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Abstract—Due to local nature of the voltage and reactive
power control, the voltage control is managed in a zonal or
regional basis. In this paper a new comprehensive scheme for
optimal selection of pilot points is proposed. The uncertainties
of operational and topological disturbances of the power system
are included to provide the robustness of the pilot node set. To
reduce the huge number of probable states(i.e. combined states
of load and topological changes) a scenario reduction technique
is used. The resulted optimal control problem is solved using
a new Immune-based Genetic Algorithm. The performance of
the proposed method is verified over IEEE 118-Bus and realistic
Iranian 1274-Bus national transmission grids.

Index Terms—Secondary voltage control, uncertainty, pilot
node, scenario reduction, Immune-based Genetic Algorithm.

NOMENCLATURE

Ng Number of generators or dynamic Var devices
Nl Number of load buses
Np Number of pilot nodes
Ns Number of combined load and contingency states
li Subscribe stands forith load state
di Subscribe stands forith contingency state
πdi

Probability of occurring ofdith contingency state
πli Probability of occurring oflith load state
πc Probability of each combined state
ln Number of load states
dn Number of contingency states
mj Weighting factor for thejth dynamic Var resource
r Factor reflecting the order of the index for removing

the masking effect in contingency screening
∆QG Vector of reactive power generation deviations
∆QL Vector of reactive power load perturbations
∆QLli

Vector of reactive power load perturbations atlith
load state

∆VL Voltage deviation at load buses
∆VP Voltage deviation at pilot nodes
∆VG Voltage deviation at generator stations
SGL Sensitivity matrix describing changes of reactive

power at generator nodes w.r.t voltage magnitude
changes at load buses

SGG Sensitivity matrix describing changes of reactive
power at generator nodes w.r.t their voltage adjust-
ment

SLG Sensitivity matrix describing changes of reactive
power at load buses w.r.t voltage magnitude changes

* Correspondence to: Turaj Amraee, Department of Electrical
Engineering, Sharif University of Technology, Tehran, Iran, e-mail:
(amraee@g2elab.grenoble-inp.fr).

at generator nodes
P Binary pilot node matrix denotes the location of pilot

nodes among load buses
RSIi Reactive Support Index forith contingency
Qno

ji The unlimited reactive generation of thejth dynamic
Var device after contingencyi

Qno
j The unlimited reactive generation of thejth dynamic

Var device in the pre-contingency case
PIc Performance index forcth combined state
Ksvc Gain of linear feedback controller to maintain volt-

age magnitudes at pilot nodes
Dij Electrical distance between node i and j
R Weighting factor to merit voltage control at some

load buses

I. I NTRODUCTION

A. Motivation And Problem Description

Voltage control could be carried out in a hierarchical way
to obtain different goals at different layers. Due to local
nature of the voltage and reactive power control, the voltage
control is carried out in a regional or zonal basis. In other
words, voltage control is performed in different hierarchical
layers: primary layer, secondary layer and tertiary layer.The
primary voltage control contains local automatic actions such
as Automatic Voltage regulators of generators to diminish fast
local disturbances (e.g. short circuits). Voltage magnitude is
deviated from the desired thresholds by slow load perturba-
tions. Therefore a secondary or zonal voltage control is needed
to counteract slow variations of voltage magnitudes insidean
electric region. The voltage magnitudes of load points could
be controlled by dynamic reactive power resources. Therefore
in addition of voltage control of load points it is needed to fair
distribution or dispatch of the required reactive power among
available resources. In other words, the zonal voltage control
is designed to control the voltage magnitudes throughout the
electric zones and fair distribution of required reactive power
among available resources simultaneously. The time constant
of the zonal or secondary voltage control is chosen more
than the time constant of the primary control to insure the
independency of the hierarchical control layers [1]. The whole
grid is separated into distinct areas. Each electric area is
represented by a pilot node and some regulating generators.
The pilot node is a load point that its voltage magnitude has
the maximum similarity to the area voltage profile. According
to Fig. 1 by measuring voltage magnitude deviation at the
pilot nodes the area’s reactive power requirement is calculated
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by a proportional-integral law. Based on the output of this
regulator a zone signal is obtained. Considering the zone signal
all regulating generators inside a region will participatein
voltage control with the same percentage of reactive power
generation. The locations of pilot nodes has a major role in
secondary voltage control performance. The optimal pilot node
set obtained for a base case configuration cannot be optimal
over the all possible operating scenarios. Thus, it is needed
to improve the pilot node selection algorithms to make them
robust against the uncertainties due to structural or operational
changes in actual power system. This need motivates the work
reported in this paper.

