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Abstract

This paper describes a finite volume method for orthotropic bodies with gen-

eral principal material directions undergoing large strains and large rotations.

The governing and constitutive relations are presented and the employed

updated Lagrangian mathematical model is outlined. In order to maintain

equivalence with large strain total Lagrangian methods, the constitutive stiff-

ness tensor is updated transforming the principal material directions to the

deformed configuration. Discretisation is performed using the cell-centred fi-

nite volume method for unstructured convex polyhedral meshes. The current

methodology is successfully verified by numerically examining two separate

test cases: a circular hole in an orthotropic plate subjected to a traction and

a rotating orthotropic plate containing a hole subjected to a pressure. The

numerical predictions have been shown to agree closely with the available

analytical solutions. In addition, a 3-D composite component is examined

to demonstrate the capabilities of the developed methodology in terms of a

∗Corresponding author. Tel.: +353 1 716 1880
Email address: philip.cardiff@ucd.ie (P.Cardiff)

Preprint submitted to Computer Methods in Applied Mechanics and EngineeringAugust 28, 2013

http://ees.elsevier.com/cmame/download.aspx?id=327843&guid=e6fe1a46-7257-451a-93c9-11c55f28c14b&scheme=1


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

variable material orientation and parallel processing.

Keywords: orthotropic elasticity; finite volume method; large strain;

updated Lagrangian; OpenFOAM

1. Introduction

Composite materials are finding greater importance in many engineer-

ing applications such as aerospace and renewable energy due to their high

strength-to-weight ratio and superior mechanical and thermal properties. Ac-

curate calculation of the mechanics of these orthotropic systems is of consid-

erable importance in the design of such structures.

The finite element (FE) and finite volume (FV) methods are commonly

employed in computational solid mechanics (CSM) and computational fluid

dynamics (CFD), where the FE method is traditionally associated with CSM

and the FV method associated with CFD. However, the usage of FV analysis

in CSM is becoming increasingly popular due to the attractively simple yet

strongly conservative nature of the method. At present, the FV method has

been applied to a large range of stress analysis problems in linear-elasticity

[1, 2, 3, 4, 5, 6, 7, 8], thermo-elastoplasticity [9], thermo-viscoelasticity [10],

incompressible elasticity [11, 12], contact mechanics [14, 15, 16, 17, 18], frac-

ture mechanics [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and

fluid-structure interactions [27, 33, 34, 35].

Even though a wide variety of solid mechanics problems have been anal-

ysed using the FV method, orthotropic bodies with general material di-

rections experiencing large strains and rotations have yet to be analysed.

Fainberg et al. [36] developed a 2-D orthotropic solver employing the FV

2
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method for coupled thermo-elastic analyses within a cylindrical reference

frame. Demirdžić et al. [37] developed a 3-D FV procedure for the analysis

of orthotropic bodes undergoing small strains, where the principal material

directions align with the global Cartesian axes. The current research adopts

similar approaches to Fainberg et al. [36] and Demirdžić et al. [37] and

extends their methods to allow for large strains and large rotations. Addi-

tionally, the principal material directions are general and may be aligned in

any direction and spatially varying, allowing more complex structures such

as aircraft wings, turbine blades and other composite components to be ex-

amined. Furthermore, the currently adopted large strain FV approach would

allow consistent and efficient fluid-structure interaction analyses to be per-

formed on orthotropic structures.

This paper describes the development and verification of a large strain

FV procedure for the analysis of orthotropic bodies with general principal

material directions. The procedure is implemented as a custom application

in open-source software OpenFOAM (version 1.6-ext) [38, 39].

2. Mathematical Model

2.1. Governing Equation

For an arbitrary body of volume Ω, bounded by surface Γ with unit

normal n, the conservation of linear momentum in integral form is given by:

Inertia
︷ ︸︸ ︷

∂

∂t

∫

Ω

ρv dΩ =

Surface Forces
︷ ︸︸ ︷∮

Γ

n ·σ dΓ+

Body Forces
︷ ︸︸ ︷∫

Ω

ρ b dΩ (1)

where v is the velocity vector, σ is the Cauchy stress tensor, ρ is the density,

and b is the body force per unit mass. The linear momentum equality,

3
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a generalisation of Newton’s second law of motion, states that the rate of

change of the total linear momentum of a body is equal to the sum of all

the forces acting on the body. As the current study adopts a Lagrangian

approach, the convection term is zero i.e. there is no mass flow across the

surface of the volume of interest.

2.2. Constitutive Relation

For elastic materials, the relationship between stress and strain is gov-

erned by the generalised Hooke’s theory of elasticity in incremental form:

δS = C : δE (2)

where δS is the increment of second Piola-Kirchhoff stress tensor, δE is

the increment of Green strain tensor, and C is the fourth-order constitutive

tensor of elastic constants. The operator : signifies a double dot product.

The increment of Green strain is given by:

δE =
1

2

[

∇δu+∇δuT +∇δu ·∇uT +∇u ·∇δuT +∇δu ·∇δuT
]

(3)

where δu is the increment of displacement and ∇ signifies the so called

Hamilton operator, synonymous with the del or nabla operator.

