1), to see that

Ωt = ω(µt) ⊂ ω(tµ) ∪ Ω̃(φ1) ⊂ Ω(φ) (0 < t < ε/3),

which completes the argument.

Proof of Corollary 2. Let L, r0 and Ω0 be as in the statement of the
corollary, and let p0 ∈ Ω0. Since α(L) > 2 we can choose a relatively
open subset ω of S such that L ⊂ ω and α(ω) > 2. We next choose
ε ∈ (0, 1/2] such that ε < dist(K(L), S\ω), and define φ(t) ≡ ε. Then
Ω(φ) ∩B(0, r0/2) ⊂ K(ω), and so

α(Ω(φ) ∩ S(0, t)) ≥ α(ω) > 2 when 0 < t < r0/2.

Also, we may arrange that r0 ≤ |p0|. Thus

exp

{
1

N

∫ r0

ρ

2− α(Ω(φ) ∩ S(0, t))

t
dt

}
≤ (ρ/r0)(α(ω)−2)/N → 0 (ρ→ 0),

and we can clearly choose C0 to satisfy (1). An application of Theorem 1
now completes the argument.
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5 Proof of Theorems 3 and 4

We begin by noting the “integration by parts”formula∫
∇Sf · ∇Sg dσ =

∫
g (−∆Sf) dσ (f, g ∈ C2(S)).

This holds because, in the notation of Section 1,∫
S
∇Sf · ∇Sg dσ = lim

ε→0

1

ε

∫
B(0,1)\B(0,1−ε)

∇f∗ · ∇g∗ dλ

= lim
ε→0

1

ε

∫
B(0,1)\B(0,1−ε)

{∇ · (g∗∇f∗)− g∗∆f∗} dλ

=

∫
S
g (−∆Sf) dσ,

where ∫
B(0,1)\B(0,1−ε)

∇ · (g∗∇f∗) dλ = 0

by the divergence theorem, since (∇f∗)(x) · x = 0.
We define the distance function dS(x, y) between points of S by

dS(x, y) = arccos(x · y).

This metric is equivalent to the usual Euclidean one on S, and a geodesic
that connects the points x and y is the minor arc between these two points
lying in the intersection of S with the plane that contains the points x, y
and the origin.

If we fix y, the function g(x) = dS(x, y) then satisfies |(∇Sg)(x)| = 1
for all x 6= y. More generally, if ω is an open subset of S with non-empty
complement and we define

gω(x) = inf{dS(x, z) : z ∈ S\ω} (x ∈ S), (25)

then
|gω(x)− gω(y)| ≤ dS(x, y) (x, y ∈ S). (26)

Hence gω is Lipschitz continuous, and so differentiable σ−almost everywhere
on S. Also, clearly gω|S\ω ≡ 0. If x ∈ ω and γ is a geodesic connecting
x = γ(0) to a closest point γ(l) of ∂ω, parametrized by arc length, then∣∣∣∣gω(γ(0))− gω(γ(t))

t

∣∣∣∣ =
dS(γ(0), γ(t))

t
= 1

and so |(∇Sgω)(γ(0)) · γ′(0)| = 1, provided gω is differentiable at γ(0). In
particular,

|(∇Sgω)(x)| = 1 for σ-almost every x ∈ ω.
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We will now consider eigenvalues for the operator −∆S on domains ω ⊂
S which are not dense in S. By rotational invariance, there is no loss of
generality in assuming below that ω ⊂ S∗, where

S∗ = S \ {(0, 0, . . . , 0, 1)}.

The stereographic projection ψ : S∗ → RN−1 is given by

ψ(x1, x2, . . . , xN ) =

(
x1

1− xN
,

x2

1− xN
, . . . ,

xN−1

1− xN

)
,

and

ψ−1(y1, y2, . . . , yN−1) =

(
2y1, . . . , 2yN−1,−1 + y2

1 + y2
2 + . . .+ y2

N−1

)
1 + y2

1 + y2
2 + . . .+ y2

N−1

.

We now define
W 1,2

0 (ω) = {u ◦ ψ : u ∈W 1,2
0 (ψ(ω))},

and define weak derivatives on ω in the natural way. Since ψ(ω) is a bounded
subset of RN−1, there are constants 0 < c ≤ C < ∞ such that, for each
x ∈ ω,

c|y|2 ≤ ytDψ(x) (Dψ(x))t y ≤ C|y|2 (y ∈ RN ).