B. Literature Review

Various approaches have been proposed for pilot node
selection problem including heuristic methods [2]–[6] and
evolutionary optimization-based methods [7], [8]. In [2],the
load buses with higher values of short circuit capacity are
selected as pilot nodes. The concept of electrical distancein
combination with clustering techniques is the next proposed
method [3]. The pilot point selection could be formulated
as an optimization model. The objective of this optimization
problem is minimizing the voltage deviation throughout all
electrical regions under all possible structural or load distur-
bances. The generator terminal voltage is taken as control
variable. Two different approaches have been proposed to
solve the optimization model: heuristic methods [4]–[6] and
evolutionary technique [7], [8]. Recently some coordinated
secondary voltage control schemes have been proposed to
improve voltage stability margin or eliminate voltage viola-
tions. These scheme assume that the pilot nodes and associated
control zones are known [9]–[12]. In [13] two very promising
wide-area voltage protection (V-WAP) solutions, able to face
stability and security problems in the transmission grid, have
been presented with considering operation of secondary and
tertiary control schemes according to their hierarchies. The
major weakness of the previously proposed methods is the
lack of robustness of the set of pilot nodes against structural
(i.e. line or generator outages) and operational(i.e. loadper-
turbations) changes in actual power system.

C. Contributions

Any secondary voltage control scheme should satisfy the
following requirements:

1) R1: The voltage magnitude of the pilot node should
represent the voltage profile of its associated region

2) R2: The regulating generators at each region should be
able to provide enough reactive power support to regulate
the voltage changes inside the region

3) R3: Each secondary voltage control area should be elec-
trically decoupled from the other control areas

4) R4: The set of pilot nodes should be robust against the
uncertainties due to structural or operational changes in
actual power system

The gap that this paper intends to fill, is the consideration of
forth requirement in addition to the other three requirements.

Regarding this issue the uncertainties of loading conditions
and the outages of main inter-area transmission lines are taken
into account. The independency of the electrical zones is
provided using the concept of electrical distance. To reduce
the computational burden of the problem and uncertainty mod-
eling a scenario reduction technique is developed. The pilot
selection problem is a mixed integer nonlinear optimization
problem. Therefore, in this paper, a new hybrid Immune-
Genetic Algorithm is proposed to solve the optimal pilot node
selection problem.

D. Paper Organization

The rest of this paper is organized as follows. In section
2, the detailed formulation of the secondary voltage control is
presented. The proposed evolutionary algorithm is described in
Section 3. In Section 4 the proposed scheme will be simulated
for IEEE 118-Bus test system and a large scale realistic
transmission network (Iranian 1274-Bus national grid). The
conclusions are given in section 5.

II. PILOT NODE SELECTION FORMULATION

The overall structure of the multilayer voltage control is
shown in Fig. 1. By measuring the voltage deviation at pilot
point a zone signal, i.e. N, is obtained using a proportional
integral controller. The zone signal forces all regulatinggen-
erators to have the same participations in voltage control
(i.e. same percentages of reactive power generation). Using
the decoupled power flow model of the steady state system
equations the linearized model of the zonal voltage control
could be formulated via (1)-(3).
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Fig. 1. Block diagram of the secondary voltage control scheme
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∆VL = J1∆QL + J2∆VG (2)
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LLJ2 = −S−1

LLSLG (3)
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Due to hierarchical nature of the SVC, the primary control
is reached its steady state before the initiation of the secondary
layer and so on. The lack of sufficient measurement and
communication infrastructures at all load buses necessitates
the existence of a minimum number of pilot nodes that their
measurements are sufficient to control the voltage profile over
all electrical zones. A linear controller in which the initial post-
contingency pilot node voltage deviations written as a function
of the set-point changes of regulating units is formulated as
follows.

