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Abstract

Virtual Power Plant (VPP) is defined as a cluster of energy conversion/storage units which

are centrally operated in order to improve the technical and economic performance. This

paper addresses the optimal operation of a VPP considering the risk factors affecting its daily

operation profits. The optimal operation is modelled in both day ahead and balancing markets

as a two-stage stochastic mixed integer linear programming in order to maximize a generation

companys (GenCo) expected profit. Furthermore, the Conditional Value at Risk (CVaR) is used

as a risk measure technique in order to control the risk of low profit scenarios. The uncertain

parameters, including the PV power output, wind power output and day-ahead market prices

are modelled through scenarios. The proposed model is successfully applied to a real case study

to show its applicability and the results are presented and thoroughly discussed.

Key words: VPP, Two-stage stochastic programming, Risk, CVaR, Scenario based

modelling, Uncertainty .

1. Introduction

Due to the increase of concerns related to environmental issues, decrease in the level of fossil

fuels resources and advancement of technology, higher share of distributed energy resources is

being observed worldwide. So, the Distributed Generation (DG) and Renewable Energy Sources

(RES) are going to replace traditional fossil fuelled power plants to promote energy efficiency
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and generate green energy. The Virtual Power Plant (VPP) enables the associated RES and

DG to participate in electricity markets as a single power plan [1, 2].

Shimon Awerbuch in 1997 introduced the origin of the terminology VPP in his book entitled

the Virtual Utility for the first time [3]. The idea of VPP is to refer the integration of small

scale generation and storage technologies (that are not located at the same bus) to operate

and behave as a single unit. The main goal of this entity is to maximize the benefits of the

participants to take advantage of a lager capacity in the energy markets [4, 5]. The commercial

VPP (CVPP) and technical VPP (TVPP) are two popular types of VPP operation. The focus

of CVPP is a profit maker agent which optimizes its operating schedule based on the wholesale

markets. The obtained results are given to TVPP. The TVPP implements them considering

the local network constraints [6]. In [7, 8], some simple VPP models were considered. From a

modelling point of view, a VPP usually includes dispatchable power plants, storage units and

non-dispatchable generation units such as wind turbines and photovoltaic. By the end of 2011,

the total renewable power capacity has increased up to 1.360 GW [9]. Besides the advantages

and benefits of these renewable energy sources, the amounts of power production are intrin-

sically dependent on the stochastic behaviour of nature such as clouds and solar irradiation.

These uncertainties would impose imbalance costs to the system operators [10, 11]. In order

to diminish the effects of these imbalances, different types of renewable and non-renewable

generators and storage devices are combined into a single VPP. In [12], the optimization model

was formulated as a two-stage stochastic problem in which, the day-ahead energy market prices

and wind power generations were considered as uncertain parameters. In that paper, the hydro

pumped storage was used to manage the Wind Power Plant (WPP) stochastic generations. In

[13], an offering model for the VPP was presented based on a two-stage stochastic program-

ming. In the proposed method, the VPP included a wind farm and a cascade hydro-power

system. Moreover, the author assumed trading in the day-ahead energy market with prede-

fined penalty for power mismatch offered by the VPP operator. However, in real applications,

the VPP owner can participate in balancing and/or real-time energy markets to cope with the

mismatch between day-ahead offering and its real energy production. Also the VPP consists

dispatchable power plants in order to diminish the uncertainties. In [14], an offering model for

a VPP based on stochastic programming is presented. Despite of the advantage of handling
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the uncertainties using stochastic programing, its main drawback is neglecting the probability

distribution associated with the random variables. In [15], the optimal offering strategy of the

coordinated wind-thermal power plants was proposed and the market risks were modelled and

optimized using the CVaR model. In [16, 17], a self-scheduling problem was presented, and

the risk was modeled by considering the variance of the market clearing prices. However, it

is known that by using CVaR and VaR, the risk management can be done more effectively

[18, 19].

In this paper, an efficient stochastic programming with risk management is used for optimal

daily operation of a VPP that includes, Conventional Power Plants (CPPs), PV, wind farm

and battery bank as the storage unit. The typical schematic of a VPP is shown in Fig.1.