From this observation the following analogues of the Poincaré inequality
(formula (7.44) in [9]), the compactness of the embedding in Lq (Theorem
7.22 in [9]), and Harnack’s inequality for operators of the form ∆S + cI (see
Theorems 8.20 and 8.22 in [9]) are seen to hold for the space W 1,2

0 (ω) and
the operator ∆S .

Theorem 15 (Poincaré inequality) There is a constant K2 > 0, de-
pending on ω, such that

||u||L2(ω) ≤ K2||∇Su||L2(ω) (u ∈W 1,2
0 (ω)).

Theorem 16 (Compactness) The space W 1,2
0 (ω) is compactly embedded

in L2(ω).

Theorem 17 (Harnack inequality) Suppose that B(y, 4R)∩S ⊂ ω, where
y ∈ S, and let c ≥ 0. Then every f ∈ W 1,2

0 (ω) which is non-negative and
solves −∆Sf = cf in ω (in the weak sense) has a continuous representative.
Further, there is a constant Kh such that, for any such f ,

sup
B(y,R)∩S

f ≤ Kh inf
B(y,R)∩S

f.
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(Alternatively, this last result can be established by noting that, for a
suitable choice of α, the function x 7→ |x|α f∗(x) is harmonic on K(ω).)

Recall that

l(ω) = inf

∫
ω |∇Sg|

2 dσ∫
ω g

2 dσ
,

where the infimum is taken over all non-zero Lipschitz functions g : S →
[0,∞) with compact support in ω. It follows from the Poincaré inequal-
ity that l(ω) is strictly positive. We can find a sequence (un) in W 1,2

0 (ω)
such that the corresponding sequence

(∫
ω |∇Sun|

2dσ
)
decreases to l(ω) and∫

u2
ndσ = 1 for all n. By the compactness of the embedding of W 1,2

0 (ω) in
L2(ω) there is a subsequence (which we still denote un) that converges to
some function in L2(ω). Since∫
S
|∇S(un − um)|2 dσ = 2

∫
S

(
|∇Sun|2 + |∇Sum|2

)
dσ −

∫
S
|∇S(un + um)|2 dσ

≤ 2

∫
S

(
|∇Sun|2 + |∇Sum|2

)
dσ − l(ω)

∫
S

(un + um)2 dσ

→ 0 as m,n→∞,

we see that (un) converges inW 1,2
0 (ω) to some non-zero weak solution of the

equation ∫
S
|∇Su|2 dσ = l(ω)

∫
S
u2 dσ.

We now define the functional

I(u) =

∫
S
|∇Su|2 dσ − l(ω)

∫
S
u2 dσ (u ∈W 1,2

0 (ω)).

If u is a minimizer of this expression (that is, I(u) = 0), then for any smooth
function ϕ on S with compact support in ω we consider the function f given
by

f(t) = I(u+ tϕ) (t ∈ R).

Then

f ′(0) = 2

(∫
S
∇Su · ∇Sϕdσ − l(ω)

∫
S
uϕdσ

)
= 0,

so ∫
S
∇Su · ∇Sϕdσ = l(ω)

∫
S
uϕdσ

for all such ϕ. Thus, using integration by parts,

−∆Su = l(ω)u

in the weak sense. In particular, l(ω) is the first eigenvalue of −∆S on ω.
We note that I(|u|) = I(u). Hence, if there is a minimizer u, then |u| is

also a minimizer. However, a non-negative minimizer u clearly satisfies−∆Su =
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l(ω)u ≥ 0. Hence, if it takes the value zero at some point, then it does so
throughout ω, by Harnack’s inequality. This excludes the possibility of so-
lutions which change sign in ω. By the connectedness of ω, the eigenspace
corresponding to l(ω) is one-dimensional and there is a strictly positive so-
lution. Further, only this smallest eigenvalue can have a strictly positive
associated eigenfunction on ω. To see this we note that, if u′ is an eigen-
function associated with a different eigenvalue l′, then integration by parts
yields

l(ω)

∫
ω
uu′ dσ =

∫
ω
∇Su · ∇Su′ dσ = l′

∫
ω
uu′ dσ,

and so u′ must have variable sign.
We will also need the following Hadamard-type formula for the depen-

dence of the eigenvalues on the domain:

Theorem 18 (Hadamard Formula for l) Given a domain ω ⊂ S, where
ω 6= S and ∂ω is Lipschitz, there are positive numbers b, ε such that

l(ωδ) ≥ l(ω) + bδ (0 < δ < ε),

where
ωδ = {y ∈ S : dS(y, S \ ω) > δ}.

