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Abstract13

Western blot data are widely used in quantitative applications such as statistical testing and mathematical14
modelling. To ensure accurate quantitation and comparability between experiments, Western blot replicates 15
must be normalised, but it is unclear how the available methods affect statistical properties of the data. Here we16
evaluate three commonly used normalisation strategies: (i) by fixed normalisation point or control; (ii) by sum17
of all data points in a replicate; and (iii) by optimal alignment of the replicates. We consider how these different 18
strategies affect the coefficient of variation (CV) and the results of hypothesis testing with the normalised data. 19
Normalisation by fixed point tends to increase the mean CV of normalised data in a manner that naturally20
depends on the choice of the normalisation point. Thus, in the context of hypothesis testing, normalisation by21
fixed point reduces false positives and increases false negatives. Analysis of published experimental data shows22
that choosing normalisation points with low quantified intensities results in a high normalised data CV and23
should thus be avoided. Normalisation by sum or by optimal alignment redistributes the raw data uncertainty in24
a mean-dependent manner, reducing the CV of high intensity points and increasing the CV of low intensity25
points. This causes the effect of normalisations by sum or optimal alignment on hypothesis testing to depend on26
the mean of the data tested; for high intensity points, false positives are increased and false negatives are 27
decreased, while for low intensity points, false positives are decreased and false negatives are increased. These 28
results will aid users of Western blotting to choose a suitable normalisation strategy and also understand the 29
implications of this normalisation for subsequent hypothesis testing.30

31

Introduction32

Western blotting or protein immunoblotting, was introduced at the end of the 1970s to enable the detection of33
specific proteins [1,2]. Although originally a qualitative or at best a semi-quantitative method, with the rise of34
computational systems biology [3], Western blotting has become increasingly important for fully quantitative35
applications. Two main applications are the parameterisation and validation of mathematical models of36
biological systems [4]  and the testing of statistical significance between two or more experimental conditions or37
treatments [5].38

Although technical aspects of Western blotting have improved over the years, for example by extending the39
linear range of detection [6], it is not yet clear how much quantitative information can be obtained and in which40
settings. Here we investigate the quantitative use of Western blotting, to determine its applicability and limits41
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depending on the detection method and the data normalisation strategy used to quantitatively compare biological42
replicates of the same experimental conditions.43

A requirement for the quantitative use of Western blot data is the linearity between quantified intensities and44
protein amounts. To detect and correct non-linearity, the authors in [7] suggest to use hyperbolic calibration45
curves to interpolate the correct relative concentration of the proteins of interest. These are dilution curves that 46
need to be treated simultaneously to samples of interest, and in most situations constructing these dilution curves47
is not practical. Because this method is highly labour consuming and is not a laboratory common practice, we do48
not consider this approach in this paper. Nonetheless we investigate linearity in our Results section, where we49
quantify the extent of the linear range in the case of two detection systems: enhanced chemiluminescence (ECL)50
with X-ray film and ECL with charge coupled device (CCD) imager.51

Although the topic of data normalisation has been widely explored in the context of microarrays [8], it has not52
yet been fully investigated in the context of Western blotting. For microarrays, such as single channel 53
oligonucleotide arrays, the issue of data normalisation arises naturally when expression indices, obtained from54
gene probe sets intensities, need to be compared across different arrays, for example to identify differentially55
expressed genes [9]. In order to compare arrays quantitatively, several normalisation strategies have been56
proposed, where expression indices or intensities are scaled or transformed depending on the assumptions57
underlying each strategy. For example, assuming that the total amount of sample RNA is constant across arrays,58
the intensities are scaled such that the sum or the average of all intensities is equal across arrays (scaling59
methods [9]). Alternatively, assuming that the distribution of the intensities is conserved across arrays, the data 60
is transformed such that the quantile-quantile plot of the intensities of the arrays approaches a straight line61
(quantile normalisation [9]). Or again, assuming that there is a set of genes whose expression index does not62
change across arrays, such as a set of housekeeping genes, this set can be used as reference (invariant set63
normalisation [10]).64

In the case of Western blotting, usually a single protein is measured and a limited number of experimental 65
conditions is on the same blot and is detected at the same time; a situation in stark contrast to microarrays where66
thousands of gene expression measurements are obtained for potentially many more conditions than is typically67
done by Western blotting. The data or measurements from a Western blot are obtained by dividing quantified68
intensities (optical densities – OD) by the intensities of appropriate reference proteins, e.g. housekeeping69
proteins, from the same samples. This procedure adjusts the intensities with respect to small variations in the 70
number of cells and loading across samples within the same blot [11-13]. The need to normalise the data arises71
when comparing the results from biological replicates of the same experiment, for example to obtain statistical72
evidence that different conditions induce different protein amounts. We classify Western blot normalisations73
into three categories. The first and most widely used normalisation method is normalisation by fixed point74
(Figure 1A). It divides the data of a replicate by the measurement of a single condition, often referred to as 75
control. It should be noted that although this shares similarities with the invariant set normalisation in the 76
context of microarrays, the assumption that the reference condition is constant is not used and is in practice not77
satisfied. Thus the biological variability of the reference condition influences the variability of the normalised78
data. The second normalisation category we consider is normalisation by sum (Figure 1B), where the data on a79
blot is divided by the sum of the data on the same blot [14], or equivalently the data is scaled such that the 80
average is the same across blots [15,16]. It should be noted that in contrast with the analogous normalisation81
used in microarrays (scaling methods), in this case the sum is not assumed to be a constant. The biological82
variability of the sum and its dependency on the individual measurements might influence the variability of the83
normalised data. Most importantly, it is possible to compare two blots only if they present exactly the same84
conditions, using different lysates derived from cells cultured and treated in the same way. Yet, this condition is85
regularly met when producing a biological replicate. In our statistical formalisation we address the problem of86
characterising how the choice of reference (fixed point or sum) influences the normalised data. As third87
category we consider normalisation by optimal alignment (Figure 1C), where data from replicates are aligned88
using optimisation algorithms to minimise the uncertainty of the normalised data. Examples of this89
normalisation minimise either the sum of the squared differences between the replicates of each data point [17]90
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or the coefficient of variation (CV) of the normalised data [18]. The assumption behind this method is that the91
measurements across replicates should preserve an overall trend.92