For an isotropic linear elastic material, the 81 components of the elas-

tic stiffness tensor, C, reduce to two independent material parameters. In

contrast, for an orthotropic linear elastic material, the 81 components re-

duce to nine independent material parameters. The generalised Hooke’s law

(Equation 2) for an orthotropic linear elastic material may be rewritten in

4
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the Voight 6× 6 matrix notation [40, 37]:

















δSxx

δSyy

δSzz

δSxy

δSyz

δSzx

















=

















A11 A12 A31 0 0 0

A12 A22 A23 0 0 0

A31 A23 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66

































δExx

δEyy

δEzz

δExy

δEyz

δEzx

















(4)

where the stiffness coefficients, Aij , are given in terms of Young’s moduli, Ei,

Poisson’s ratio, νij , and shear moduli, Gij, by:

A11 =
1− ν23ν32
A0E2E3

, A22 =
1− ν13ν31
A0E1E3

, A33 =
1− ν21ν12
A0E2E1

,

A12 =
ν12 + ν32ν13
A0E1E3

, A23 =
ν23 + ν21ν13
A0E1E2

, A31 =
ν31 + ν21ν32
A0E2E3

,

A44 = 2G12, A55 = 2G23, A66 = 2G31,

A0 =
1− ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13

E1E2E3
. (5)

The three Young’s moduli E1, E2 and E3 correspond to the stiffness in the

global x, y and z directions, respectively. The Poisson’s ratio νij corresponds

to the transverse strain in the j direction due to a strain in the i direction.

In general, νij $= νji, and they are connected by the relation νij
Ei

= νji
Ej
. The

shear modulus in the ij plane is Gij and obeys the relation Gij = Gji.

As the material properties are commonly known in their local and not the

global coordinate system, a field of local constitutive stiffness tensors, C local,

is constructed at the beginning of the simulation using the user specified

properties. Subsequently, by employing the user specified initial principal

material directions, the local constitutive tensor field is rotated to the global

5
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coordinate system:

C = AT ·C local ·A (6)

where tensor A is given by:

























L2
xx L2

xy L2
xz

√
2LxxLxy

√
2LxyLxz

√
2LxzLxx

L2
yx L2

yy L2
yz

√
2LyxLyy

√
2LyyLyz

√
2LyzLyx

L2
zx L2

zy L2
zz

√
2LzxLzy

√
2LzyLzz

√
2LzzLzx

√
2LxxLyx

√
2LxyLyy

√
2LxzLyz

(LxyLyx

+LxxLyy)

(LxzLyy

+LxyLyz)

(LxxLyz

+LxzLyx)

√
2LyxLzx

√
2LyyLzy

√
2LyzLzz

(LyyLzx

+LyxLzy)

(LyzLzy

+LyyLzz)

(LyxLzz

+LyzLzx)

√
2LzxLxx

√
2LzyLxy

√
2LzzLxz

(LzyLxx

+LzxLxy)

(LzzLxy

+LzyLxz)

(LzxLxz

+LzzLxx)


























(7)

and the components of the second order tensor L are given by xi ·yj :

L =








x1 ·y1 x1 ·y2 x1 ·y3

x2 ·y1 x2 ·y2 x2 ·y3

x3 ·y1 x3 ·y2 x3 ·y3








(8)

where x1, x2 and x3 are the global coordinate base unit vectors and y1, y2

and y3 are the local coordinate base unit vectors supplied by the user.

It should be noted that although the current method is developed em-

ploying an orthotropic version of the classical Kirchhoff–St. Venant elasticity

model, it may be extended in a straight-forward manner to allow more com-

plex constitutive behaviours, such as quasi-incompressibility [11, 12, 13].

2.3. Updated Lagrangian Mathematical Model

To derive the mathematical model for the updated Lagrangian approach,

the conservation of linear momentum (Equation 1) may be written in terms

6
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of the second Piola-Kirchhoff stress tensor:

∂

∂t

∫

Ωo

ρv dΩo =

∮

Γo

no · (So ·F o) dΓo +

∫

Ωo

ρ b dΩo (9)

where quantities appended by subscript o are referred to the original unde-

formed configuration, the deformation gradient F = I + ∇u, and I is the

second order identity tensor. The relation may be written in the incremental

form by employing the finite difference method:

∂

∂t

∫

Ωo

ρ δv dΩo =

∮

Γo

no · (δSo ·F o+So · δF o+ δSo · δF o) dΓo+

∫

Ωo

ρ δb dΩo

(10)

By noting that ∇u = 0 when the updated Lagrangian approach is employed,

Equation 10 may be simplified:

∂

∂t

∫

Ωu

ρ δv dΩu =

∮

Γu

nu · (δS + S · δF + δS · δF ) dΓu +

∫

Ωu

ρ δb dΩu (11)

The presented updated Lagrangian mathematical model ensures that the

increment of force for each time increment is in equilibrium. However, as only

the increment of force is considered and not that total force equilibrium, this

approach may be susceptible to the build-up of numerical errors. Accordingly,

Equation 11 may be modified to ensure that the total forces are in equilibrium

by including any imbalance from the previous increment:

∂

∂t

∫

Ωu

ρ
∂(u+ δu)

∂t
dΩu =

∮

Γu

nu · (δSu + Su + Su · δF u + δSu · δF u) dΓu

+

∫

Ωu

ρ (b+ δb) dΩu (12)

Due to the current modifications, the current increment of force can compen-

sate for any slight imbalance from previous steps thus ensuring equilibrium

7
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of the total forces. The effect of this modification is highlighted in the test

case section.

