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Abstract

The energy system studies include a wide range of issues from short term (e.g. real-time,

hourly, daily and weekly operating decisions) to long term horizons (e.g. planning or

policy making). The decision making chain is fed by input parameters which are usually

subject to uncertainties. The art of dealing with uncertainties has been developed in

various directions and has recently become a focal point of interest. In this paper, a new

standard classification of uncertainty modeling techniques for decision making process is

proposed. These methods are introduced and compared along with demonstrating their

strengths and weaknesses. The promising lines of future researches are explored in the

shadow of a comprehensive overview of the past and present applications. The possibility

of using the novel concept of Z-numbers is introduced for the first time.

Key words: Fuzzy arithmetic, info-gap decision theory, probabilistic modeling, robust

optimization, interval based analysis, Z-number.

1. Introduction

The uncertainty handling has been one of the main concerns of the decision makers

(including governors, engineers, managers, and scientists) for many years [1]. Most of the

decisions to be made by energy sector decision makers are subject to a significant level of

data uncertainty [2]. The uncertain parameters in power system studies can be generally

classified into two different categories including (see Fig.1):
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• Technical parameters: these parameters are generally categorized in two main classes,

namely: topological parameters and operational parameters. The topological pa-

rameters are those related to network topologies like failure or forced outage of lines,

generators or metering devices and etc. The operational parameters are tied with

operating decisions like demand or generation values in power systems.

• Economical parameters: the parameters which affect the economical indices fall in

this category. Microeconomics investigates the decisions of smaller business sectors

like aggregators, domestic or industrial consumers while macroeconomics focuses on

entire power system industry. For example, uncertainty in fuel supply, costs of pro-

duction, business taxes, labor and raw materials are analyzed in microeconomics.

On the other hand, the issues like regulation or deregulation, environmental policies,

economic growth, unemployment rates, gross domestic product (GDP) and inter-

est rates are analyzed in macroeconomics. All of these parameters are subject to

uncertainties and should be correctly addressed in economical studies.

There are various uncertainty handling methods developed for dealing with the afore-

mentioned uncertain parameters as depicted in Fig. 2. The main difference between these

methods is in line with the different technique used for describing the uncertainty of in-

put parameters. For example, fuzzy method use membership functions for describing an

uncertain parameter while the stochastic methods use probability density function. The

similarity of them is that all of them try to quantify the effect of input parameters on

model’s outputs. These methods and the way the uncertainty is handled by them are

described as follows:

• Probabilistic approach: one of the earliest works in stochastic programming was

done by Dantzig in 1955 [3]. It is assumed that the input parameters of the model

are random variables with a known probability density function (PDF).

• Possibilistic approach: the fuzzy arithmetic was introduced by Lotfi A. Zadeh in

1965 [4]. The input parameters of the model are described using the membership

function (MF) of input parameters.
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• Hybrid possibilistic-probabilistic approaches: both random and possibilistic param-

eters are present in the model.

• Information gap decision theory: it was first proposed by Yakov Ben-Haim [5] in

1980. In this method, no PDF or membership function is available for input param-

eters. It is based on the difference between what is known and what is vital to be

known by quantification of severe lack of information in decision making process.

• Robust optimization: it was first proposed by Soyster [6] in 1973. The uncertainty

sets are used for describing the uncertainty of input parameters. Using this tech-

nique, the obtained decisions remain optimal for the worst-case realization of the

uncertain parameter within a given set.

• Interval analysis: it was introduced by Ramon E. Moore in 1966 [7]. It is assumed

that the uncertain parameters are taking value from a known interval. It is somehow

similar to the probabilistic modeling with a uniform PDF. This method finds the

bounds of output variables.

This paper is to provide a summary of recent techniques used for uncertainty modeling

in power system applications. It offers a vision obtained from a relatively large number

of previous works. This review serves as a road map to those interested in uncertainty

modeling tools in power system studies to find the less explored research areas by standing

on the shoulders of giants.

The rest of this paper is set out as follows: section 2 presents the Probabilistic ap-

proach, the possibilistic methodology is introduced in section 3, the hybrid possibilistic-

probabilistic approach is described in section 4, the info-gap decision theory is explained in

section 5, the robust optimization technique is described in section 6. Section 7 presents

the interval analysis approach. Section 10 describes the promising lines of future re-

searches. Finally, section 11 summarizes the findings of this work.