Proof. Without loss of generality we may assume that ω ⊂ S∗. Let uδ ∈
W 1,2

0 (ωδ) be a nonnegative function satisfying

l(ωδ) =

∫
ωδ

|∇Suδ|2 dσ and
∫
ωδ

u2
δ dσ = 1.

We define uδ = 0 in ωcδ and so can regard uδ as a function in W
1,2
0 (ω). Since

l(ωδ) is clearly an increasing function of δ, we see that, for a given δ′ > 0,∫
ω
|∇Suδ|2 dσ ≤ l(ωδ′) (0 < δ < δ′).

Hence the set {uδ : δ ∈ (0, δ′)} is bounded in W 1,2
0 (ω). Since W 1,2

0 (ω)
is compactly embedded in L2(ω), it follows that, for every sequence (δn)
in (0, δ′) satisfying δn → 0, there is a convergent subsequence, which we
still denote by (δn), such that (uδn) converges in L2(ω) to some function v
satisfying

∫
ω v

2 dσ = 1. In particular, we see that there must be numbers
ε, c > 0 such that ∫

ω
uδ dσ ≥ c (0 < δ < ε).

Let φδ = min{δ, gω}, where gω is defined as in (25). Also, let HN−2(E)
denote the (N − 2)-dimensional Hausdorff content of a set E. It is easy to
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see that φδ is Lipschitz continuous and φδ ∈ W
1,2
0 (ω). Since ∇Suδ = 0 on

ω\ωδ and ∇Sφδ = 0 on ωδ we have, for all t > 0,

l(ω) ≤
∫
ω |∇S(uδ + tφδ)|2 dσ∫

ω(uδ + tφδ)
2 dσ

=

∫
ω |∇Suδ|

2 dσ + t2
∫
ω |∇Sφδ|

2 dσ∫
ωδ
u2
δ dσ + 2t

∫
ωδ
φδuδ dσ + t2

∫
ω φ

2
δ dσ

=
l(ωδ) + t2σ(ω \ ωδ)

1 + 2tδ
∫
ωδ
uδ dσ + t2

∫
ω φ

2
δ dσ

=
(
l(ωδ) + t2

(
aδHN−2(∂ω) + o(δ)

))(
1− 2tδ

∫
ωδ

uδ dσ + t2o(δ)

)
= l(ωδ)− 2tδl(ωδ)

∫
ωδ

uδ dσ + at2δHN−2(∂ω) + (t2 + t4)o(δ)

≤ l(ωδ)− δ(2tcl(ω)− at2HN−2(∂ω)) + (t2 + t4)o(δ), (27)

for a suitable constant a > 0. Next, we choose t = cl(ω)a−1/HN−2(∂ω),
whence

2tcl(ω)− at2HN−2(∂ω) = c2l(ω)2a−1/HN−2(∂ω).

Then we may choose ε > 0 so small that the o(δ) term in (27) satisfies

(t2 + t4)o(δ) < δc2l(ω)2(2a)−1/HN−2(∂ω) (0 < δ < ε).

The proof is completed by choosing b = c2l(ω)2(2a)−1/HN−2(∂ω).

The above theorem remains valid if we replace dS by the usual Euclidean
metric, since these are equivalent metrics on S. This yields the following
immediate consequence.

Corollary 19 (Hadamard Formula for α) Given a domain ω ⊂ S, where
ω 6= S and ∂ω is Lipschitz, there are positive numbers a, ε such that

α({y ∈ S : dist(y, S \ ω) > δ}) ≥ α(ω) + aδ (0 < δ < ε).

Proof of Theorem 3. Let ω be as in the statement of the result. By the
above formula there are positive numbers a and ε such that

α({y ∈ S : dist(y, S\ω) > δ)} ≥ 2 + aδ (0 < δ < ε).