The proposed optimization problem is a mixed integer linear programming (MILP) [20],

formulated as a two-stage stochastic programming model. In the first stage, the optimal decision

is made for the day-ahead energy market quantity bids for each hour. In the second stage, the

VPP operator will decide on the optimal operation of CPPs and battery, once the outputs

of non-dispatchable generation units and day-ahead energy market prices are known. In this

paper, the CVaR risk management method is used to model and control the risks of low profit

scenarios. The proposed formulation investigates both day-ahead and balancing energy markets.

The VPP uses trading in both day-ahead and balancing energy markets to reduce its market

risks due to uncertain parameters such as wind and PV outputs and the market price by means

of the CVaR risk management algorithm [5, 21]. It means that the VPP uses the balancing

market to correct its energy deviations with respect to its day-ahead schedule. In the other

words, the VPP sells its extra energy in the balancing energy market and purchases its shortage

of energy in the balancing energy market. The main novelty of the proposed method (compared

to the existing literature) is the inclusion of risk measure and management for protecting the

VPP operator from low profit scenarios in day-ahead and balancing energy markets when it

operates non-dispatchable energy sources (such as wind and PV generators). In the proposed

optimization problem and case studies, the considered uncertain parameters include the PV

power output, wind power output and day-ahead energy market prices, which are modelled

with different probabilistic scenarios.

The rest of the paper is organized as follows: sections 2 and 3 provide the model description
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and formulation, respectively; the simulation results of a real case study are presented in section

4, and the paper is concluded in section 5.

2. Model Description

The studied VPP consists of a WPP, a PV, a micro turbine, a diesel generator and a bat-

tery bank. The WPP and PV outputs are stochastic and therefore, are provided by various

probabilistic scenarios. In order to preserve the linearity of the model, piecewise linear approx-

imation is used to model the quadratic CPP cost function. Through using the battery bank,

the VPP operator could hedge against the volatile balancing market price risks and also reduce

the operation risks of the stochastic WPP and PV generators.

In this paper, due to relatively small installed capacities of the VPP components, the VPP

operator is considered as a price-taker that cannot affect the hourly market price. The day-

ahead and balancing energy markets are considered for the VPP to trade the energy on an hourly

basis. In a day-ahead energy market, the daily operation of the power system is determined,

where the consumers and suppliers submit their bids/offers into the day-ahead energy market

10-14 hour prior to the day of operation. The balancing energy market provides the opportunity

for the producers/ consumers to sell/ purchase electricity near real time. The VPP operator

could participate in the balancing market as an alternative to cope with non-dispatchable

generators uncertainties (e.g., WPP and PV generators).

Stochastic generation are the means that produce electricity from renewable energy. Their

production is uncertain due to the variability of weather conditions such as, sunlight, wind, and

etc. Therefore, the sunlight irritation and wind speed are needed to be estimated precisely for

optimal offering in the market. Moreover, there is another uncertain parameter related to the

day ahead market prices. To deal with these uncertainties, different scenarios are considered

for PV and wind farm outputs and also day ahead market prices.

In the rest of this section, first, the sources of the uncertainties are clearly described and

next, an introduction of the some popular risk measure technique is introduced.

2.1. Uncertainties

In general, a VPP contains dispatchable power plants, storage devices, and stochastic (non-

dispatchable) generation units.
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In this paper, the stochastic scenario based uncertainty modelling is used for dealing with

the uncertainties of unknown parameters [22]. Different scenarios for uncertain PV, WPP and

day-ahead energy prices are generated based on the Monte Carlo simulations. The probability

distribution functions (PDFs) for the wind speed, solar irradiation and day-ahead market prices

are assumed to be Weibull, Gamma and Gaussian, respectively [23]. To handle the above

mentioned uncertainties, a two-stage mathematical programming with two different kinds of

decisions is used [24]. The first stage or “hear and now” decisions are made before the realization

of the stochastic process; the second stage or “wait and see”decisions are made after knowing

the actual realization of the uncertainties. The here and now decision is the amount of supply

offer, which is submitted to the day-ahead energy market for each hour, and the wait and see

decision is the operation of dispatch-able power plants and the storage devices.