3



2. Probabilistic approach

In the probabilistic approach, a multivariate function, namely y, y = f(Z) is available.

Z is a vector of the form Z = [z1, ..., zm], in which z1 to zm are random parameters with

known PDFs while the PDF of y is tried to be identified. For better explanation, the

function f describes the system model (e.g. set of load flow equations), Z is a vector

of input uncertain parameters to the system (e.g. power injections by renewable energy

resources and electric loads) and y is the output variable (e.g. total active losses, total

operating costs). Three probabilistic uncertainty modeling techniques are described as

follows:

2.1. Monte Carlo Simulation (MCS)

The Monte Carlo simulation is carried out in following steps [8]. It is assumed that the

zi are uncertain parameters. A sample, zei , is generated for each input parameter zi, using

its PDF. The value of ye as the outcome variable, is calculated using ye = f(Ze) where

Ze = [ze1, ..., z
e
m]. The procedure is repeated for a number of iterations, NMC . Finally,

the outcomes are analyzed using statistic criteria, histograms, confidence intervals and

etc. There are some methods for reducing the computational burden of MCS like Latin

Hypercube Sampling (LHS) [9], sample-splitting approach [10] and fission and roulette

method [11].

2.2. Point estimate method

The point estimate method (PEM) acts based on the concept of moments of uncertain

input parameters. In a problem with n uncertain parameters, the major steps are as

follows [12]:

Step.1 Set E(Y ) = 0, E(Y 2) = 0 and k = 1.

Step.2 Determine the locations and probabilities of concentrations, ǫk,i and Pk,i, respec-

tively as follows:

ǫk,i =
1

2

M3(zk)

σ3
zk

+ (−1)i+1

√

n+
1

2
(
M3(zk)

σ3
zk

)2 (1)

Pk,i = (−1)i
ǫk,3−i

2n
√

n+ 1
2
(M3(zk)

σ3
zk

)2
(2)
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where M3(zk) is the third moment of parameter zk.

Step.3 Determine the concentration points zk,i, as given below.

zk,i = µzk + ǫk,i × σzi , i = 1, 2 (3)

where, µzk and σzk are mean and standard deviation of zk, respectively.

Step.4 Calculate the f for both zk,i, as:

Z = [z1, z2, ..., zk,i, ..., zn], i = 1, 2 (4)

Step.5 Calculate E(Y ) and E(Y 2) using:

E(Y ) = E(Y ) +
2

∑

i=1

Pk,if(z1, z2, ..., zk,i, ..., zn) (5)

E(Y 2) = E(Y 2) +
2

∑

i=1

Pk,if
2(z1, z2, ..., zk,i, ..., zn) (6)

Step.6 k = k + 1 if k < n then go to Step. 2; otherwise continue.

Step.7 Calculate the mean and the standard deviation as:

µY = E(Y ) (7)

σY =
√

E(Y 2)− E2(Y ) (8)

2.3. Scenario based decision making

A scenario is defined as a probable realization of an uncertain set of parameters. A list

of scenarios are generated using the PDF of each uncertain parameter, Zs. The expected

value of output variable, y, is calculated as follows:

y =
∑

s∈ΩJ

πs × f(Zs) (9)

where
∑

s∈ΩJ
πs = 1 and πs is the probability of sth scenario.

If the number of scenarios are large then it is needed to obtain a small set of scenarios

representing the original one. The purpose is to select a small set, ΩS, with the cardinality
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of NΩS
, from the original set, ΩJ [13]. A reasonable trade off must be respected between

the loss of the information and decreasing the computational burden [2]. The scenario

reduction technique is carried out via the following steps [14, 15]:

step. 1 Construct the probability distance matrix containing the distance between each

pair of scenarios c(s, ś)

step. 2 Select the fist scenario s1 as follows:

s1 = arg

{

min
s′∈ΩJ

∑

s∈ΩJ

πsc(s, s
′)

}

(10)

ΩS = {s1} ,ΩJ = ΩJ − ΩS (11)

step. 3 Select the next scenario for ΩS set, as follows:

sn = arg







min
s′∈ΩJ

∑

s∈ΩJ−{s′}

πs min
s′′∈ΩS∪{s}

c(s, s′′)







(12)

ΩS = ΩS ∪ {sn} ,ΩJ = ΩJ − ΩS (13)

step. 4 If the cardinality of ΩS is sufficient then go to step 2; else continue.

step. 5 Add the probability of each non-selected scenario to its closest scenario in the

selected set, End.