Let C(ω) = N/a and p0 ∈ Ω0, where Ω0 is given by (2) and

φ(t) =

{
(log(1/t))−1 (0 < t < e−2)

1/2 (t ≥ e−2)
.

20



Then

α(Ω(φ) ∩ S(0, t)) ≥ 2 + a
C(ω)

log(1/t)

= 2 +
N

log(1/t)
(0 < t < min{e−2, e−C(ω)/ε}),

so

exp

{
1

N

∫ |p0|

ρ

2− α(Ω(φ) ∩ S(0, t))

t
dt

}

≤ exp

{
−
∫ min{e−2,e−C(ω)/ε}

ρ

dt

t log(1/t)
− 1

N

∫ |p0|

min{e−2,e−C(ω)/ε}

2

t
dt

}

= C exp

(
log
(

log max
{
e2, eC(ω)/ε

})
− log

(
log

1

ρ

))
= C max

{
2,
C(ω)

ε

}
φ(ρ) (0 < ρ < min{e−2, e−C(ω)/ε}),

and the result now follows from Theorem 1.

Proof of Theorem 4. (a) It is enough to consider the case where Ω0 =
K(ω)∩B(0, r0). By Lemma 14 we may suppose that p ∈ Ω0\B(0, r0/2). We
saw above that l(ω) is the first eigenvalue of −∆S on the spherical domain
ω, and that there is an associated eigenfunction which is positive. This
function vanishes continuously on the boundary of ω in S. It follows that
there is a positive harmonic function h on K(ω) of the form

h(ry) = rα(ω)h(y) (y ∈ S, r > 0), (28)

where h(y) → 0 at the boundary of ω in S. Since K(ω) has a Lipschitz
boundary, we know from the boundary Harnack principle (see Section 8.7
of [2]) that there is a positive constant C1 such that

GΩ0(p, x) ≥ C1h(x) (x ∈ K(ω) ∩B(0, r0/2)). (29)

Further, by the smoothness of the boundary of ω in S, there is a positive
constant C2 such that

h(y) ≥ C2dist(y, S\ω) (y ∈ S).

(See, for example, Widman [21].) Since the density of harmonic measure
with respect to surface area measure is proportional to the normal derivative
of the Green function, it follows from a scaling argument that there is a
positive constant C3 such that the harmonic measure µ for Ω0 and p satisfies

dµ(x) ≥ C3 |x|α(ω)−1 dσ(x) on ∂Ω0 ∩B(0, r0/4). (30)
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If α(ω) < 2, then there is a positive constant C4 such that

ρ−Nµ(B(0, ρ)) ≥ C4ρ
α(ω)−2 →∞ (ρ→ 0+),

and so 0 ∈ Ωt for all t > 0, in view of (5) and (4).
Now suppose that α(ω) = 2. It follows from (30) that there is a positive

constant C5 such that

µ(B(z, ρ |z|)) ≥ C5

ρ
(ρ |z|)N (z ∈ ∂K(ω); 0 < |z| < r0/8; 0 < ρ < 1/2),

since σ(B(z, ρ |z|) ∩ ∂Ω0) is comparable to (ρ |z|)N−1. Thus, if ε > 0, there
exists ρ > 0 small enough so that

εµ(B(z, ρ |z|)) > (2ρ |z|)Nλ(B) (z ∈ ∂K(ω); 0 < |z| < r0/8).

Hence, by (5) and (4) again,

Ωε ⊃ ω(εµ) ⊃ K(ω1) ∩B(0, r0/8),

where ω1 is a domain in S that contains ω. By Lemma 9,

V (λ|Ω0 + (t+ ε)δp) = V (B(λ|Ω0 + εδp) + tδp) = V (λ|Ωε + tδp) .

Noting that U(λ|Ω0 + (t+ ε)δp) = U (λ|Ωε + tδp) outside Ωε, it follows that
Ωt+ε = ω(λ|Ωε + tδp), and since α(ω1) < 2 we see from the previous case
that 0 ∈ Ωt+ε for all t > 0. Since ε can be arbitrarily small, we see that
0 ∈ Ωt for all t > 0.