2.2. Risk Measurement

In order to control the risk of experiencing low profit scenarios, we need to model the

associated profit risk and then include it into stochastic programming models. The MVP

(mean-variance portfolio), shortfall probability, expected shortage, value at risk (VaR) and

conditional value at risk are the most usual risk assessment models in energy market trading

[25]. In this paper, the concepts of VaR and CVaR are used for risk modeling and optimization

in day-ahead and balancing energy markets. In the following, the VaR and CVaR concepts are

briefly explained:

• Value at risk

The VaR is equal to the largest value η such that, with probability of α, the profit will not be

less than η. The VaR can be formulated as in (1).

V aR(α, x) = max {η : P (w|f(x,w) < η) ≤ 1− α} , ∀α ∈ (0, 1) (1)

where f(x,w) is a profit function, w is an uncertain parameter and x is a certain parameter.

It is worth mentioning that η is not a given parameter.

• Conditional Value at risk
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The CVaR is defined as the expected value of profit function smaller than (1 − α)-quantile of

the profit distribution. CVaR can be defined as in equation (2).

CV aR(α, x) = max

{
η − 1

1− α
Ew {max {η − f(x,w), 0}}

}
∀α ∈ (0, 1) (2)

For the same confidence level α used for VaR and CVaR, CVaR provides an estimate of the

risk lower than the VaR value. So, CVaR gives a better indication of risk than VaR. Moreover,

it is required to assume the Gaussian distribution for uncertain parameters in VaR. The main

disadvantage of VaR is that, it gives no information about the profit distribution beyond the

value of η. In addition VaR cannot be easily applied to the non-normal distribution. Therefore,

in this paper the CVaR is used to model and optimize the energy market risks.

3. Model Formulation

The VPP model consists of WPP, PV power plant, conventional micro-turbine, conventional

diesel generator and Li-ion battery bank. The WPP and PV outputs are considered stochastic

together with the day-ahead energy market price.

The VPPs objective function is formulated as follows:

max
T∑
t=1

{
nw∑
w=1

π(w).
ns∑
s=1

π(s).

np∑
p=1

π(p)
{
λp(t)(Gp(t) + 0.7Pwsp

up(t)− 1.3Pwsp
down(t)) (3)

−
2∑

j=1

OCj(t)− y(t)j,wsp.CSU,j − swsp,j(t).CSD,j}}+ β Risk

The first term of the objective function in (3) refers to the electricity sell/purchase in the day-

ahead market (Gp(t)) and electricity sell (P up
wsp(t))/purchase (P down

wsp (t)) in balancing market.

Following current practice in European markets, it is assumed that, the VPP can only purchase

energy in the balancing market at the price higher than day-ahead market (1.3λp(t)). Similarly,

VPP can only sell energy in balancing energy market at the price lower than day-ahead energy

market (0.7λp(t) ). The second term in (3), refers to the operation cost, start-up cost and

shut-down cost of the CPPs respectively. The last term is about the risk measure formulation

where, β defines the importance of risk minimization in the objective function. The following

technical constraints should be considered as the VPPs operating conditions:
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gj,wsp(t) =

nj∑
j=1

gj,wspi(t) (4)

OCj(t) = Ajuj,wsp(t) +

nj∑
j=1

Fi,jgj,wspi(t) (5)

g
j
uj,wsp(t) ≤ gj,wsp(t) ≤ gjuj,wsp(t) (6)

− rampj,down ≤ gj,wsp(t)− gj,wsp(t− 1) ≤ rampj,up (7)

yj,wsp(t) + sj,wsp(t) ≤ 1 (8)

yj,wsp(t)− sj,wsp(t) = uj,wsp(t)− uj,wsp(t− 1) (9)

yj,wsp(t), sj,wsp(t), uj,wsp(t) ∈ {0, 1} (10)

∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np

Constraint (4) states that the CPPs total generation should be equal to the sum of all

blocks. Constraint (5) defines the CPPs operation cost. Constraint (6) defines the minimum

and maximum outputs of the CPPs; and constraint (7) enforces the ramp-up and ramp-down

limits [26, 27]. Constraints (8), (9) and (10) preserve the logic of running, start up and shut

down status changes.

q∑
t=1

[1− uj,wsp(t)] = 0 ∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np (11)

t+upj−1∑
n=t

uj,wsp(n) ≥ upjyj,wsp(t)

∀t = q + 1 · · ·T − upj + 1, w ≤ nw, s ≤ ns, p ≤ np

(12)