∆VG = Ksvc∆V 0

L (4)

where∆V 0

L denotes voltage deviation at load buses without
secondary control. The voltage magnitudes are measured only
at pilot nodes:

∆VP = P∆V 0

L (5)

∆VG = Ksvc∆VP = KsvcPJ1∆QL (6)

The pilot node matrix is defined as follows.

P = [pij ]Np×Nl
(7)

pij =

{

1 if bus i is thejth pilot node
0 otherwise

(8)

The voltage deviation of load points could be defined as a
function of controller gain,Ksvc, and pilot node matrix, P, as
follows.

∆VL = J1∆QL + J2KsvcPJ1∆QL (9)

= (I + J2KsvcP )J1∆QL

The objective function or performance index of the sec-
ondary control scheme,PI, could be defined as the total
weighted sum of squares of voltage deviations throughout the
network. For a given load disturbance given by∆QL, it could
be formulated via (10)-(13).

PI = (∆VL)
T .R.(∆VL) (10)

PI = trace[R.(I + J2KsvcP )G(I + J2KsvcP )T ] (11)

where

G = (J1)Λ(J1)
T (12)

Λ = (∆QL)(∆QL)
T (13)

A. Uncertainty Modeling

The selected pilot nodes should provide a desired level
of robustness against load and contingency uncertainties.In
this section, a general procedure is proposed to model the
uncertainties of load perturbations and structural changes
(i.e.outages).

Fig. 2. Operational and Structural uncertainty of secondary voltage control

1) Load Uncertainty Modeling:In fact, the load distur-
bance has a random nature and so the performance index
is a random variable. Therefore, to consider this random-
ness, the deterministic performance index should be replaced
by a probabilistic index. Here, three load levels have been
considered : Peak-Load, Off-Peak Load, and Light Load.
The load perturbation around each load level has a normal
distribution as shown in Fig. 2. The load will be divided
into different levels using a clustering technique, utilizing the
central centroid sorting process. All these states are defined
as a percentage of the base-case loading. Mathematically each
load state i.e.li, is described with its∆Qli and probability of
occurance, i.e.πli .

2) Topological Uncertainty Modeling: The outage(i.e.
topological changes) modeling is carried out in two consequent
steps. In the first step the contingency screening is done and
the contingency modeling will then be followed in the second
step.

• Contingency Screening: The most credible contingencies
should be screened and weighted based on their proba-
bilities. Reactive Support Index (RSI) proposed in [14],
has been used for contingency ranking based on the
capability of the power system in voltage and reactive
power support. The RSI index, for a given contingency,
is defined as the additional amount of reactive generation
required to get from the base-case saddle-node point to
the contingency nose-point. The Reactive Support Index
is defined as the extra amount of reactive generation from
all the existing dynamic VAr resources (e.g. generation,
SVC, etc.) in which the reactive limits at the dynamic
VAr devices are removed [14].
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RSIi =

Ng
∑

j=1

mj(Q
no
j −Qno

ji )
r (14)

whereRSI, is the relativeRSI index for contingencyi.
Qno

j andQno
ji are calculated with open reactive limits of

dynamic Var devices [14].
• Contingency States After carrying out contingency anal-

ysis, in the first stage, a list of the most critical contin-
gencies are selected. In the second stage, based on the
forced outage rate or other historical information, the
probability of each screened contingency is calculated.
Here, without loosing generality, only the severe con-
tingencies are selected based on the value of RSI index
calculated in (14). In this paper, only the outages of tie-
line transmission lines are taken into account. The normal
state is considered as a state in which all equipments are
in-service. Mathematically each contingency state i.e.di,
is described with itsRSIi and probability of occurance,
i.e. πdi

.