Substituting the constitutive law, Equation 2, into the updated Lagrangian

momentum equation (Equation 11) yields the linear momentum equation for

the updated Lagrangian method:

∂

∂t

∫

Ωu

ρ
∂(u + δu)

∂t
dΩu =

∮

Γu

nu · (Cu : δEu) dΓu

+

∮

Γu

nu · [(Su + δSu) ·∇δu] dΓu

+

∮

Γu

nu ·Su dΓu

+

∫

Ωu

ρ (b+ δb) dΩu (13)

where δF u = ∇δu, and the increment of Green strain (Equation 3) reduces

to:

δEu =
1

2

(

∇δu+∇δuT +∇δu ·∇δuT
)

(14)

To allow the system (Equation 13) to be solved using a segregated solution

procedure, the first term on the right hand side of Equation 13 is decomposed

into an implicit and an explicit component treated using a lagged correction

approach, leading to

∂

∂t

∫

Ωu

ρu
∂(u + δu)

∂t
dΩu =

Implicit Component
︷ ︸︸ ︷∮

Γu

nu · (K ·∇δu) dΓu

+

Explicit Term
︷ ︸︸ ︷∮

Γu

nu ·QΓ dΓu+

∫

Ωu

ρu [b+ δb] dΩu(15)

where the explicit diffusion term, QΓ, is given by:

QΓ = Cu : δEu −K ·∇δu+ [Su + δSu] ·∇δu+ Su (16)

8
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and the tensor K is given by:

K =








A11 0 0

0 A22 0

0 0 A33








(17)

At the end of each time increment, the accumulated total stress, strain

and displacement fields are found by addition of the value from the previous

time instant t and increment during dt:

φ[t+dt] = φ[t] +

∫ t+dt

t

φ̇ dt

≈ φ[t] + δφ[t+dt] (18)

where φ represents S, E and u. The density is found by:

ρ[t+dt] =
1

J [t+dt]
ρ[t] (19)

where the Jacobian, J , is the determinant of F .

Before proceeding to the next time increment, the configuration is up-

dated such that the current configuration becomes the reference configura-

tion. The accumulated stress and strain tensors are updated by the trans-

formations [41, 42, 22, 43]:

Eu = F−1 ·E · (F−1)T (20)

Su =
1

J
F T ·S ·F (21)

Additionally, for equivalence with large strain total Lagrangian approaches,

the constitutive stiffness tensor must be updated [41, 42, 22]:

Cu = AT ·C ·A (22)

where tensor A is given by Equation 7 except the transpose of the deforma-

tion gradient F T is employed instead of tensor L.

9
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3. Numerical Method

The mathematical models of the governing equations presented in the

preceding section are now discretised using the cell-centred finite volume

method. It is important to note that the discretisation process provides a dis-

crete approximate version of the previously presented exact integral relations.

The discretisation procedure is separated into two distinct parts: discretisa-

tion of the solution domain and discretisation of the governing equations.

3.1. Solution Domain

Discretisation of the solution domain comprises the discretisation of time

and the discretisation of space. The total specified simulation time is divided

into a finite number of time increments, δt, and the discretised linear momen-

tum mathematical model is solved in a time-marching manner. The solution

domain space is split into a finite number of convex polyhedral cells bounded

by polygonal faces. The cells do not overlap and fill the space completely.

A typical control volume is shown in Figure 1, with the computational node

P located at the cell centroid, the cell volume is ΩP , N is the centroid of a

neighbouring control volume, face f has face area vector Γf , vector df joins

P to N and r is the positional vector of P .

3.2. Equations

As can be seen in Equation 15, the surface diffusion term is divided into

an implicit component and an explicit component. The explicit component,

QΓ, contains cross-equation coupling and nonlinear terms and is treated ex-

plicitly using an iterative lagged corrected approach to allow use of a segre-

gated solution procedure. The equations of mathematical model are solved

10
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independently for each displacement increment (Cartesian) component. In

each time increment, outer iterations are performed over the system until the

explicit components have converged.

Temporal Term

For time m, the time derivative of δu at cell centre P is calculated using

a first order fully implicit Euler time scheme:

(
∂(δuP )

∂t

)[m]

≈
δu[m]

P − δu[m−1]
P

δt[m]
(23)

where the current time increment is indicated by subscript [m], while the

previous time increment is indicated by subscript [m− 1].