To avoid the need for data normalisation, approaches for the absolute quantification of protein concentrations93
using Western blotting have been investigated [7,19]. However, these methods are not widespread mainly due to94
increased experimental effort, in particular the need for purified proteins as standards. It is also possible to95
obtain replicates of lysates that are directly comparable by means of multi-strip Western blotting [20], where96
replicates are cut from different gels and blotted on the same membrane. However, multi-strip Western blots are97
typically used to compare more conditions on the same membrane, rather than replicates.98

The quantitation of Western blots has also been the subject of theoretical investigations. In [21] the authors use a 99
large amount of data to identify a suitable error model for Western blot data. Using the error model, they dissect100
the different sources of error, concluding that the main sources of variability are multiplicative and so log-101
normally distributed. Additionally, by removing the sources of error, they reduce the variability in the data102
significantly. This work is based on error models for microarrary data [22], and is applicable only when a large103
amount of data is available. In [19], the authors suggest that technical errors can be reduced using a104
randomisation of time courses on a gel and smoothing the data using spline regression.105

In this paper, first we discuss the problem of linearity between protein concentrations and quantified optical 106
densities, which is a fundamental prerequisite to use Western blot data quantitatively in the absence of hard-to-107
obtain calibration curves. Second, we investigate how the choice of the normalisation strategy affects the 108
normalised data. In particular, we evaluate the normalisations in terms of their ability to reduce variability in the109
data and of how they affect statistical decisions.110

Materials and Methods111

Sample Preparation112

The MCF-7 cell line was maintained under standard conditions in Dulbecco's modified Eagle's medium113
supplemented with 10% foetal bovine serum. Cells were washed with ice cold phosphate buffered Saline and114
lysed in RIPA buffer (1% NP-40, 0.1% SDS, 0.5% Sodium deoxycholate, 50 mM Tris pH 7.5, 150 mM NaCl)115
supplemented with protease and phosphatase inhibitor cocktails (Sigma Aldrich) and protein concentration was116
quantitated by BCA protein assay (Invitrogen). Purified BSA (Applichem) was dissolved in RIPA buffer. Cell117
lysates and a BSA sample were serially diluted 1:2 and run on SDS-PAGE using a standard protocol. Proteins118
were transferred to the PVDF (for ECL based detection) or Nitrocellulose (for LI-COR based proteins detection)119
membranes. Membranes were blocked with blocking solution (11500694001, Roche) for BSA detection or 5% 120
skimmed milk for rest of the membranes. For Western blotting ERK (M-5670, Sigma Aldrich), mTOR (2972,121
Cell Signaling Technology), RSK1 (sc-231, Santa Cruz) and BSA (sc-50528, Santa Cruz) antibodies were used.122
Anti-rabbit HRP-conjugated (Cell Signaling Technology) or anti-Rabbit IR 800 (LI-COR) secondary antibodies123
were used for ECL or LI-COR protein detection systems, respectively. Signal was detected by standard X-ray124
films (Fuji), CCD camera (Advanced Molecular Vision) or LI-COR scanner. 125

Image Acquisition and Densitometry126

Several exposure times were tested for both ECL with film and ECL with CCD imager. In the case of the CCD127
imager we could choose the longest exposure that presented no signal saturation (overexposure), as detected by128
the software used in combination with the imager. In the case of X-ray film, we used our experience to select the129
films that had a good compromise between number of bands visible and the least possible exposure time. Films130
were digitalised using a high resolution CCD scanner (EPSON Perfection v750 Pro) without additional image131
corrections that could alter the linearity, such as automatic gain control [23]. Densitometry analysis was132
performed using the ImageJ Gel Analysis tool, where gel background was also removed individually for each133
band.134

Statistical Analysis of the Dilution Experiments135
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To assess the linearity of the dilution experiments we used linear regression and computed the coefficient of136

determination 2R using Microsoft Excel software. Briefly, the closer the coefficient of determination is to 1,137
the more the linear model is appropriate to represent the data. For each detection method we tested different138

dilution ranges by determining 2R using the first n visible bands, i.e. starting from the least intense band that139
could be detected. For example, to test the linearity of the five dilutions range, reflecting a 32 fold difference, 140

we computed the linear regression of the first six (n=6) visible bands of a dilution curve and computed 2R . We141

then computed 2R independently for three replicates and obtained mean and standard error. Using this142
approach we could compare coefficients of determination for specific dilution ranges across different detection143
methods. All quantified coefficients of determination of the dilution experiments can be found in Supporting144
Information S3.145