T∑
n=t

{uj,wsp(n)− yj,wsp(t) } ≥ 0

∀t = T − upj + 2 · · ·T, w ≤ nw, s ≤ ns, p ≤ np

(13)

Constraints (11), (12) and (13) enforce the minimum up time; q is the number of initial periods

during which, the CPPs must be online; q is mathematically expressed as q = Min{T, [upj −

uj,0]uj(0)}. Constraint (11) refers to the initial status of the CPPs. Constraint (12) is used for

the subsequent periods to satisfy the minimum up time constraint during consecutive periods

of size upj. Constraint (13) models the final upj − 1 periods in which, if the CPPs have started

up, it remains online until the end of time span. In fact the time horizon is separated in to
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three periods. Period one satisfy the minimum up time constraint if the unit has been on at

hour 0 for fewer hours than the minimum up time. Period two enforces the minimum up time

constraint for all possible sets of consecutive hours of size upj and the third period enforces the

minimum up time constraint for the last upj − 1.

l∑
t=1

uj,wsp(t) = 0 ∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np (14)

t+downj−1∑
n=t

[1− uj,wsp(n)] ≥ downj[uj,wsp(t− 1)− uj,wsp(t)]

∀t = l + 1 · · ·T − downj + 1, w ≤ nw, s ≤ ns, p ≤ np

(15)

T∑
n=t

{1− uj,wsp(n)− [uj,wsp(t− 1)− uj,wsp(t)] } ≥ 0

∀t = T − downj + 2 · · ·T, w ≤ nw, s ≤ ns, p ≤ np

(16)

Similarly, constraints (14), (15) and (16) enforce the minimum down time; where l is the

number of initial periods during which, the CPPs must be offline; l is mathematically expressed

as l = Min{T, [downj − sj,0][1− uj(0)]}.

g
batt

≤ gbatt,wsp(t) ≤ gbatt (17)

SOCwsp(t+ 1) = SOCwsp(t) + ηcgbatt,wsp(t)z
c
batt,wsp −

gbatt,wsp(t)z
d
batt,wsp

ηd
(18)

SOC ≤ SOC(t)batt,wsp(t) ≤ SOC (19)

zcbatt,wsp(t) + zdbatt,wsp(t) ≤ 1 (20)

∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np

Constraint (17) limit the upper and lower levels of the batterys charging and discharging,

respectively. Constraint (18) is the available charging level, constraint (19) shows the upper

and lower levels of available charging, and constraint (20) is the binary variable declaration.

gw(t) + gs(t) + zdbatt,wspgbatt,wsp(t) + Pwsp
down(t) + gj,wsp(t) =

Gp(t) + zcbatt,wspgbatt,wsp(t) + Pwsp
up(t) ∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np

(21)

Constraint (21) is the energy balance equation. It states that the sum of the electricity produced

by the WPP, PV, battery, CPP and the electricity purchased from the balancing market should
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be equal to the sum of the electricity sold/ purchased in day-ahead market, the electricity used

for charging the battery and the electricity sold in the balancing market.

Gw1,s1,p(t) = Gw1,s2,p(t) = Gw2,s1,p(t) = · · ·Gwn,sn,p(t) ∀t ≤ T, p ≤ np (22)

Constraint (22) is non-anticipatively constraint. It guarantees that only one bidding curve

can be submitted to day-ahead energy market for each hour, irrespective of the WPP and PV

outputs.

η −
T∑
t=1

λp(t)(Gp(t) + 0.7Pwsp
up(t)− 1.3Pwsp

down(t))

−
2∑

j=1

OCj(t)− y(t)j,wsp.CSU,j − swsp,j(t).CSD,j ≤ rwsp

(23)

Risk = η − 1

1− α
(
nw∑
w=1

π(w)
ns∑
s=1

π(s)

np∑
p=1

π(p))rwsp (24)

rwsp ≥ 0 (25)

∀t ≤ T, w ≤ nw, s ≤ ns, p ≤ np

Constraints (23), (24) and (25) are used to model the risk, where η is an auxiliary variable

and rwsp is a non-negative variable.