The rate of change temporal term for control volume P is approximated

as:

∂

∂t

∫

Ωu

ρ
∂(δu)

∂t
dΩu ≈

1

δt[m]

[

(ρ
δ(δu)

δt
Ω)[m]

P − (ρ
δ(δu)

δt
Ω)[m−1]

P

]

(24)

The final discretised temporal term in the linear momentum equation for

control volume P , representing the inertia of body, is found by substituting

Equation 23 into Equation 24:

∂

∂t

∫

Ωu

ρ
∂(δu)

∂t
dΩu ≈

1

δt[m]

[

(ρΩ)[m]
P

(

δu[m]
P − δu[m−1]

P

δt[m]

)

−(ρΩ)[m−1]
P

(

δu[m−1]
P − δu[m−2]

P

δt[m−1]

)]

(25)

The component of the temporal term containing u is discretised in a

similar fashion to Equation 25 but the term is calculated in an entirely explicit

manner.

11
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Diffusion Term

The implicit surface diffusion term (Laplacian term) for a cell P may be

discretised by assuming a linear variation of δu across face f . The orthogonal

component of the discrete face normal gradients are treated in an implicit

manner, while non-orthogonal components are treated explicitly using a de-

ferred correction approach [2, 16]:

∮

Γ

nu · (K ·∇δu) dΓu =
F
∑

f=1

∫

Γf

nf ·
[

Kuf
· (∇δu)f

]

dΓf

≈

Implicit
︷ ︸︸ ︷

F
∑

f=1

[

nf · (nf ·Kuf
)
]

|∆f |
δuN − δuP

|df |
|Γf |

+
F
∑

f=1

[

(I − nfnf) · (nf ·Kuf
)
]

· (∇δu)f |Γf |

+
F∑

f=1

[

nf · (nf ·Kuf
)
]

kf · (∇δu)f |Γf | (26)

where F is the number of internal faces in cell P , ∆f = df

df ·nf
, kf = nf −

∆f , and nf is the unit normal of the face. The explicit gradient terms are

calculated using the least squares approach1 [2, 16].

1The OpenFOAM extendedLeastSquares gradient scheme is employed as it as-
sumes non-orthogonal boundary cells, unlike the leastSquares gradient scheme.

12



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Surface Source Term

The explicit diffusion surface source term is discretised by assuming a

linear variation of the source across the face:
∮

Γu

nu ·QΓ dΓu =
F
∑

f=1

∫

Γf

nf ·QΓ dΓf

≈
F
∑

f=1

Γf ·QΓ (27)

The discretised surface source term, Γf ·QΓ, is given by Equation 28,

where subscript f refers to quantities linearly interpolated to face f . The

surface source term contains inter-equation coupling terms and nonlinear

terms.

Γf ·QΓ = Γf · (Cu : δEu)f − Γf · (K ·∇δu)f

+Γf · [(Su + δSu) ·∇δu]f + Γf ·Su (28)

Volume Source Term

In a similar fashion, by assuming a linear variation, the body force source

term from the volume integral is discretised as:
∫

Ω

ρ (b+ δb) dΩ ≈ ρ (b+ δb) ΩP (29)

Boundary Conditions

The discretisation of the linear momentum equation has been described

for internal mesh faces, while boundary faces require special attention to

incorporate them into the mathematical models. This section outlines the

implementation of the displacement and traction boundary conditions, where

boundary non-orthogonal correction is included as it has been shown to have

a large effect in FV solid mechanics [44].

13
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Displacement. The displacement boundary condition, a Dirichlet condition,

may be constant in time or time-varying and fixes the value of δu at the centre

of a boundary face. The specified boundary face value, δub, is substituted

into the calculation of the surface flux in Equation 26. Assuming a linear

variation across the face, the resulting discretised diffusion term for boundary

face b becomes:

∫

Γb

nb · (Kub
·∇δub) dΓb ≈ [nb · (nb ·Kub

)] |∆b|
δub − δuP

|db|
|Γb|

+ [(I − nbnb) · (nb ·Kub
)] · (∇δu)b|Γb|

+ [nb · (nb ·Kub
)]kb · (∇δu)b|Γb|

(30)

where ∆b =
db

db ·nb
, and kb = nb −∆b.

Traction. The traction boundary condition, constant in time or time-varying,

is implemented as a Neumann condition where the normal gradient, gb, of

the displacement increment is specified on the boundary face. The specified

normal boundary gradient gb may be directly substituted into the discretised

diffusion term, Equation 26:

∫

Γb

nb · (Kub
·∇δub) dΓb ≈ [nb · (nb ·Kub

)] gb|Γb|

+ [(I − nbnb) · (nb ·Kub
)] · (∇δu)b|Γb|

+ [nb · (nb ·Kub
)]kb · (∇δu)b|Γb|

(31)

In order to calculate the normal boundary gradient corresponding to the

14
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specified traction, the expression for the boundary traction, δT u
b , is employed:

δT u
b = nb · δσb =

Implicit Term
︷ ︸︸ ︷

nb · [Kb · (∇δu)b] +

Explicit Term
︷ ︸︸ ︷

nb · [Cb : δEb −Kb · (∇δu)b] (32)