Theoretical Analysis of Normalisation Procedures146

The theoretical analysis was performed developing dedicated scripts in the R language for statistical computing147
and implementing dedicated C++ programs. While R was used mainly to compute the results inferred from148
Western blot data, shown in Figures 3C, 4, and Supporting Information Figure S8, C++ programs were used to149
compute the results in the theoretical scenarios. To obtain samples from log-normal distributions, we computed150
samples from normal distributions using the Box-Muller method [24] and then exponentiated these samples with151
base e. Mean and variance of these normal distributions were calculated so that the mean and variance of the 152
log-normal distributions were as desired (Figure 3A). Combining samples from log-normal distributions we153
could obtain samples from the distributions of the normalised data, as defined in the text (Equations (2), (4) and154
(8)). Because the log-normal distributions were defined a priori, we could then estimate false positives and false155
negatives results by using t-tests as described in the legend of Figure 5. Briefly, a false positive is defined as a t-156
test result that yields a p-value lower than 0.05 when testing samples from two distributions that we defined as157
identical (Figure 5A), while a false negative is defined as a t-test result that yields a p-value greater than 0.05158
when testing samples from two distributions that we defined as different (Figure 5B). Source files are available 159
upon request from the corresponding author.160

Results161

Linearity between Protein Concentration and Quantified Optical Densities162

In the absence of a calibration curve, a pre-requisite for obtaining quantitative Western blot data is a linear163
relationship between the amount of analyte and the measured intensity. To evaluate the extent of the linear range164
in commonly used detection methods, we prepared two 12 step 2-fold dilution series spanning a 2048-fold165
concentration range (three independent experiments). One sample series contained isolated Bovine Serum166
Albumin (BSA) while the other MCF-7 cell lysate. We used the first dilution series to quantify BSA and the167
second to quantify proteins across a mass range; they included Extracellular signal Regulated Kinases 1 and 2168
(ERK1/2), ca. 40 kDa, Ribosomal protein S6 Kinase alpha-1 (RSK1), ca. 80 kDa, and Mammalian Target Of 169
Rapamycin (mTOR), ca. 290 kDa. Proteins were detected using two detection systems: ECL with X-ray film170
and ECL with a CCD imager. Representative experiments with corresponding quantifications can be found in171
Figure 2 (BSA) and in Supporting Information Figures S1 (ERK), S2 (RSK1) and S3 (mTOR).172

In order to identify the linear range of a dilution curve we used linear regression for an increasing number of173
data points, starting from the first detectable and least intense band of a curve. For each regression we then174

computed the coefficient of determination 2R , which indicates if the linear regression is a good model for the 175

portion of the curve considered. The closer 2R is to 1, the more linear the data is. After computing 2R for each176
of three replicates we obtained mean and standard error.177

As expected, our results show that both ECL with X-ray film and with CCD imager have a limited linear range.178

For example, the full dilution curve of BSA detected with ECL with CCD imager has an 2R of179

0.788 0.035 .180
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Interestingly, we found that the linear range of ECL with CCD imager spans about five dilutions (32 fold). In181

particular, for all four proteins considered we obtained a significant reduction in 2R when we consider six182
dilutions (64 folds), with respect to five dilutions. For example, in the case of BSA, the coefficient of183

determination for five dilutions is 0.994 0.001 , while for six dilutions it is reduced to 0.952 0.011 , 184

while for ERK the reduction is from 0.993 0.003 to 0.954 0.01 .185

ECL with X-ray film presented a smaller linear range than with CCD imager. In particular, for the five dilutions186

range where CCD imager is linear, X-ray film yields a sensibly lower 2R . For example, for the BSA dilution187

this is reduced to 0.830 0.023 , while for ERK to 0.732 0.025 . Linearity in the case of ECL with X-ray188
film seems to hold only for two or three dilutions, i.e. four or eight fold (Supporting Information S3). 189

The difference between the two systems based on ECL is most likely due to saturation of the X-ray film by high190
intensity samples while trying to detect also the lowest intensity samples. This limitation can be avoided using a 191
CCD imager, which uses a computerised image acquisition system, and is able to detect low intensity signals192
without high intensity signals becoming saturated as quickly as with film. Because we were able to avoid this193
overexposure, the non-linearity observed using the CCD imager (Fig. 3B) is likely due to antibody interactions,194
as suggested in [7].195

Finally, we investigated the extent of the linear range when using secondary fluorescent antibodies of LI-COR196
to detect BSA and ERK (Supporting Information Figure S4). Results were comparable to what we described197
above for ECL with CCD imager.198

In conclusion, the use of ECL with X-ray film for quantitative Western blotting should be limited to the case in199
which the intensities vary experimentally not more than 4 to 8 fold. ECL with CCD imager or secondary200
fluorescent antibody presents a wider linear range of about 32 fold.201

Formalisation of Normalisation Strategies for Western Blot Data202

We now move the focus to the evaluation of the normalisation strategies that we categorised in the introduction.203
In this section we introduce a formalisation, i.e. a mathematical description, of the normalisation strategies we204
investigate. Without loss of generality, consider the measurements of a single target (e.g. a protein) under205

different conditions or treatments (e.g. inhibitors, stimuli) on the same blot. Each data point j
id , is indexed by206

the condition i I and the blot replicate number j J . The standard experimental setups described above 207

dictate the following:208

1. Data points on one blot are comparable to one another, even if they come from different gel strips [20]. 209

That is, j
id with different i but with the same j are directly comparable;210

2. Data points on two different blots are not comparable. That is, j
id with different j are not directly211

comparable. Normalisation must be employed to enable direct comparison across replicates.212