4. Simulation studies and results analysis

The VPP under study in this paper consists of a WPP, a PV power plant, a li-ion battery

bank, a micro-turbine and a diesel generator. The WPP is 25 KW, 90 rpm direct drive wind

turbine with cut-in and cut-out wind speed 3.1 and 25 m/s respectively. The PV power plant

is Hyundai solar module with rated capacity of 12 MW. The battery bank is li-ion 220 V and

16 A [28]. The characteristics of the micro-turbine and diesel generator are presented in Table

1. The CPP cost curve is approximated by a 10-block piecewise linear function.

Modeling the WPP and PV power plants and the market prices are discussed in [29, 30]

and [31]. The wind speed and solar irradiation data, and the market prices are based on the

PJM market (the Virginia Beach area) for a given day in summer (13 Jul 2005) [32].
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The proposed VPPmodel is implemented within General Algebraic Modeling System (GAMS)

on a 2.40 GHz core i5 processor with 4 GB RAM. The CPLEX12.1 solver is used to solve the

proposed MILP problem.

In this case study, the Weibull density function with the shape and scale parameters of 15

and 1.75 is used to model stochastic WPP output respectively. Fig. 2, shows 10 day-ahead

market price scenarios, and Fig. 3 and Fig. 4, show 10 PV and 10 WPP outputs scenarios.

By considering the above scenarios, and assuming β = 0.4 and α = 95% , the expected

hourly profits of the VPP are shown in Fig. 5. It is worth mentioning that β controls the risk

faced by the decision maker and shows the trade-off between expected profit and risk aversion.

The parameter α is also chosen by decision maker (like β) and indicates the decision maker’s

confidence requirements regarding the expected profit.

The expected hourly profits in the first 4 hours are negative, because the day-ahead market

prices are lower in those hours in most scenarios than the other hours. In these hours the

electricity produced by the VPP is used to charge the battery bank. From hour 5, the expected

hourly profit becomes positive due to the increase in the day-ahead market prices. The highest

profit is obtained in hour 19 due to the highest market price in most scenarios at this hour.

The overall expected profit throughout the day is $10186. It means, with probability 95%, the

expected profit is bigger than $10186.

In order to evaluate the proposed stochastic optimization, this problem is modelled as the

expected value model which, the random parameters are replaced with their expected values

[33]. The expected value solution is $9897 which, 2.84% lower than the stochastic solution.

Fig. 6, shows the VPP day-ahead market offerings for selected hours [in MWh]. An offering

curve for each time period of the market horizon, expressing the amount of electricity that the

VPP owner is willing to sell in the market at each price level. This decision is made on the

first stage.

It can be seen from Fig. 6, up to the day-ahead energy price of 32 [$/MWh], the VPP

operator prefers to purchase electricity from that market the marginal costs of operating the

CPPs would be higher than the day-ahead energy price. As the day-ahead price goes above

32 [$/MWh], the amount of offered energy which the VPP operator submitted to this market

goes higher to make more riskless profits from this market. In summary, the VPP activity in
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the market is in direct correlation with the expected market price. So, the VPP operator sells

lower amounts of electricity when the price is low, and higher amounts of electricity when the

price is high.

In order to better represent the efficiency of the proposed model for optimal operation of

a VPP considering the market risks, the following scenarios are simulated and discussed in

details:

1.Small amount of stochastic unit generation and low day-ahead energy market prices.

2.Large amount of stochastic unit generation and high day-ahead energy market prices.

3.Small amount of stochastic unit generation and high day-ahead energy market prices.

4.Large amount of stochastic unit generation and low day-ahead energy market prices.

Fig. 7, depicts the operation of the VPP components in the first scenario. The positive

values for the day-ahead and balancing markets means that the electric energy is sold to the

corresponding markets. The positive value for the battery means that it is charging. As it is

shown in Fig. 7, during the first seven hours, the VPPs renewable generation is sold to the

balancing market; furthermore, the batterys electricity consumption is settled by purchasing

energy from the day-ahead market. Despite the fact that selling electricity to the balancing

market is less profitable than selling it to the day-ahead market, the VPPs operator is willing to

purchase the electricity from the day-ahead market and sell the renewable power generation to

the balancing market. This result is due to the effect of risk minimization in the mathematical

formulation. Furthermore, since the offering curve submitted to the day-ahead energy market

is independent of the renewable power generations, in some scenarios the VPPs operator should

sell the renewable power generations to the balancing market. The CPPs do not get dispatched

due to low day-ahead market prices.