Making use of matrix algebraic operations, the expression for the boundary

traction, Equation 32, is rearranged to give the implicit boundary normal

gradient, gb:

gb = nb · (∇δu)b

= nb ·
{

K−1
b · [nb δT

u
b − nb (nb · (Cb : δEb))−Kb · (∇δu)b]

}

(33)

To calculate the traction increment, δT u
b , the relationship between Cauchy

traction and second Piola-Kirchhoff is employed:
∫

Γ

n ·σ dΓ =

∫

Γu

nu ·Su ·F dΓu (34)

Additionally, Nanson’s formula, relating the deformed area to the original

area, is required:

dΓ = JF −1 · dΓu (35)

Using Equations 34 and 35, the applied traction increment is given by the

following relation:

δT u
b =

T current

︷ ︸︸ ︷

J |F −1 ·nb| T b ·F−1 −
T old
︷ ︸︸ ︷

nb ·Su (36)

where T current is the desired total traction referred to the updated area, and

T old is the old total traction referred to the updated area. The inverse defor-

mation gradient, F−1, rotates the prescribed Cauchy stress to the updated

configuration, and the term J |F−1 ·nb| scales the deformed area to the up-

dated configuration.
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3.3. Solution Procedure

The final discretised form of the linear momentum equation for each con-

trol volume P can be arranged in the form of a linearised algebraic equation:

aP δuP +
∑

F

aN δuP = bP (37)

where F is the number of control volume internal faces.

The discretised coefficients, aP and aN , and source term bP are:

aN = −[nf · (nf ·Kuf
)]
|∆f |
|df |

|Γf | (38a)

aP = −
∑

F

aN +

〈
(
ρΩP

δt2

)[m]
〉

(38b)

bP =
∑

F

[

(I − nfnf) · (nf ·Kuf
)
]

· (∇δu)f |Γf |

+
∑

F

[

nf · (nf ·Kuf
)
]

kf · (∇δu)f |Γf |

+
∑

F

Qf
Γ + ρ (b+ δb)ΩP

+

〈(
(ρΩ)[m]

δt[m]δt[m]
+

(ρΩ)[m−1]

δt[m]δt[m−1]

)

δu[m−1]
P

〉

−
〈

(ρΩ)[m−1]

δt[m]δt[m−1]
δu[m−2]

P

〉

−
〈

(ρΩ)[m−1]

δt[m−1]δt[m−1]
u

[m−1]
P

〉

+

〈(
(ρΩ)[m−1]

δt[m−1]δt[m−1]
+

(ρΩ)[m−2]

δt[m−1]δt[m−2]

)

u
[m−2]
P

〉

−
〈

(ρΩ)[m−2]

δt[m−1]δt[m−2]
u

[m−3]
P

〉

(38c)

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The diffusion term and source terms must be modified appropriately to

include boundary condition contributions. Temporal terms are contained in

〈〉 angle brackets, and are set to zero in steady state simulations.

The algebraic linearised equation described above is then assembled for

all control volumes in the mesh forming a linear system of equations:

[A] [φ] = [b] (39)

where [A] is a sparse N×N matrix with coefficients aP on the diagonal (N is

the total number of control volumes) and F non-zero neighbour coefficients

off the diagonal of the matrix, [φ] is the solution vector of δu at each cell

centre and [b] is the source vector.

The linear system of equations are solved in a segregated manner, with

each component of the displacement field solved for separately. Outer it-

erations are performed to account for the inter-equation coupling and the

linearised nonlinear terms. The inner linear sparse system is iteratively

solved, typically using the incomplete Cholesky pre-conditioned conjugate

gradient (ICCG) method [45]. Alternatively, a geometric or algebraic multi-

grid method may be employed potentially providing superior convergence

[46, 3]. The inner system need not be solved to a fine tolerance as coeffi-

cients and source terms are approximated from the previous increment; a

reduction in the residuals of one order of magnitude is typically sufficient.

The outer iterations are performed until the predefined tolerance has been

achieved.

At the end of each time increment, the mesh is moved to the deformed

configurations. As the calculated displacements lie at the cell centres, they

are interpolated to the mesh vertices using a linear least squares procedure

17
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[44, 18].

3.4. Implementation

A distinguishing feature of OpenFOAM is that the partial differential

equation and tensor operations syntax closely resembles the equations being

solved. An extract of the code from the developed elasticOrthoNon-

LinULSolidFoam solver, implementing the developed orthotropic updated

Lagrangian approach, is shown in given in Appendix A, and shows remark-

able similarity to the previously described mathematical model.

4. Verification Cases

The developed large strain orthotropic linear elastic solver is verified by

examining two separate test cases and comparing the numerical predictions

to the available analytical solutions. The first test case consists of a circular

hole in an orthotropic plate under tension. The second test case consists of a

rotating orthotropic plate with a pressurised circular hole. Finally, in order

to illustrate the capabilities of the current methodology a 3-D composite

bracket with variable material principal directions is numerically examined.