B. Combined Load and Contingency States

It is assumed that the load and contingency states are
independent so the states are combined to construct the whole
set of states as follows:

πc = πl × πd (15)

The total number of states, i.e.,Ns, will be ln×dn. For a large
scale power system the huge number of scenarios(i.e. states)
will increase the computational burden of the optimization
task, enormously. In this paper a scenario reduction technique
is implemented to reduce the total number of scenarios without
loosing much information of the original set of scenarios.
The scenario reduction technique has been used in risk-
averse decision making [15] and electricity market [16]. The
formulation of the scenario reduction technique could be found
in Appendix.

For uncertainty modeling the performance index could be
formulated via (16) to (19).

PI =

Ns
∑

c=1

πcPIc (16)

PI = trace[ (17)

R.(I + J2cK
c
svcP )Gc(I + J2cK

c
svcP )T ]

where

Gc = (J1c)Λc(J1c)
T (18)

Λc = (∆QLc)(∆QLc)
T (19)

C. Optimal Gain

For a given pilot matrix,P , the controller gain,Ksvc, is
optimized with any integral control law, provided that the
gain matrix,Kc

svc verifies (4). The optimal gain of controller
could be determined by two different strategies. In the first
strategy the total voltage deviation over all load buses is

minimized without minimizing voltage changes of regulating
units, while in the second one the voltage deviation of pilot
nodes is forced to be zero by minimizing voltage changes of
regulating units. The optimal gain of linear controller forboth
strategies for each combined state is determined via (20) and
(21), respectively.

∂PIc
∂Ksvc

= 0 ⇒ (20)

K∗
svc = [JT

2cRJ2c]
−1JT

2cRGcP
T [PTRP ]−1

∆VP = 0 ⇒ K∗
svc = [PJ2c]

−1(PTJT
2cJ2cP )−1 (21)

D. Optimization problem

1) Constraints: Many constraints could be included in
the pilot selection problem. Here, two main constraints are
included to provide the independency of pilot nodes and to
respect the limits of reactive power generations and terminal
voltage changes of generators as well as voltage deviation of
pilot nodes after implementing control actions. To providethe
independency between electrical zones or pilot nodes, each
two pilot pair should have a minimum electrical distance as
follows.

Dc
ij = −Log(αc

ij × αc
ji) i, j ∈ 1, ..., nl (22)

αc
ij =

∂Vi/∂Qj

∂Vj/∂Qj

i, j ∈ 1, ..., nl (23)

2) Optimization Problem:By considering all probable sce-
narios of loading conditions and topological changes of the
network, the optimal pilot set is the one that has the mini-
mum cost for all loading conditions over the base-case and
contingency configurations. Therefore thePI is rewritten to
consider all load and network states as follows.

min
P

PI =

Ns
∑

c=1

πcPIc (24)

subject to

PIc = (25)

trace[R.(I + J2cK
c
svcP )Gc(I + J2cK

c
svcP )T ]

Kc
svc = (26)







[JT
2cRJ2c]

−1JT
2cRGcP

T [PTRP ]−1 1st law

PJ−1

2c PTJT
2cNSP 2nd law

Dc
ij ≥ Dmin

ij (27)

∆V c
Gmin ≤ ∆V c

G ≤ ∆V c
Gmax (28)

∆Qc
Gmin ≤ ∆Qc

G ≤ ∆Qc
Gmax (29)

∆V c
Lmin ≤ ∆V c

L ≤ ∆V c
Lmax (30)

where∆Qc
G,∆V c

G, and∆V c
L are determined via (1), (5), and

(9). Indeed due to the random natures of load and topological
disturbances the secondary voltage control is a stochastic
mixed integer non-linear optimization problem. In this paper,
an Immune-GA-Based Technique is proposed to solve the
optimization problem.