Given the linearity conditions explored above are met and that the data points j
id are samples from random213

variables j
iD , we have:214

 j
i j i

D S  ,i I j J    (1)

where  iS is the concentration of the protein of interest S in condition i , and j is the constant of215

proportionality of replicate j . Note that if the replicates had been blotted on the same membrane using multi-216

strip Western blotting, all the data would be comparable with j  for all j J .217
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The distribution of  iS depends on the mean of the concentration of S across a large number of cells in the218

lysate, on the biological variability, and on the technical error. We will now introduce the formalisation of the219
normalisation by fixed point or control, by sum of the replicate, and by optimal alignment of the replicates.220

Normalisation by a Fixed Normalisation Point or Control221

In the normalisation by fixed normalisation point or control a band on the blot common to all replicates is222
chosen to be the normalisation point, and the data from a replicate are divided by the value of the normalisation223
point. In general, this normalisation can be applied choosing any band that is present on all replicates that need224
to be compared. The term “control” usually indicates the band of the untreated or neutral condition. Formally,225

this normalisation is a data transformation where the data points j
id are substituted by the normalised data 226

points ,
j
i npd defined as:227

,

j
j i
i np j

np

d
d

d
 ,i I j J    (2)

Where the index np indicates a chosen normalisation point, which is an experimental condition all normalised228

data become relative to. In terms of random variables, the ,
j
i npd are samples from the random variables ,

j
i npD229

defined as:230

 
 

 
 ,

j
ji i i

i np j
np j np np

S SD
D

D S S





  


,i I j J    (3)

Notice that the random variable ,
j
np npD assumes value 1 with probability 1. Most importantly, the ,

j
i npd are now231

comparable across replicates j , because the constants of proportionality j are all cancelled out. Additionally,232

all normalised data is dependent on the distribution of the normalisation point. In the following sections we will233
show how this dependency influences the variability of the normalised data and we will investigate how to234
choose a normalisation point.235

Normalisation by Sum of all Data Points in a Replicate236

In the normalisation by sum, each data point on a replicate is divided by the sum of the values of all data points237
in that replicate. This way the data in each replicate becomes relative to this sum. It is important to ensure 238
consistency of the sum across replicates, that is exactly the same conditions need to be part of the sum. This239
ensures that each data point is divided by a sample that comes from the same random variable. For example, in240
the presence of missing values, data points to be summed are chosen so that no replicate of the corresponding241
condition has a missing value. Without loss of generality, in this section we give a formalisation of242
normalisation by sum where we do not consider missing values.243

In this normalisation, data points j
id are divided by the sum of all data points in a replicate j . Formally, the244

normalised data j
id are defined as:245

j
j i
i j

k
k I

d
d

d



 ,i I j J    (4)
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In terms of random variables, the normalised data points j
id are samples from the random variables iD defined246

as:247

 
 

 
 

j
ji i i

i j
k j k k

k I k I k I

S SD
D

D S S




  


  

   ,i I j J    (5)

Similar to the normalisation by fixed point, the constants of proportionality j cancel and comparable 248

normalised data are obtained. Notice that the normalised data are dependent on the value of all the data points in249
a replicate. The effects of this dependency on the variability of the data and hypothesis testing are investigated250
in the following sections. We note that Eq. 5 may be obtained by formulating the normalisation as an251
optimisation problem (see Supporting Information S1, Section S1).252

Normalisation by Optimal Alignment of the Replicates253

In the normalisation by optimal alignment, the objective is to scale the data by a scaling factor for each replicate,254
so that replicates are aligned, that is the distance between data across replicates is minimal. This procedure has255
the specific goal of minimising the variability of the normalised data. Moreover, different notions of distance256
can be used, yielding different definitions of objective functions. The objective functions formalise the distance257
between the data in the replicates and are parametric with respect to the scaling factors. Finding the minimum of258
an objective function implies identifying optimal scaling factors. Examples of objective functions are as the sum259
of the squared differences between replicates [17] or the mean CV of the normalised data [18]. In the following260
we give a formal definition of normalisation by optimal alignment, considering a specific definition of distance,261
i.e. the sum of squared differences between replicates.262

In this normalisation, each replicate j is scaled by a factor j so that an optimal alignment of the replicates is263

achieved. It is necessary to avoid the trivial solution 0j  for all j J , which can be done by introducing264

the constraint 1 1  and estimating the remaining j . Here we consider the normalisation by least squared265

difference, defined as follows. Assuming we have J replicates and we want to align every replicate to the first266

replicate, the objective function for a least squared optimal alignment is as follows:267

   
 

21
2 1

\ 1

,..., j
j i iJ

j J i I

obj d d   
 

     , with 1 1 268

We minimise obj to find the optimal 2 ,..., J  . The result of this optimisation can be computed analytically269

and yields (see Supporting Information S1, Section S2 for the derivation):270

1

2

( )

( )

j
i i

i I
j j

ii I

d d

d
 








j J  (7)

The normalised data j
id are defined as follows:271

1

2

( )

( )

j
k k

j j j k I
i i j i j

kk I

d d
d d d

d
 




   




,i I j J    (8)
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Notice that because of the definition of the j , a normalised data point depends on a combination of the value272

of the data in the same replicate and the value of the data in replicate 1. More complex normalisations by273
optimal alignment of the replicates, such as the normalisation by minimisation of the mean CV of the274
normalised data in [18], may present normalised data points that are dependent on the values of all the data. For275
illustration purposes we use here normalisation by least squared difference as a representative of the276
normalisations by optimal alignment. We show in the Supporting Information S1, Equation (S5), that the data277
points normalised by least squared difference are all in the same unit, and are therefore directly comparable. In278
the next sections we investigate how the normalisations discussed above influence data variability and the279
statistical inference on data.280