Hole in an Orthotropic Plate Under Tension

The geometry, shown in Figure 2(a), consists of a square plate with a cir-

cular hole with a plate width to hole radius ratio of 200:1. The mesh of 40,000

hexahedra has been generated using the OpenFOAM utility blockMesh. As

the case is symmetric, only one quarter of the geometry is simulated and sym-

metry boundary conditions are employed. The mesh is graded towards the

hole, as shown in the mesh detail in Figure 2(b), in order to capture the high

stress gradients without excessive mesh size. A traction of 1 MPa is applied

18
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to the right boundary of the plate in the positive x direction, and the top

boundary is traction-free. Plane stress conditions are assumed.

The employed material properties are shown in Table 1, where Ei is the

Young’s modulus in the i direction, ν is the Poisson’s ratio and G is the shear

modulus. The employed mechanical properties are given with respect to the

local material directions. The initial material directions in the undeformed

configuration refer to the global Cartesian axes. The models have been solved

using 1 CPU core (Intel Quad Core i7 2.2 GHz) where the approximate

execution times varied from 90 to 170 s. The equations have been solved to

an outer tolerance of 10−7.

Assuming an infinite plate, the hoop stress, σθθ, around the circumference

of the hole has been derived analytically by Lekhnitskii [40], and is given as:

σθθ = T
−k cos2 θ + (1 + n) sin2 θ

sin4 θ + (n2 − 2k) sin2 θ cos2 θ + k2 cos4 θ
(40)

where T is the applied distant load in the positive x direction, θ is the

angle around the circumference of the hole with 0◦ on the positive x axis.

Parameters k and n are given respectively by:

k =

√

Ex

Ey

, (41)

and

n =

√

2k +
Ex

Gxy

− 2νxy . (42)

The numerical hoop stress around the circumference of the hole is com-

pared with the analytical solution in Figure 3. It can be seen that the numer-

ical predictions agree closely with the analytical solution for all the examined

property variations.
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In order to demonstrate the applicability of the current methodology

to truly unstructured meshes, the test case has also been simulated using

unstructured triangular and polygonal meshes using 1 CPU core (Intel Quad

Core i7 2.2 GHz) to an outer tolerance of 10−7. The triangular mesh, with

a detail near the hole shown in Figure 4(a), has been created using ANSYS

ICEM CFD [47] and OpenFOAM utility extrudeMesh. The mesh is graded

toward the hole and contains 98,739 cells. The approximate execution times

have been from 70 to 80 s. The stress results for the triangular mesh are

shown in Figure 4(b) and are shown to agree closely with the analytical

solutions.

An unstructured polygonal mesh, with a detail near the hole shown in

Figure 5(a), has been created by converting the triangular mesh to the De-

launay dual mesh using OpenFOAM utility polyDualMesh. The mesh

contains 50,247 cells with approximate execution times of 30 to 40 s. The

stress results for the polygonal mesh are shown in Figure 5(b) and are shown

to agree closely with the analytical solutions.

In all previous test cases, the explicit divergence of stress field has been

calculated using the full gradient larger computational molecule (see line 21

in Listing 1). Initially, however, as discussed in the solution implementation

section, this term has been calculated using the Laplacian operator which

employs a compact computational module (line 20 in Listing 1), but it has

been found that the solution convergence may be poor. For the current

test case, execution time is approximately 450 s and requires 2,200 outer

iterations, compared with 50 s and 30 outer iterations when employing the

full gradient larger computational molecule.
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Rotating Orthotropic Plate with a Pressurised Hole

To examine that the developed updated Lagrangian procedure correctly

rotates the constitutive stiffness tensor and the stress and strain tensors, a

rotating circular plate with a pressurised hole is considered. As the plate

is rotated, the location of the maximum hoop stress rotates with the cor-

responding rotating principal material directions. The test case geometry,

shown in Figure 6(a), consists of a circular plate containing a circular hole

with the ratio of outer radius to inner radius of 100:1. The mesh, shown in

Figure 6(b), contains 160,000 hexahedral cells and has been generated using

OpenFOAM meshing utility blockMesh. The mesh is graded towards the

hole to reduce the total number of cells required. Plane stress conditions are

assumed.

The hole is subjected to a pressure of 1 MPa and the outer plate surface

is rotated through 180◦ in increments of 1◦. The displacement increment for

boundary face f is:

δuf =








cos θ − sin θ 0

sin θ cos θ 0

0 0 1








·Cf − Cf (43)

where θ is the increment of rotation, and Cf is the positional vector of the

boundary face centre.

The employed mechanical properties with respect to the local material

directions are given in Table 2. The initial material directions at time 0

correspond to the global Cartesian axes i.e. 10 = x and 20 = y. These local

material directions transform with the rotation of the plate. The model has

been solved in parallel on a distributed memory computer using 32 CPU
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cores (Intel Xeon E5430 2.66 GHz) in an approximate clock time of 43 min.

The equations have been solved to an outer tolerance of 10−10. It has been

found that a relatively tight outer tolerance is required when there are large

rotations.