Fig. 8, shows the optimal control strategy for the battery bank in this case study. The

positive values show the battery charging, negative values show discharging and 0 shows the

idle status of the battery. As it was expected, the battery is charged during low day-ahead

market prices; and during 9-12 and 14-18 the battery bank is discharged to produces electricity.

The results of the second case study (with large renewable power generation and high day-

ahead market prices) is illustrated in Fig. 9. In this case study, the micro-turbine and diesel

produce electricity due to high day-ahead market prices. The battery is fully discharged during
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the high day-ahead market prices (e.g. evening hours). The electric energy is sold to the

balancing market only at hour 6, and purchased from that market at other hours in order to

fulfill the day ahead offering commitments. This results to a nearly 1000 MWh sold to the

day-ahead market, and 250 MWh purchased from the balancing market.

The battery optimal control strategy is shown in Fig. 10. The control signal is -1 during

hours 15-20 due to high day-ahead market prices. The battery is fully charged from 1 to 5, and

then gets discharged gradually during hours 8-11 to fulfil the VPPs offering commitments to

the day-ahead energy market.

The simulation results for the small renewable power generations and high day-ahead energy

market prices are illustrated in Fig. 11. The battery bank discharges during hours 6-11 and

15-19. The diesel and micro-turbine are committed all the time to fulfill the VPPs offering

commitments to the day-ahead energy market and managing the risks associated with the low

renewable power generation scenarios. Due to high day-ahead market prices, large amounts of

electricity are sold to the day-ahead energy market, while the balancing market is only used to

purchase electricity. The largest amount of electricity sold in day-ahead market is 157 MWh

in hour 19.

The simulation results for the large renewable power generations and low day ahead energy

market prices are illustrated in Fig. 12. Due to high renewable power generations and low day-

ahead market prices, the diesel generator stays off and the micro- turbine generates during hours

9-11 and 18-22. The amounts of renewable power generation are sold to the balancing market.

The battery bank is mostly charged with the electric energy purchased from the day-ahead

energy market, and produces electricity during hours 6-11 and 16-20.

As mentioned before, these above cases studies results were obtained with the assump-

tion: β = 0.4 and α = 95%. In the next section, the effect of parameter β is investigated.

Furthermore, two famous risk measure criteria are compared.

4.1. The Effect of Risk Aversion factor

The VPP operator should consider the stochastic nature of day-ahead market prices and

renewable power generations. In the previous section, we considered β = 0.4 and chose CVaR

as the risk management model. In this section, the impact of parameter β is investigated.

Moreover, the effect of the VaR as the risk management model is investigated.
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Fig. 13, shows the profit histogram for β = 0 and β = 1, by considering VaR as the risk

management model. It is obvious that when β is increased, the VPPs profit distribution is

more concentrated, and the VPP operator would not experience low profit scenarios and would

be more confident about its energy market profits. With β = 0 , the VaR is not optimized, so

the profit distribution has a bigger variance, although the expected profit is bigger.

Fig. 14, shows the profit histogram for β = 0 and β = 1, by considering CVaR as the risk

management model. By comparing Fig. 13 and Fig. 14, it is obvious that the expected profit

is lower for the CVaR; however, CVaR has a lower risk (or profit distribution variance).

Fig. 15, shows the variations of the VPPs profits, using the VaR and CVaR risk management

models, as functions of β. As can be seen from this figure, for the same confidence level, α,

the CVaR provides an estimate of the risk lower than the VaR value [34]; therefore, the CVaR

gives a better indication of risk than that of VaR. As shown in Fig. 15, the expected profit is

$10400 for, β = 0 and $9800 for β = 1 using CVaR as the risk management model. On the

other hand, the expected profit is $10400 for β = 0, and $10000 for β = 1 using VaR as the

risk management model.

5. Conclusion

In this paper, a two-stage stochastic mixed integer linear programing was developed to

maximize the expected profit of a typical VPP operator in day-ahead and balancing energy

markets considering the risk evaluation and minimization of the stochastic (or non-dispatchable)

energy resources such as Wind and PV generators. In the presented VPP optimization model,

the uncertainties included those of the day-ahead market prices, WPP and PV generators

outputs. To model and optimize the VPP operators market risks, the CVaR was used as the

risk management model. Moreover, the VPP operator was assumed to participate in both

dayahead and balancing energy markets. In the day ahead market the VPP is a price-taker,

due to relatively small installed capacities of its components. On the other hand, the VPP

uses the balancing energy market to fulfill its offering curves which was submitted to the day

ahead energy market. The case study results (for four different scenarios) showed that the

CPPs started operating when day-ahead energy prices were high. In the case of low day-

ahead energy prices, the balancing market was used mostly for selling the VPPs electric energy.