Impact of Normalisation on Data Variability281

A major aim of data normalisation is to make replicates suitable for quantitative comparison, while ensuring282
data integrity and avoiding adding uncertainty to the data. Here we show how different normalisation strategies283
affect the variability of the normalised data. We use the CV of the normalised data to compare the variability284
that results from applying the different normalisations.285

For a theoretical investigation of how the choice of normalisation strategy affects the data, we use a simulated286
scenario. Suppose that the data of eight conditions or treatments is given as in Figure 3A. We chose a data287
distribution where the response to the treatments from one to eight has an increasing mean but the same CV of288
0.2. In this and further analyses, we consider these distributions to be log-normal, because of the finding in [21]289
that the main sources of variability in Western blot data are multiplicative, and therefore log-normally290
distributed. In the Supporting Information S1, Section S3 and Figures S6 and S7, we replicate the results in this291
paper using normal distributions and obtain nearly identical results.292

In Figure 3B we show how normalisation by fixed point, normalisation by sum and normalisation by least 293
squared difference affect the CV of the eight conditions. To obtain these results we estimated the distributions294
associated with the random variables that we identified in Equation (3), Equation (5) and in the Supporting295
Information S1, Equation (S5), using a sampling approach based on the Box Muller sampling method [24]. We 296
chose Condition 1 as the normalisation point for the normalisation by fixed point. It should be noted that297
because every condition is distributed with the same CV, this choice is an invariant in our analysis. The mean of298
the normalisation point does not determine the CV of the normalised data (data not shown), while we will show 299
below that the CV of the normalised data depends strictly on the CV of the normalisation point chosen and that 300
in practice data points with low mean, i.e. low OD, usually present higher CV. Normalisation by fixed point301
induced an increase in the mean CV, from 0.2 to 0.25, while increasing equally the CV of the response to each302
condition, with the obvious exception of Condition 1. Normalisation by sum slightly reduced the mean CV, 303
from 0.2 to 0.196, while the effect on the single responses to the conditions is a redistribution of the CV in a 304
way that is dependent on the mean of the conditions. Conditions with high mean present a reduced CV, while305
conditions with low mean present an increased CV (albeit slightly). This redistribution is due to the fact that the 306
distribution of the data normalised by sum is dependent on the distribution of all the conditions, as can be seen307
in Equation (5). Normalisation by least squared difference optimisation increased very slightly the mean CV, 308
from 0.2 to 0.206, while the effect on the single responses to the conditions is a redistribution of the CV309
analogous to what is observed for the normalisation by sum.310

In order to obtain evidence that support the above theoretical investigation, we apply the normalisations to our311
Western blot data published in Supplementary Figure S3 of [25] and also available in Supporting Information312
Figure S5. These data are composed of two data sets, one with measurements of phosphorylated ERK (ppERK), 313
and the other with measurements of phosphorylated Akt (pAkt). Each data set is composed of three replicates of314
multi-strip Western blots, where on each blot there are 70 conditions divided into seven time courses for two315
different cell lines. Each data set is thus composed of 210 data points of measurements of band intensities316
already divided by the intensity of the corresponding loading controls, which are total ERK and Akt,317
respectively. These blots were done using ECL for protein detection and CCD imaging for recording of band318
intensities. All measurements were detected avoiding overexposure, and as most of the measurements are within319
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a limited dynamic range they are likely within a linear range of detection. Figure 3C illustrates the mean CV320
obtained for the two data sets after applying different normalisation strategies, and compares these results with321
the theoretical investigation of Figure 3B. The results obtained with the experimental data agree with the 322
theoretical investigation. The mean CV of the normalised data is relatively low for the normalisation by sum and323
the normalisation by least squared difference, while higher, on average, for the normalisation by fixed point. In324
practice, the result of the normalisation by fixed point depends on the choice of the normalisation point, yielding325
normalised data with low and high variability depending on such choice. In the next section we investigate how 326
to choose a normalisation point.327

Low Intensity Data Points are Unsuitable Normalisation Points328

In this section we investigate how, in the normalisation by fixed point, the choice of the normalisation point 329
affects the variability of the data. In Figure 3D we illustrate how an increase in the CV of the normalisation330
point (Condition 1) induces a monotonic increase in the CV of the distribution of the normalised data (Condition331
2), estimated using Equation (3). This result implies that the CV of the data normalised by fixed point is directly332
correlated with the CV of the particular condition used as normalisation point. This result also implies that a333
good choice for a normalisation point is a condition that presents a response with low CV, and hence low 334
uncertainty. Although for non-comparable biological replicates it is impossible to pinpoint which data points335
have low variability, in the following we provide evidence that low protein band intensities usually yield336
normalised data with high variability.337

For this analysis we again use the Western blot data published in the Supplementary Figure S3 of [25]. For both338
ppERK and pAkt data sets we use each data point as normalisation point and calculate the average CV of the339
other points resulting from this normalisation. The results are illustrated in Figure 4 where, using a regression by340
spline functions, we show that choosing low intensity bands as a normalisation point causes an increase in the 341
mean CV of the normalised data. Additionally, because of the result in Figure 3D, we can infer that low342
intensity bands have usually a larger CV and thus a higher uncertainty. This is most likely due to the low signal-343
to-noise ratio or, in other words, due to the presence of background noise and the difficulty to separate this noise344
from low intensity measurements.345