Assuming an infinite plate, the analytical solution for the hoop stress,

σθθ, around the circumference of the pressurised hole has been derived by

Lekhnitskii [40]:

σθθ = P
n− k + n(k − 1) cos2 θ + [(k + 1)2 − n2] sin2 θ cos2 θ

sin4 θ + (n2 − 2k) sin2 θ cos2 θ + k2 cos4 θ
(44)

where P is the pressure applied to the hole, and k and n are defined previ-

souly.

The hoop stress around the circumference of the hole is compared with

the analytical prediction for a plate rotation of 0◦, 45◦, 90◦, 135◦ and 180◦

in Figure 7. As can be seen, the numerical predictions agree closely with

the analytical predictions. At 0◦ rotation the largest numerical hoop stresses

occur at 90.00◦ and 270.00◦ and the smallest hoop stresses at 51.09◦ and

128.91◦, agreeing closely with analytical predictions of 90◦, 70◦, 51◦ and 129◦

respectively.

Figure 8 illustrates the cylindrical stress distribution in the vicinity of the

hole for 0◦ rotation. The cylindrical stresses have been calculated in a post-

processing step by transforming the Cartesian stresses. The hoop stress σθθ

can be seen to form four distinct maxima around the hole circumference. It

can also be seen that the hoop stress quickly becomes independent of angle

θ as the radius increases. All the stress distributions display four axes of

symmetry as expected, where the shear stress σrθ displays an alternating

periodic distribution away from the hole surface.
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The current case is also used to investigate the effects of model modifica-

tion, as presented in Equation 12, to ensure equilibrium of the total forces.

As highlighted in Figure 9, both the unmodified model (Equation 11) and

the modified model (Equation 12) agree closely with the analytical predic-

tions for 0◦ rotation. However, as can be seen for 45◦ rotation, significant

errors accumulate in the unmodified model with increasing number of time

increments. It has been found than a tighter solution tolerance can reduce

the build up of errors at the expense of extra computational cost. However,

the modification to the mathematical model presented in Equation 12 has

been found to successfully eliminate the build up of these errors without the

need for a prohibitively tight solution tolerance.

3-D Composite Component

To illustrate the applicability of the current methodology to complex ge-

ometry, a uni-directional composite bracket is numerically examined. The

composite bracket geometry, shown in Figure 10(a), is meshed with 193,580

polyhedral cells. A tetrahedral Delaunay mesh has been created in ANSYS

ICEM CFD and converted to the Delaunay dual mesh using OpenFOAM util-

ity polyDualMesh (see mesh detail in Figure 10(b)). The Young’s modulus

in the composite fibre direction, given in Figure 10(a), is 50 GPa, while the

Young’s moduli in the transverse directions are 10 GPa. The Poisson’s ra-

tios ν12, ν13 and ν23 are all set to 0.3, where direction 1 is the fibre direction,

direction 3 is the positive z axis and direction 2 is orthogonal to direction

1 and 3. The shear moduli are 10 GPa. The composite bracket is fixed

at the bottom left boundary and a traction of 1 MPa is applied to the top

right boundary in the positive x direction. The predicted von Mises stress
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distribution for the composite bracket is shown in Figure 11. The maximum

von Mises stress of 47 MPa is predicted to occur in the centre of the upper

component surface near the bend.

To examine the parallel efficiency of the current methodology, parallel

speed-up tests are performed. The 3D composite bracket has been solved on

a distributed memory computer using 1, 4, 8, 16, 32, 64 and 128 CPU cores

(Intel Xeon E5430 2.66 GHz) to an outer tolerance of 10−6. The parallel

speed-up, shown in Figure 12, is calculated as Time1/TimeN , where Time1

is the time taken on one processor and TimeN is the time taken on N pro-

cessors. OpenFOAM employs a domain decomposition approach for parallel

simulations where the entire geometrical domain is split across the number

of available processors [4]. Here, the scotch decomposition method [48]

is employed and the linear systems are solved using the ICCG method [45].

The execution time on 1 CPU core was 2 h 30 min. From Figure 12, it can

be seen that the current methodology shows super linear parallel speed-up

up to 64 cores; this may be attributed to cache effects [49]. The drop off in

efficiency for 128 cores may be attributed to inter-processor communication

time becoming significant with respect to the equation solution time for each

relatively small processor domain (< 1,600 cells per processor).

5. Conclusions

This paper is the first to develop and verify a finite volume methodol-

ogy for orthotropic bodies which undergo large strains and rotations. The

established procedure allows the known material properties to be specified

in any natural local reference frame, and the local constitutive tensor field

is then rotated to form a global constitutive tensor field which refers to the
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global Cartesian axes. The procedure has been verified by comparison with

analytical solutions of the presented test cases, showing the applicability to

structured and unstructured meshes.

The chosen test cases highlight the appropriateness of the developed

methodology to examine the mechanics of orthotropic bodies undergoing

large strains and large rotations. Additionally, the potential of the developed

methodology has been demonstrated through examination of a realistic 3-D

composite component, where impressive parallel efficiency has been shown.

Appendix A.