(b) The Martin compactification of K(ω) is homeomorphic to K(ω) ∪
{∞}, and the Martin function with pole at ∞ is a multiple of the function
h in the proof of part (a) above. (See, for example, Kuran [15].) It follows,
by the Kelvin transformation, that we have a minimal positive harmonic
function h0 on K(ω) with pole at 0 of the form

h0(ry) = r2−N−α(ω)h(y) (y ∈ S, r > 0).

We recall that a set E ⊂ K(ω) is said to be minimally thin at 0 with respect
to K(ω) if there is a positive superharmonic function v on K(ω) such that

inf
E

v

h0
> inf

K(ω)

v

h0
.

(See Chapter 9 of [2] for an introduction to the notion of minimal thinness.)
The hypotheses on ψ imply that∫

(K(ω)\Ω0)∩B
|x|−N dλ(x) <∞.
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It follows from this last condition, by Theorems 2 and 3 of [17] and inversion,
that K(ω)\Ω0 is minimally thin at 0 with respect to K(ω).

Now let p ∈ Ω0. By our assumptions on ψ, there exist r0 ∈ (0, 1) and
R ∈ (0, |p| /2) such that B(p, 2R) ⊂ Ω0 and

K({x/|x| : x ∈ B(p, 2R)}) ∩B(0, r0) ⊂ Ω0.

Let ω′ = {x/|x| : x ∈ B(p,R)}. For any sequence ρn ↓ 0 the set ∪n{K(ω′) :
ρn ≤ |x| ≤ 2ρn} is not minimally thin at 0 with respect toK(ω) (by Theorem
1.1 in [1], or Theorem 2 of [16]). Hence, by Theorem 9.6.2(ii) of [2] and
Harnack’s inequalities, there are constants C1 > 0 and r1 ∈ (0, r0/2) such
that

GΩ0(p, x) ≥ C1GK(ω)(p, x) (x ∈ K(ω′) ∩B(0, r1)).

Also, in view of (28) and (29), there is a constant C2 > 0 such that

GK(ω)(p, x) ≥ C2 |x|2 (x ∈ K(ω′) ∩B(0, r1)),

because infy∈ω′h(y) > 0. For r < r1/2 we have

B(rp, rR) ⊂ K(ω′) ∩B(0, r1) ⊂ Ω0

and hence

1

rN
GΩ0(p, x) ≥ C1C2

(|p| −R)2

rN−2

≥ C1C2R
N |rp− x|2−N

≥ C3GΩ0(rp, x) (x ∈ ∂B(rp, rR), r < r1/2),

where C3 = C1C2c
−1
N RN . Thus, by the maximum principle,

GΩ0(p, x) ≥ C3r
NGΩ0(rp, x) (x ∈ Ω0\B(rp, rR)),

and Lemma 12 now yields

ω(λ|Ω0 + tδp) ⊃ ω(λ|Ω0 + C3r
N tδrp) (t > 0). (31)

Let

ωn = {x ∈ S : x/n ∈ Ω0}
= {x ∈ S : dist(x/n,K(ω)c) > ψ(1/n)/n}
= {x ∈ S : dist(x,K(ω)c) > ψ(1/n)} (n ∈ N).

Since ψ is increasing and
∫∞

0 t−1ψ(t) dt <∞, which implies that limt→0 ψ(t) =
0, we see that (ωn) increases to ω, and so (K(ωn)) increases to K(ω). We
now fix t > 0. By construction Ω0 ⊂ K(ω) ∩B. Since α(ω) = 2, part (a) of
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the theorem shows that 0 ∈ ω(λ|K(ω)∩B + C3tδp). Thus, by Lemma 6(iii),
there exists n ∈ N such that 1/n < r1/2 and

0 ∈ ω(λ|K(ωn)∩B + C3tδp). (32)

(The value of n will depend on t, since α(ωn) > 2 in general.) Let r = 1/n.
The definition of ωn, and the fact that ψ is increasing, together ensure that
K(ωn) ∩B(0, r) ⊂ Ω0. Hence

ω(λ|Ω0 + C3r
N tδrp) ⊃ ω(λ|K(ωn)∩B(0,r) + C3r

N tδrp)

= rω(λ|K(ωn)∩B + C3tδp),

by Lemma 13. Combining this with (31) and (32), we now see that 0 ∈
ω(λ|Ω0 + tδp). The proof is complete, since t can be arbitrarily small.
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