In addition, we investigated whether the presence of data points that are outside the linear range of detection346
could also affect the choice of normalisation point. We performed an analysis analogous to what we described347
above for Figure 4 using the data from the three replicates of the dilution experiments illustrated in Figure 2 and348
Supporting Information Figures S1, S2 and S3. We used the data of the ECL with CCD imager detection349
system, which all present non-linearity outside the 32 fold linear range. The results for proteins BSA, RSK1 and350
mTOR present similarities with what we have found for ppERK and pAkt in Figure 4, i.e. using lower intensity351
measurements as normalisation point induces larger CV. The result for ERK is shown in Supporting Information352
Figure S8 and indicates that in this case both high intensity and low intensity normalisation points induce high353
CV, while medium intensity measurements induce the smallest CV. This is most likely due to the fact that the354
hyperbolic part of the dilution curves, which is composed of high intensity bands, is not reproduced consistently355
across replicates. Thus, the variability of high intensity data that are outside the linear range can induce356
normalised data with large CV even when a high intensity measurement is used as normalisation point.357

Impact of Normalisation on Statistical Testing358

In this section we use a simulated scenario to investigate the effects of normalisation on the statistical testing359
applied to examine the significance of differences between protein bands detected by Western blotting. In360
particular, we test how normalisations influence the sensitivity and specificity of the two-tailed t-test [5], which361
is frequently used. In order to evaluate the sensitivity and the specificity, we estimate the percentage of false362
positives and false negatives by repeated data sampling. 363

It is standard practice to employ the t-test in spite of the fact that the actual distribution of Western blot data is364
unknown and theoretical investigation points toward a log-normal distribution [21], which is different from the365
normal distribution assumed in the test. Fortunately, the t-test is robust with respect to this violation of its366
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assumptions [26,27] having enabled its widespread application to Western blot data. As we want our analysis to367
be relevant for the practitioners we therefore comply with the established practice, and also use the t-test.368

In Figures 5A,B, the row labelled “Before normalisation” illustrates the expected percentage of false positives369
and false negatives obtained applying the t-test to data distributed as described in the previous figures. Because 370
we set a threshold p-value of 0.05 in the t-test, the percentage of false positive is about 5%, as expected.371
Variations to the percentage of false positives and false negatives should be attributed to the application of the372
normalisations.373

Normalisation by fixed point reduces the percentage of false positives, but greatly increases the percentage of374
false negatives, i.e. the specificity of the test is increased but the sensitivity is greatly reduced. This result is in375
agreement with our finding that the normalisation by fixed point increases the CV of the data. Thus, choosing376
this normalisation method will fail to identify some of the differences between data points. Normalisation by377
sum affects the percentage of false positives and false negatives in a way that is dependent on the mean of the378
response to the conditions tested. If relatively low values are tested, e.g. Conditions 2 and 3 in Figures 5A,B, the379
number of false positives decreases and the number of false negatives increases, while if relatively high values380
are tested, e.g. Conditions 7 and 8, the number of false positives increases and the number of false negatives381
decreases. Normalisation by least squared difference also affects false positives and false negatives depending382
on the magnitude of the data tested. Additionally, it seems that the normalisations by optimal alignment, such as 383
by least squared difference, induce a stronger change in the sensitivity and specificity than the normalisation by384
sum. In general, normalisation by sum and by optimal alignment can introduce false positives when testing data385
with values relatively higher than the rest of the data set, reducing the specificity of the test.386

387

Discussion388

In this paper we have investigated two issues that are important for the quantitative use of Western blot data, i.e.389
linearity of the detection system and the influence of data normalisations. Our results indicate that for390
quantitative Western blotting, if the measured intensities vary more than 4-8 fold, then the ECL detected by391
CCD imager system is preferable to ECL detected by X-ray film, as it yields a larger linear dynamic range. The 392
linear range in the case of ECL in combination with CCD imager spans about 32 fold concentration change for 393
four different proteins with different molecular mass, (Figure 2 and Supporting Information Figures S1, S2 and394
S3). When we tested fluorescent secondary antibodies detected by the LI-COR scanner, we found that a linear395
range is similar to the ECL with CCD imager detection method (Supporting Information Figure S4).396

To better understand the mechanisms behind the normalisation of Western blot data, we use a formalisation397
based on statistical arguments of three normalisation strategies. Our findings reveal that the normalisation by398
fixed point introduces additional variability in the data (Figure 3B), and that conditions that induce responses399
with low CV are preferable normalisation points, because they induce a lower CV of the normalised data400
(Figure 3D). Although the CV of the response to specific conditions is in general not known, we provide401
evidence of whether low, medium or high intensity measurements have usually high or low CV. In particular we 402
showed that low intensity measurements are usually inappropriate normalisation points (Figure 4). This is most 403
likely due to the low signal-to-noise ratio and consequent high CV of low intensity measurements. Additionally,404
we showed that high intensity measurements that are outside the linear dynamic range are inappropriate 405
normalisation points (Supporting Information Figure S8). Therefore, we suggest that for this type of406
normalisation the most appropriate normalisation points are data points with medium intensity measurements.407
Because the normalisation by fixed point increases the CV of the normalised data, this also has an impact on408
statistical testing. When applying a two-tailed t-test to the normalised data, we saw an increase in the specificity409
of the test and a strong decrease of the sensitivity (Figure 5A,B). While a high specificity is desirable, the410
decline in sensitivity increases the chances of overlooking significant differences between data points. In411
addition, if the normalisation point is not chosen carefully, the normalised data could present a high variability412
and it might become very difficult to detect when two conditions yield different results.413
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The normalisations by sum and by optimal alignment also influence the variability of the normalised data.414
Rather than introducing uncertainty, in this case the uncertainty is redistributed depending on the relative415
magnitude of the measurements (Figures 3A and 3B). In particular, the variability of high intensity416
measurements is reduced, while the variability of low intensity measurements is increased. This redistribution is417
due to the fact that normalised data points depend on the data points from other conditions or even from other418
replicates, as highlighted by the random variable of the normalised data in Equation (5) and Equation (S5) in419
Supporting Information S1.420