More details can be found in [2].

3. Possibilistic approach

Since the introduction of fuzzy set theory this technique has been used in many power

system fields [16]. Suppose y = f(x1, . . . , xn) is in hand and X vector contains the

uncertain input parameters described using their associated membership functions. In

this context, the function f describes the system model (e.g. self scheduling problem for

a genco in a liberalized electricity market), X is a vector of input uncertain parameters

to the system (e.g. hourly electricity price) and y is the output variable (e.g. total profit

of genco).
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Various membership functions can be used to formulate the degree of membership

of a specific uncertain parameter depending on the expert’s opinion. Regardless of the

membership function’s shape the questions is “how to determine the MF of y if MFs of

X are known?”. The α-cut method can provide an answer to this question [17]. For a

given fuzzy set Ã in U , the crisp set Aα contains all individuals of U with membership

value, Ã, greater than or equal to α, as calculated in (14).

Aα = {x ∈ U | µA(x) ≥ α} (14)

Aα = (Aα, Āα) (15)

The α-cut of each uncertain parameter, xα
i , is determined using (14), then the α-cut of y,

yα, is calculated as follows:

yα = (yα, ȳα) (16)

yα = (min
Xα

f(Xα),max
Xα

f(Xα)) (17)

Xα = (Xα, X̄α) (18)

In each α-cut, the upper bound of yα, ȳα, and the lower bound of yα, yα, are maximized

and minimized respectively. The final step is defuzzification. The process of translating

a fuzzy number to a crisp one is called defuzzification [17]. Many defuzzification tech-

niques are available such as maximum defuzzification technique, the centroid method [18],

weighted average defuzzification technique and etc.

4. Hybrid possibilistic-probabilistic approach

Sometimes, the decision maker is faced with a multivariate objective function, y =

f(X,Z), where both possibilistic uncertain parameters (X) and probabilistic uncertain

ones (Z) exist.

For better clarification, the function f describes the system model (e.g. set of load flow

equations), Z is a vector of input uncertain parameters to the system described by PDF

(e.g. power injections by renewable energy resources and electric loads), X is a vector of

input uncertain parameters to the system described by MF (e.g. electricity prices) and y

is the output variable (e.g. total payments for procurement of active power losses).

To deal with such cases some methods are developed which are described next.
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4.1. Possibilistic-Monte Carlo approach

The following steps describe the mixed possibilistic-Monte Carlo approach [19]:

• Step.1 : For each zi ∈ Z, generate a value using its PDF, zei

• Step.2 : Calculate (ȳα)e and (yα)e as follows:

(yα)e = min f(Ze, Xα) (19)

(ȳα)e = max f(Ze, Xα) (20)

Xα = (Xα, X̄α) (21)

These steps are repeated to obtain the statistical data of the parameters of the output’s

MF such as PDF or expected values.

4.2. Possibilistic-scenario based approach

The following steps describe this approach [20]:

• Step.1 : Generate the scenario set describing the behavior of Z, ΩJ

• Step.2 : Reduce the original scenario set to a small set, Ωs

• Step.3 : Calculate (yα) and (yα) as follows:

yα = min
∑

s∈Ωs

πs × f(Zs, X
α) (22)

yα = max
∑

s∈Ωs

πs × f(Zs, X
α) (23)

Xα = (Xα, X
α
) (24)

• Step.4 : Deffuzzify the y.

5. Information Gap Decision Theory

The Information Gap Decision Theory (IGDT) is a method to describe the uncertain-

ties which can not be described using PDF of MF due to the lack of sufficient information.
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It is used to make robust decisions against severe uncertainty of input parameters. Con-

sider a typical optimization function as follows:

y = min
d

f(X, d) (25)

H(X, d) = 0 (26)

G(X, d) ≥ 0 (27)

where, X is the vector of input parameters (which are subject to severe uncertainty) and

d is the vector of decision variables. H and G are the equality and inequality constraints,

respectively. f(X, d) describes the relations between the decision variables (d) and input

uncertain parameters (X).

In case the uncertain input parameters X are equal to their predicted values (X = X̄)

then solving the (25) to (27) gives the predicted value of y = ȳ. However, if the value of

X is unknown then the IGDT method tries to find a solution for the problem which is

robust against the error in predicting the value of X. In IGDT, the robustness is defined

as the immunity of satisfaction of a predefined constraint [5]. The constraint satisfaction

may be defined based on the application [21].