5

III. PROPOSEDIMMUNE-GA METHOD

Immune Algorithm is a heuristic method which imitates
the human’s reaction against external invasions. This algo-
rithm has been successfully applied to pattern recognition
[17] and multi-objective DG planning problem [18], [19]. In
Immune algorithm, the objective functions and their associated
constraints are assumed to be antigens and the solutions act
as antibodies. Affinity factors are defined as the ability of
antibodies (solutions) in recognizing (optimizing) the antigens
(objective functions and constraints). Immune algorithm it
is an iterative methodology which starts with an initial set
of solutions and improves its performance. The Immune
algorithm has two important operators namely, cloning and
mutation [19]. The cloning operator reproduces the antibodies
with a change proportional to their ability in recognizing the
antigens (affinity) [19], [20]. The mutation operator applies
some perturbation on antibodies in hope to find better ones.
The mutation probability is related to the inverse value of the
affinities. In order to enhance the strength of the algorithm,
crossover operator [21] of GA is proposed in the present work
to overcome the lack of memory in immune algorithm. To do
this, in the cloning phase, the algorithm selects two solutions
(instead of one) and performs the crossover operation. It then
generates two new solutions and passes them to mutation
operator. Mutation operator uses the value of affinity factor of
the selected parents (i.e. antigens) as a measure for mutating
them. The proposed solution algorithm is described as the
following steps:

Step 1. Generate initialNpop solutions
Step 2. SetIteration = 1
Step 3. Calculate the objective function (affinity factor) for

each antibody using (24)
Step 4. If Iteration ¡ maximum number then end; else continue
Step 5. Keep the best antibodies in memory
Step 6. Set the cloning counter, i.e.m, equal to 1
Step 7. Select two antibodies (p andq) as the parents among

the antibodies stored in memory, using roulette wheel
based on their affinities

Step 8. Calculate the number of cloning replica, i.e.km, and
mutation probabilities based on the average values of
parent affinities. The value ofkm is determined as
follows:

km = round(Γ×
OFp +OFq

2max(OFn)
×Npop) (31)

Where, Γ is a controlling factor andround is the
function which gives the nearest integer number

Step 9. Clone the selected parents selected in Step.7, for
km times, by applying the crossover and mutation
operators and produce new antibodies

Step 10. Store the new generated antibodies
Step 11. If the cloning counter is below the memory size,

then increase cloning counter and go to Step.7 ;
else, construct the new antibody set using the union
of newly generated antibodies and the antibodies of
memory, increase the iteration and go to Step.3
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Fig. 3. The flowchart of the proposed method

IV. SIMULATION RESULTS

The proposed model is simulated over IEEE 118 Bus test
case and the realistic 1274-Bus transmission grid of Iran.
The obtained optimal patterns of pilot nodes are compared
to previously proposed methods. It is assumed that all load
buses are candidates to be selected as pilot node. The results of
simulations are presented for the second control law. Solving
the (24) gives21(contingency states) ∗ 10(load states) =
210 states for IEEE 118 and31(contingency states) ∗
10(load states) = 310 for 1274-Bus Iranian grid. It is clear
that the calculation process for all these states imposes a heavy
computational burden. In order to overcome this problem, a
scenario reduction technique is implemented to reduce the
number of states (see Appendix for more details) [15].

A. Load States

Ten independent load levels are chosen based on the cluster-
ing technique and utilizing the central centroid sorting process
[22]. The proposed method in [22] verifies that choosing ten
equivalent load levels (states), with different probabilitiesπli ,
provides a reasonable trade-off between accuracy and fast
numerical evaluation. The states have been described as a
fraction of base case loading as given in Table I. This load
states are applied to both test cases without loosing generality.