In order to construct the momentum equation in OpenFOAM code, the

mathematical model in integral form (Equation 15) is rewritten in differential

form:

∂2

∂t2
ρ δu+

∂2

∂t2
ρu = K∇2δu

+ ∇ · (Cu : δEu) − ∇ · (K ·∇δu)

+ ∇ · [(Su + δSu) ·∇δu]

+ ∇ ·Su

+ ρ (b+ δb) (A.1)

An extract of the code from the developed elasticOrthoNonLinUL-

SolidFoam application is shown in Listing 1, and there is a remarkable

similarity to the mathematical model written in differential form (Equation

A.1). The fvm:: operator indicates an implicit term, operator fvc:: in-

dicates an explicit term, operator & indicates a dot product, and operator

&& indicates a double dot product. Comments given describe the different
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steps taken. A custom fourth order tensor class has been implemented and

the required operators (e.g. double dot product) have been defined.

Listing 1: elasticOrthoNonLinULSolidFoam OpenFOAM Solver Code Excerpt

1 // Create material property fields
2 volDiagTensorField K = rheology.K();
3 volSymmTensor4thOrderField C = rheology.C();
4

5 // The time loop
6 for (runTime++; !runTime.end(); runTime++)
7 {
8 int iCorr = 0;
9

10 do
11 {
12 // Construct momentum equation
13 fvVectorMatrix DUEqn
14 (
15 fvm::d2dt2(rho, DU)
16 + fvc::d2dt2(rho, U.oldTime())
17 ==
18 fvm::laplacian(K, DU)
19 + fvc::div(C && DEpsilon)
20 // - fvc::laplacian(K, U)
21 - fvc::div(K & gradDU)
22 + fvc::div((sigma + DSigma) & gradDU)
23 + fvc::div(sigma)
24 + rho*(B+DB)
25 );
26

27 // Solve momentum equation
28 solverPerf = DUEqn.solve();
29

30 // Recalculate displacement gradient
31 gradDU = fvc::grad(DU);
32

33 // Recalculate increment of Green strain
34 DEpsilon = symm(gradDU) + 0.5*symm(gradDU & gradDU.T());
35

36 // Recalculate increment of 2nd Piola-Kirchhoff stress
37 DSigma = C && DEpsilon;
38 }
39 while //- iterate until the explicit terms become implicit
40 (
41 solverPerf.initialResidual() > convergenceTolerance

26
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42 &&
43 ++iCorr < nCorr
44 )
45 // Move mesh
46 # include "moveMesh.H"
47

48 // Rotate fields
49 # include "rotateFields.H
50

51 // Write fields for post-processing
52 # include "writeFields.H"
53 }

Initially the explicit portion of the the diffusion (line 20 in Listing 1) has

been calculated numerically by employing the Laplacian operator compact

computational molecule. However, as is shown later in the test case section,

it has been found that this form suffered from poor convergence. In addition,

Demirdžić et al. [37] noted the formation of numerical oscillation twice the

frequency of the mesh spacing and attributed them to the inability of the

compact molecule Laplacian operator discretisation to sense the oscillations.

Consequently, Demirdžić et al. [37] added a higher order term which prevents

the formation of high frequency oscillations and reduced to zero otherwise.

In the current study, the term is calculated by employing the full gradient

across the face (line 21 in Listing 1).
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properties of selected aluminium alloys. Materials Science and Engi-

neering: A, 278(1-2):225 – 235, 2000.

30



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[24] C.J. Greenshields, G.P. Venizelos, and A. Ivanković. A fluid-structure
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Figure 1: General Polyhedral Control Volume (Adapted from [2, 50])
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Figure 2: Orthotropic Hole-in-a-Plate Test Case
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Figure 3: Hoop Stress Around Circumference of the Hole - Orthotropic Hole-in-a-Plate
Test Case with Hexagonal Mesh
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(a) Mesh Near the Hole
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(b) Hoop Stress Around Hole

Figure 4: Orthotropic Hole-in-a-Plate Test Case with Triangular Mesh
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(a) Mesh Near the Hole
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(b) Hoop Stress Around Hole

Figure 5: Orthotropic Hole-in-a-Plate Test Case with Polygonal Mesh
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Figure 6: Rotating Orthotropic Plate Geometry and Mesh
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Figure 7: Rotating Orthotropic Plate with Pressurised Hole - Hoop Stress for Different
Rotation Angles
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Figure 8: Rotating Orthotropic Plate with Pressurised Hole - Stress Distribution at 0◦

Rotation (in MPa)
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Figure 9: Unmodified Mathematical Model Showing Error Accumulation
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(a) Geometry (in mm)

(b) Polyhedral Mesh

Figure 10: Composite Component
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Figure 11: Composite Component von Mises Stress Distribution (in MPa)
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Figure 12: Composite Component Parallel Speed-Up
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Property Value

Ex 200 GPa

Ey varied from 60 - 200 GPa

νxy 0.3

Gxy 76.92 GPa

Table 1: Plate Orthotropic Material Properties
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Property Value

E1 200 GPa

E2 60 GPa

ν12 0.3

G12 76.92 GPa

Table 2: Rotating Orthotropic Plate Material Properties
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