For better clarification, assume that the function f describes the system model (e.g.

set of constraints describing energy procurement from different resources), X is a vector

of input uncertain parameters to the system which are subject to severe uncertainty

(e.g. electricity price without any historic data) and y is the output variable (e.g. total

payments for energy procurement). d denotes the set of decision variables (e.g. amount

of purchased energy from different energy resources like DG units, electricity pool market

and bilateral contracts). The robustness in IGDT context is defined as follows:

The total payments should be always less than a pre-specified threshold ℓc, no matter

how the uncertain electricity price take value far from what is predicted. The robust

counterpart of the problem described in (25) to (27) is as follows:

f(X, d) ≤ ℓc (28)

ℓc = (1 + ζ)× ȳ (29)

H(X, d) = 0 (30)

G(X, d) ≥ 0 (31)
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where ζ is the degree that decision maker tolerates the deterioration of objective function

due to forcasting error of input parameter X. The uncertainty of parameters in IGDT

method, is usually defined using the envelope bound model [22], as follows:

X̃ ∈ U(α, X̄) (32)

U(α, X̄) =

∣

∣

∣

∣

X − X̄

X̄

∣

∣

∣

∣

≤ α (33)

where, α is the uncertainty level of parameter X, X̄ is the forcasted value of X and

U(α, X̄) is the set of all values of X whose deviation from X̄ will never be more than αX̄.

The decision maker does not know the values of X and α.

The robustness of a decision d based on the requirement ℓc, α̂(d, ℓc), is defined as the

maximum value of α at which the decision maker is sure that the required constraints are

always satisfied [5], as follows:

α̂(d, ℓc) = maxα (34)

S.t : Constraints

The decision making policy is defined as finding the decision variables, d, which maximizes

the robustness, as :

max
d

α̂(d, ℓc) (35)

∀X ∈ U(α, X̄) (36)

f(X, d) ≤ ℓc (37)

ℓc = (1 + ζ)× ȳ (38)

H(X, d) = 0 (39)

G(X, d) ≥ 0 (40)

6. Robust optimization

The concept of robust optimization (RO) was first introduced by Soyster [6]. It’s a

new approach for solving optimization problems affected by uncertainty specially in case

of lack of full information on the nature of uncertainty [23]. It is described as follows:

consider a function like z = f(X, y) which is linear in X and non-linear in y. The values
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of X are subject to uncertainty while the values of y are known. In robust optimization,

it is assumed that no specified PDF is in hand for describing the uncertain parameter X.

The uncertainty of X is modeled with an uncertainty set X ∈ U(X), where U(X) is a

set that parameter X can take value from it. The maximization of z = f(X, y) can be

formulated via (41) to (42).

max
y

z = f(X, y) (41)

X ∈ U(X) (42)

Since the value of z is linear with respect to X, it can be reformulated as follows:

max
y

z (43)

z ≤ f(X̃, y) (44)

f(X̃, y) = A(y) ∗ X̃ + g(y) (45)

X̃ ∈ U(X) =
{

X|
∣

∣X − X̄
∣

∣ ≤ X̂
}

(46)

where X̃, X̄, X̂ are the uncertain value, predicted value and maximum possible deviation

of variable X from X̄, respectively. The robust optimization seeks a solution which not

only maximizes the objective function z but also insures the decision maker that if there

exist some prediction error about the values of X, the z remains optimum with high

probability [24]. To do this, a robust counterpart version of the problem is constructed

and solved. The robust counterpart of (42) is defined as follows:

max
y

z (47)

z ≤ f(X, y) (48)

f(X, y) = A(y) ∗ X̄ + g(y)−max
wi

∑

i

ai(y) ∗ X̂i ∗ wi (49)

∑

i

wi ≤ Γ (50)

0 ≤ wi ≤ 1 (51)
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Based on (47), two nested optimization problems are to be solved. The equations (49) to

(50) are linear with respect to wi and has a dual form as follows:

min
ξi,β

[Γβ +
∑

i

ξi] (52)

β + ξi ≥ ai(y) ∗ x̂i

Inserting the (52) into (47) gives :

max
y,ξi,β

z (53)

z ≤ f(X, y) (54)

f(X, y) = A(y) ∗ X̄ + g(y)− Γβ −
∑

i

ξi (55)

β + ξi ≥ A(yi) ∗ X̂i (56)

There are some software developed for solving the robust optimization based problems

[25]. As an illustrative example, consider that the function f describes the system model

(e.g. set of constraints describing energy purchased by a smart home), X is a vector of

input uncertain parameters to the system (e.g. electricity price which are always within a

band), z is the output variable (e.g. total payments for energy procurement). Γ denotes

the degree of conservativeness and y is the set of decision variables (e.g. amount of

purchased energy in different hours).