B. Contingency States

Contingency screening is carried out based on the value of
RSI index as described before. The results of RSI calculations
for both test cases are shown in Table II and Table III.
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TABLE I
LOAD STATES AND THEIR PROBABILITIES

Load State Load Perturbation Probability
(% of Base-Case)

1 20.00 0.0100
2 17.06 0.0560
3 15.48 0.1057
4 14.26 0.1654
5 13.00 0.1654
6 11.70 0.1630
7 10.20 0.1630
8 9.020 0.0912
9 8.120 0.0473
10 7.020 0.0330

TABLE II
CONTINGENCY STATES AND THEIR PROBABILITIES, IEEE-118 BUS

SYSTEM

Contingency State Configuration(from-to) RSI Value Probability

0 BC 0 0.9600
1 C1 ( 38 - 37 ) 7.227 0.002
2 C2 ( 8 - 5 ) 5.788 0.002
3 C3 ( 38 - 65 ) 4.688 0.002
4 C4 ( 69 - 75 ) 4.280 0.002
5 C5 ( 94- 100 ) 3.084 0.002
6 C6 ( 69 - 70 ) 2.533 0.002
7 C7 ( 26 - 30 ) 2.399 0.002
8 C8 ( 74 - 75 ) 2.342 0.002
9 C9 ( 100 -101) 2.200 0.002
10 C10 ( 88 -89 ) 2.085 0.002
11 C11 ( 3 - 5 ) 2.021 0.002
12 C12 ( 76 -77 ) 2.020 0.002
13 C13 ( 49 -50 ) 1.977 0.002
14 C14 ( 1 - 3 ) 1.931 0.002
15 C15 ( 30 -17 ) 1.917 0.002
16 C16 ( 2 - 12 ) 1.891 0.002
17 C17 ( 49 -51 ) 1.868 0.002
18 C18 ( 70 -74 ) 1.840 0.002
19 C19 ( 30 -38 ) 1.764 0.002
20 C20 ( 34 -37 ) 1.627 0.002

The 20 reduced states by using the scenario reduction
technique are given in Table.IV and Table.V.

C. Case 1: IEEE-118 Bus test case

The proposed model is applied to IEEE-118 bus test case.
The loading data of this test case are modified based on
[23]. Generation units with low reactive power capacities are
converted to load buses.

1) IEEE-118 Bus Without Uncertainty Modeling:For this
case the number of population is assumed asNP = 50. Other
optimization parameters such as clonal factors, crossover
and mutation rates are assumed adaptively. The results are
given in Table. VI. The best objective function using the
proposed method is compared with other heuristic and intel-
ligent techniques. The optimal cost for the optimal pilot set
is 0.9183 × 10−2. According to the constraint of minimum
electrical distance the obtained pilot locations are distributed
throughout the network. To verify the overall performance of
the obtained pilot nodes a load reactive power disturbance of
25% is applied to all the load buses. The voltage deviations
for the first 40 load buses with highest deviations are shown in
Fig. 4 for different pilot sets obtained by various methods.It