Moreover, it was shown that when the value was increased, the VPPs profit distribution was
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more concentrated and therefore, the VPP operator would not experience low profit scenarios.

The comparison between the CVaR and VaR risk management models showed that CVaR could

better manage the VPP operators market trading risks with respect to the chosen (and studied)

market scenarios.
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Indexes:

t Index of time periods

p Index of day-ahead market

price scenarios

s Index of PV output scenar-

ios

w Index of WPP output sce-

narios

j Index of the CPPs

i Index of the CPP produc-

tion blocks

Constants:

g
j

CPP minimum output

gj CPP maximum output

CSD,j Shut-down cost of the CPP

CSU,j Start-up cost of the CPP

Aj Fixed cost of the CPP

downj Minimum down time of the

CPP

upj Maximum up time of the

CPP

uj,0 Number of periods unit j

has been online to the first

period of the time span

uj(0) Initial commitment state of

unit j

Fi,j Slope of block i of the piece-

wise linear production cost

function

rampj,up Ramp up limit of the CPP

rampj,down Ramp down limit of the

CPP

g
batt

Battery minimum level

gbatt Battery maximum level

ηc Battery charging efficiency

ηd Battery discharging effi-

ciency

sj,0 Number of periods unit j

has been offline to the first

period of the time span
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Variables:

Gp(t) Power sold (positive) or

purchased (negative) in

day-ahead market

yj(t) Binary variable equal to 1 if

the CPP is started-up at the

beginning of the time pe-

riod, and 0 otherwise

sj(t) Binary variable equal to 1 if

the CPP is shut-down at the

beginning of the time pe-

riod, and 0 otherwise

λp Day-ahead market price

gj,wsp(t) CPP total power output

gj,wspj(t) CPP power production

from block i

uj(t) Binary variable equal to 1

if the CPP is committed at

the beginning of the time

period, and 0 otherwise

zdbatt,wsp(t) Discrete variable equal to -1

if the battery is discharged,

and 0 otherwise

zcbatt,wsp(t) Discrete variable equal to

1 if the battery is charged,

and 0 otherwise

OCj(t) Total cost of the CPP

P up
wsp(t) Power sold in balancing

market

P down
wsp (t) Power purchase in balanc-

ing market

gbatt,wsp(t) Battery power output
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Table 1: Characteristics of Simulated CPPs

PminPmax a b c RU RD UT UD

MWMW ($/MW 2) ($/MW ) ($) (h) (h) (h) (h)

Micro 5 28 0.00045 5.6 62 10 8 3 2

Diesel 5 30 0.001 5.66 29.48 20 20 1 1

Figure 1: A typical schematic of the VPP.
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Figure 2: 10 day-ahead market prices scenario.
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Figure 3: 10 PV output scenarios.
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Figure 4: 10 WPP output scenarios.
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Figure 5: The expected hourly and cumulative profits.
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Figure 6: Day-ahead market offerings for the selected hours.
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Figure 7: The optimal operation of the VPPs components in the first simulation scenario.
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Figure 8: The batterys optimal control strategy.
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Figure 9: The optimal operation of VPPs components in the second simulation scenario.
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Figure 10: The battery optimal control strategy.
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Figure 11: The optimal operation of the VPPs components in the third scenario.
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Figure 12: The optimal operation of the VPPs components in the fourth scenario.

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5
x 10

−3 β=0

P
ro

ba
bi

lit
y

 

 

−0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

1

2

3

4

5
x 10

−3 β=1

P
ro

ba
bi

lit
y

 

 
Profit
Expected Profit

Profit
Expected Profit

Figure 13: The VPPs profit histogram by considering VaR (as the risk management model) for β = 0 and

β = 1.
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Figure 14: The Profit histogram by considering CVaR (as the risk management model) for β = 0 and β = 1.
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Figure 15: The variation of the VPPs expected profit as a function of β.
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