7. Interval analysis

In this method, the range of values for each uncertain input parameter is defined

and it can be represented by an interval. Suppose a multivariate function of the form

f = (x1, ..., xn) and lbi ≤ xi ≤ ubi where lbi, ubi are the lower and upper bounds of

uncertain parameter xi. The goal is finding the lower and upper bounds of objective

function f . There are some softwares developed for solving the interval analysis based

problems [26].
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Prob =

∫ d

a

A1
1

σ
√
2π

e
−(x−µ)2

2σ2 (57)

=
1

σ
√
2π

[

∫ b

a

x− a

b− a
e

−(x−µ)2

2σ2 +

∫ c

b

e
−(x−µ)2

2σ2 +

∫ d

c

x− d

c− d
e

−(x−µ)2

2σ2 ]

G(Prob) = µB2(Prob) (58)

8. Exploring the new uncertainty handling methods

The taxonomy of the uncertainty modeling methods in past, present and future is as

depicted in Fig.3. In 2011, Zadeh introduced a new class of uncertain numbers called

“Z-numbers” [27]. The Z-numbers are expressed as a pair in form of Z = (A,B), in

which, A,B are restrictions describing the behavior of Z. A is usually a fuzzy set while

B describes the certainty degree. The certainty degree may be expressed as a PDF

or a fuzzy set. In this context, Z = {x|x ∈ A with certainty degree equal to B}. In

classic fuzzy numbers decision maker just has A and it is quit sure that Z belongs to A.

However in Z-numbers, Z is described using the set A with a certainty (reliability) degree

of information called B. Examples for Z-numbers are provided in Table 3.

The normal PDF, as a function of µ, σ, is a reasonable choice for modeling the random-

ness of the load variable. In order to disambiguate this concept, a simple two-bus network

is used as shown in Fig.4. The series reactance of the transmission line connecting these

two buses is assumed to be X. The voltage magnitudes of sending and receiving ends are

represented by E and V , respectively. The angle by which the sending end voltage leads

the receiving end voltage is considered to be δ. P and Q represent the active and reactive

power load at the receiving end, respectively. The parameters of Z-numbers (pairs of MF)

describing load values are given in Table 4.

For example, we are almost certain (set B2) that the demand value in a given bus (Z

number) is low (set A1) as depicted in Fig.5. The probability that the load value is low

can be calculated as (57).

In (57), G(Prob) indicates the degree to which Prob belongs to A1. Now, the in-

formation of Z-number expressed as L = (A1, B2) for load parameter is represented as

a possibility distribution (G(Prob)) over the space of probability distributions (various
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values of µ, σ).

9. Applications

Context serves to demonstrate the applications of the aforementioned uncertainty

modeling techniques. The applications are widely categorized into several fields, as given

in Table 1. The summaries of uncertainty modeling attributes are provided in Table 2.

• Distributed Generation (DG) impact assessment

• Plug-in hybrid electric vehicle (PHEV): (e.g. exploitation of plug in hybrid electric

vehicles)

• Assessment of available transfer capability (ATC)

• Renewable energy (operation and planning)(e.g. hydro power generation manage-

ment )

• Load flow/optimal power flow calculations (e.g. probabilistic load flow, fuzzy load

flow.)

• Reliability evaluation (e.g. reliability-oriented distribution network reconfiguration)

• Distribution network operation and planning (e.g. phase balancing, cost-benefit

analysis of distribution automation)

• Transmission/Generation planning, operation and control: (e.q. self-scheduling of

gencos, fault location scheme, dynamic economic dispatch, maintenance scheduling,

determination of pilot points for zonal voltage control, small-signal stability )

• State estimation

• Electricity market (e.g. real time demand side management, bidding strategy,energy

hub management and electricity procurement strategy.)

• Risk analysis (e.g. risk measures, risk hedging strategies.)