A consequence of this redistribution is also that normalisations by sum and by optimal alignment have an impact421
on statistical testing. By applying a two-tailed t-test we observed an increase in sensitivity and decrease in422
specificity, when testing conditions with high intensity measurements (Figures 5A,B). Because more false423
positives are detected, the distinction of differences between two data points with high intensity measurements424
becomes less reliable than before normalisation. The alterations of sensitivity and specificity are inverted when425
data points with low intensity measurements are tested. These results imply that when these normalisations are 426
applied, it is necessary to pay attention to whether high intensity or low intensity data points are tested and427
interpret the results accordingly. It is also possible to envision the definition of a data transformation or428
modified t-test to tune sensitivity and specificity based on the relative magnitude of the measurements tested,429
and calibrate the number of false positives to 5% of the cases.430

Our findings also have implications for the use of Western blot data for mathematical model training and431
validation. In this setting, data is compared to the output of a model and appropriate values for the parameters of432
the model are identified, aiming to obtain the best possible agreement between data and output [4]. Because data433
normalisation has an influence on the distribution of the normalised data, we advise to normalise also the model 434
output before comparing it to the data, when the nature of the mathematical model permits it. This should allow435
for a fair comparison between output and data, because in principle they would be subject to the same data 436
transformation.437

Although the quantitative use of Western blotting is now widespread, published articles often lack the details of438
how Western blot results were quantified and how biological replicates were compared to obtain statistics [23].439
We hope that the results in this paper will serve as a reference and encourage scientists to include in future 440
publications what we demonstrate to be critical information. To this end, based on our results, we wrote a short 441
manual of one page that contains a step-by-step guide to help biologists choose the normalisation strategy that is442
the most appropriate to their case. This manual can be found in Supporting Information S2.443
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505

Figure Legends506

Figure 1. Normalisations of Western blot replicates in the literature. We divide the normalisations found in507
literature into three categories: (A) normalisation by fixed normalisation point or control; (B) normalisation by508
sum of the replicate; (C) normalisation by optimal alignment. For illustration purposes we do not use actual509
Western blot data. Each normalisation is presented using three cartoon Western blots, representing three510
replicates, and highlighting with red circles the data points used in the normalisation procedure. The graphs511
show the normalised data, where the points belonging to the same replicate are connected with lines.512

Figure 2. Signal linearity obtained by different Western blot detection systems. Representative experiments513
of Western blots containing 2-fold serial dilution of BSA. Shown are the representative results from 3514
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independent experiments. BSA was detected by (A,C) ECL with X-ray film and (B,D) ECL with CCD imager.515
Blue squares indicate data points that are linear, while red triangles indicate data points outside the linear range516
of detection. To highlight linear and non-linear data we use linear trend lines, reporting the coefficient of517

determination 2R . In (A,B) data are in log-log scale to improve visualisation.518

Figure 3. Effect of the normalisation on the CV of the normalised data. (A) Distribution of the data in a519
simulated scenario. In our theoretical analysis of the effects of the normalisation on the variability of the520
normalised data we consider a distribution of the response to eight conditions. We use log-normal distributions521
with CV 0.2 and mean of the response to the conditions from 1 to 8 as 1, 2, 3, 4, 7, 10.5, 18, 27. (B) CVs are522
shown for the distribution of the simulated data before normalisation, after normalisation by first condition, after523
normalisation by sum of all data points in a replicate and after normalisation by least squared differences. The 524
mean CV is computed as the average across the eight conditions. (C) Data from Supplementary Figure S3 of525
[25] (Supporting Information Figure S5 in this publication) were normalised using different normalisation526
strategies and the mean CV of the resulting normalised data is shown. As the mean CV obtained by the527
normalisation by fixed point depends on the choice of normalisation point, we report the mean and standard528
deviation obtained. We also report the mean CV obtained using ppERK and pAkt data and we compare them529
with the theoretical results of Figure 3B. (D) Before normalisation, the response to Condition 2 has a CV of 0.2,530
as shown in Figure 3A. Condition 2 is then normalised by fixed point, with Condition 1 as normalisation point.531
Here we show how the CV of normalised Condition 2 changes for increasing CV of the normalisation point532
Condition 1.533

Figure 4. Correlation between the intensity of the normalisation points and the CV of the normalised534
data. Using data from (A) phosphorylated Akt and (B) phosphorylated ERK from Supplementary Figure S3 in535
[25] (Supporting Information Figure S5 in this publication) we tested every point on a blot as normalisation536
point. For each resulting normalisation we computed the average of the CV of the normalised data points, and537
plotted the value of each data point (scaled so that the maximum of each replicate is equal to 1) against the538
average CV obtained by normalising with the corresponding data point. The result shows how the intensities of539
each normalisation point chosen correlate with the variability of the normalised data.540