14



10. Promising lines of future researches

The future trends in uncertainty modeling (to be investigated and further explored)

are summarized as follows:

10.1. Exploring new uncertain parameters

With the increasingly revolutionary changes in power system’s regulatory framework

and developing technologies the uncertainty in input data of decision making procedures

is increased. These uncertain environment include financial, societal/governmental (the

ongoing government policy and the future potential incentive for the renewable energy),

environmental (carbon emission and global warming issue) and technical (communication

and information architecture in smart grids, demand response, PHEV, energy hubs, smart

building) uncertainties, risk preferences in the investment models, fuel prices and market

regulations, renewable energy sources and competition among suppliers.

10.2. Enhancing the existing techniques

• Reduce the computational burden specially when applied to large scale power sys-

tems and real-time applications

• Choosing the appropriate uncertainty handling technique

• Hybridizing the existing techniques to better describe the uncertain environment

• Using the heuristic methods to soften the computation procedures

11. Conclusion

This paper proposed a standard classification of uncertainty handling methods along

with the promising lines of future researches. The possibility of using Z-numbers for un-

certainty modeling of load values was introduced for the first time. The assessed method-

ologies include probabilistic, possibilistic, hybrid methods, robust optimization, interval

based analysis as well as Z-numbers. These models are compared and their strength and

shortcomings are investigated. Based on the proposed comprehensive classification, it is

deduced that each method is suitable for a specific type of uncertainty. The severity of
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uncertainty dictates choosing the appropriate uncertainty modeling technique. Addition-

ally, according to the carried out taxonomy of the methodologies, it was revealed that

some research areas are still remained untouched.
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Table 1: Summaries of uncertainty modeling applications

Applications Probabilistic Possibilistic Hybrid Interval RO IGDT

MC PEM Scenario

DG units [28, 29] [30] [31, 32] [33] [19, 20] †

PHEV [31, 34] [35] [35] [36]

Available transfer capability (ATC) [37] [38] [39]

Renewable energy (operation and planning) [40, 41] [42] [43, 44, 45, 46, 47] [48] [49]

Load flow/Optimal power flow [50] [51] [52, 53, 54] [55]

Reliability evaluation [56, 57] [58] [59, 57] [60] [61, 62]

Distribution operation and planning [29] [63] [64] [65]

Transmission/generation planning and operation/control [66] [67, 68, 15, 69] [70, 71, 72, 73] [71] [74, 75, 76] [77]

State estimation [78] [79] [80] [81, 82] [81] [83]

Electricity market [84, 85] [70] [86] [87, 88, 89] [90, 88]

† Unexplored research directions

——
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Table 2: Summaries of uncertainty modeling attributes

Method
Input repre-

sentation
Output attributes Advantages Disadvantages

Probabilistic PDF
Statistics like expecta-

tion, variance, etc.
Easy to implement

Computationally ex-

pensive, needs a large

amount of historic

data, approximate

result

Possibilistic MF MF

Converting linguistic

knowledge to numer-

ical values

Complex implementa-

tion

Hybrid MF & PDF

Membership function

with probabilistic pa-

rameters

Dealing with both

uncertainty types si-

multaneously

Computationally ex-

pensive

IGDT
Forecasted

values

Decision variables

satisfying the require-

ments

Useful for severe un-

certainties
Too conservative

Robust Op-

timization
Intervals

Controlled conserva-

tiveness

Useful when just an

interval is available

Difficult to use in non-

linear models

Interval

Analysis
Intervals Bounds of the outputs

Useful when just an

interval is available

The correlations

among intervals

are neglected this

would make it too

conservative

Table 3: Examples for Z-numbers

Parameter A B

Demand value High Very sure

Wind speed Weibul PDF Normally

Voltage magnitude Uniform distribution in [0.951.05] In most cases

27



Table 4: Describing the load values as Z-numbers

A B Load

Low

Not sure L = (Low,Not sure) = (A1, B1)

Almost certain L = (Low,Almost certain) = (A1, B2)

Quit sure L = (Low,Quit sure) = (A1, B3)

Medium

Not sure L = (Medium,Not sure) = (A2, B1)

Almost certain L = (Medium,Almost certain) = (A2, B2)

Quit sure L = (Medium,Quit sure) = (A2, B3)

High

Not sure L = (High,Not sure) = (A3, B1)

Almost certain L = (High,Almost certain) = (A3, B2)

Quit sure L = (High,Quit sure) = (A3, B3)
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Figure 1: General classification of uncertain parameters in energy system studies
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Figure 3: Uncertainty modeling trends: past, present and future
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Figure 5: Concept of Z-number
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