Figure 5. Effects of normalisation on false positives and false negatives when applying t-test for equality541
of the mean. (A) We consider responses to eight conditions with log-normal distributions with CV of 0.2 and542
means of the conditions from 1 to 8 equal to: 1, 2, 2, 4, 7, 7, 18, 18. A number n=5 of sampled replicates are 543
obtained from these distributions and normalised using the normalisations above. Using these replicates before 544
and after normalisation, conditions are tested using a two-tailed t-test with threshold p-value of 0.05. We repeat545
this procedure a large number of times and estimate the percentage of false positives. (B) In analogy with (A),546
we estimate the number of false negatives considering means of the conditions from 1 to 8 equal to: 1, 2, 3, 4, 7,547
10.5, 18, 27. Notice that for a fair comparison, when testing two conditions, one has a mean that is always 2/3548
the mean of the other, e.g. Condition 5 has mean 7 and Condition 6 has mean 10.5, with 7/10.5=2/3.549

550

Figure S1. Signal linearity of ERK obtained by different Western blot detection systems. Shown are551
representative results from three independent experiments of Western blots containing 2-fold serial dilution of552
cell lysate. ERK was detected by (A,C) ECL with X-ray film and (B,D) ECL with CCD imager. Blue squares553
indicate data points that are linear, while red triangles indicate data points outside the linear range of detection.554

To highlight linear and non-linear data we use linear trend lines, reporting the coefficient of determination 2R .555
In (A,B) data are in log-log scale to improve visualisation.556

Figure S2. Signal linearity of RSK1 obtained by different Western blot detection systems. Shown are557
representative results from three independent experiments of Western blots containing 2-fold serial dilution of558
cell lysate. RSK1 was detected by (A,C) ECL with X-ray film and (B,D) ECL with CCD imager. Blue squares559
indicate data points that are linear, while red triangles indicate data points outside the linear range of detection.560
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To highlight linear and non-linear data we use linear trend lines, reporting the coefficient of determination 2R .561
In (A,B) data are in log-log scale to improve visualisation.562

Figure S3. Signal linearity of mTOR1 obtained by different Western blot detection systems. Shown are 563
representative results from three independent experiments of Western blots containing 2-fold serial dilution of564
cell lysate. Protein mTOR1 was detected by (A,C) ECL with X-ray film and (B,D) ECL with CCD imager. Blue565
squares indicate data points that are linear, while red triangles indicate data points outside the linear range of566
detection. To highlight linear and non-linear data we use linear trend lines, reporting the coefficient of567

determination 2R . In (A,B) data are in log-log scale to improve visualisation.568

Figure S4. Signal linearity of BSA and ERK obtained by fluorescent secondary antibodies. Shown are569
representative results from three independent experiments of Western blots containing 2-fold serial dilution of570
(A,C) BSA and (B,D) cell lysate. BSA and ERK were detected using fluorescent secondary antibodies. Blue571
squares indicate data points that are linear, while red triangles indicate data points outside the linear range of572
detection. To highlight linear and non-linear data we use linear trend lines, reporting the coefficient of573

determination 2R . In (A,B) data are in log-log scale to improve visualisation.574

575

Figure S5. Supplementary Figure S3 of [25]. Experimental data used in Figures 3C and 4. The experiments576
shown in Figure S5 were performed as described in by Rauch et al. in [25].577

Figure S6. Effect of the normalisation on the coefficient of variation of the normalised data. (A) CVs are 578
shown for the distribution of the simulated data before normalisation, after normalisation by first condition, after 579
normalisation by sum of all data points in a replicate and after normalisation by least squared differences. The 580
mean coefficient of variation is computed as the average across the eight conditions. Mean and standard581
deviation of the data before normalisation is given in Figure 3A of the main text, and here is normally582
distributed. (B) Before normalisation, the response to Condition 2 has a coefficient of variation of 0.2, as shown583
in Figure 3A of the main text. Condition 2 is then normalised by fixed point, with Condition 1 as normalisation584
point. Here we show how the coefficient of variation of normalised Condition 2 changes for increasing585
coefficient of variation of the normalisation point Condition 1.586

587

Figure S7. Effects of normalisation on false positives and false negatives when applying t-test for equality588
of the mean. (A) We consider responses to eight conditions with normal distributions with CV of 0.2 and means589
of the conditions from 1 to 8 equal to: 1, 2, 2, 4, 7, 7, 18, 18. A number n=5 of sampled replicates are obtained590
from these distributions and normalised using the normalisations above. Using these replicates before and after591
normalisation, conditions are tested using a two-tailed t-test with threshold p-value of 0.05. We repeat this592
procedure a large number of times and estimate the percentage of false positives. (B) In analogy with (A), we593
estimate the number of false negatives considering means of the conditions from 1 to 8 equal to: 1, 2, 3, 4, 7,594
10.5, 18, 27. Notice that for a fair comparison, when testing two conditions, one has a mean that is always 2/3595
the mean of the other, e.g. Condition 5 has mean 7 and Condition 6 has mean 10.5, with 7/10.5=2/3.596

597

Figure S8. Correlation between the intensity of the normalisation points and the CV of the normalised 598
data. Using data from the three replicates of the ERK dilution experiments detected with CCD imager, we 599
tested every point on a blot as normalisation point. For each resulting normalisation we computed the average of600
the CV of the normalised data points, and plotted the value of each data point (scaled so that the maximum of601
each replicate is equal to 1) against the average CV obtained by normalising with the corresponding data point.602
The result shows how the intensities of each normalisation point chosen correlate with the variability of the603
normalised data.604
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