TABLE III
CONTINGENCY STATES AND THEIR PROBABILITIES, IRAN 1274-BUS

SYSTEM

Contingency State Configuration(from-to) RSI Value Probability

C0 Base Case - 0 0.940
C1 ( BAM-NZAHDA) ( 5040 - 4810 ) 18.186 0.002
C2 ( RAJAG-AMIRK) ( 3490 - 5340 ) 5.6370 0.002
C3 ( BIRJ2-SEFIDA) ( 3780 - 6080 ) 5.6256 0.002
C4 ( TEHP1-DAMAV) ( 3610 - 4760 ) 4.5605 0.002
C5 ( TEHP2-DAMAV) ( 3620 - 4760 ) 4.5605 0.002
C6 ( ARAK-RUDES) ( 1220 - 3530 ) 4.4085 0.002
C7 ( NKER4 - BAM) ( 4660 - 5040 ) 4.2578 0.002
C8 ( SIRJA-GENOV4) ( 2500 - 501 ) 3.8933 0.002
C9 ( KAN1-ZIARA4) ( 3310 - 3660 ) 3.8392 0.002
C10 ( FIBAH4-NRUD4) ( 3170 - 4790 ) 3.7977 0.002
C11 ( FIBAH4-NRUD4) ( 3170 - 4790 ) 3.7977 0.002
C12 ( TEHP14-TEHPS) ( 3610 - 3630 ) 3.7165 0.002
C13 ( TEHP24-TEHPS) ( 3620 - 3630 ) 3.7165 0.002
C14 ( JALAL-REYN4) ( 3270 - 3520 ) 3.5904 0.002
C15 ( GOTVA-AMIRK) ( 4140 - 5340 ) 3.4666 0.002
C16 ( YAZD-NCHLST) ( 3970 - 4560 ) 3.0803 0.002
C17 ( KATUN-YAZD14) ( 2430 - 3950 ) 2.8604 0.002
C18 ( GODAR4-GOLPA) ( 4130 - 1530 ) 2.7743 0.002
C19 ( YAZD-HARAND) ( 3970 - 6470 ) 2.6365 0.002
C20 ( FASA4 -BOTASL) ( 1830 - 6140 ) 2.5073 0.002
C21 ( CHOGH-OMID34) ( 1780 - 7150 ) 2.1429 0.002
C22 ( KHORM-KARKH) ( 1310 - 4160 ) 2.1052 0.002
C23 ( PARDI4-PARDI2) ( 3440 - 3430 ) 2.0612 0.002
C24 ( NCHLST-SORMG) ( 4560 - 4600 ) 1.8965 0.002
C25 ( PARDI4-DAMAV) ( 3440 - 4760 ) 1.7015 0.002
C26 ( ZANJ24-IJRUD4) ( 3030 - 7260 ) 1.6407 0.002
C27 ( GARMS-SEMNA) ( 3080 - 3090 ) 1.2975 0.002
C28 ( PARDI4-PARKJ4) ( 3440 - 3460 ) 1.0266 0.002
C29 ( PARDI4-SADAT4) ( 3440 - 3540 ) 0.6567 0.002
C30 ( KHOR2-KHOR4) ( 1300 - 1310 ) 0.2063 0.002

TABLE IV
TOTAL REDUCED STATES AND THEIR PROBABILITIES FOR IEEE 118-BUS

TEST CASE

New State No Original State No Load State Contingency State Probability
(% of BaseCase Load) (RSI value)

S1 1 20.00 0.000 0.00960
S2 22 17.60 0.000 0.05376
S3 40 17.60 1.840 0.00226
S4 43 15.48 0.000 0.10147
S5 62 15.48 1.764 0.00338
S6 64 14.26 0.000 0.15878
S7 82 14.26 1.840 0.00529
S8 85 13.00 0.000 0.15878
S9 87 13.00 5.788 0.00320
S10 103 13.00 1.840 0.00529
S11 106 11.70 0.000 0.15648
S12 109 11.70 4.688 0.00324
S13 117 11.70 2.021 0.00522
S14 127 10.20 0.000 0.15648
S15 128 10.20 7.227 0.00134
S16 145 10.20 1.840 0.00522
S17 148 09.02 0.000 0.08755
S18 169 08.12 0.000 0.04541
S19 183 08.12 1.931 0.00555
S20 190 07.02 0.000 0.03168

can be seen that the pilot set obtained by the proposed method
provide better voltage profile over the grid.

2) IEEE-118 Bus With Uncertainty Modeling:In this case
the load and contingency states are considered as given in
Table. I and Table. II. The 20 reduced combined states are
given in Table. VII. Choosing more than 20 reduced scenarios
adds no significant gain for this case. The best objective
function using the proposed method is compared with other
techniques. To verify the effectiveness of the proposed method
one of the combined states,S15, is applied to the system. The
voltage deviation for first 40 load buses (i.e. buses with highest
voltage deviations)are given in Fig. 5. It can be seen that the
proposed method provides better voltage profile over the grid.

D. Case 2: Iranian National Transmission Grid

Iranian national transmission grid consists of 1274 nodes,
551 generation units and 724 load points. The standard
transmission voltages are 400 kV and 230 kV. The 400 kV
backbone is shown in Fig. 6. The load, contingency, and
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TABLE V
TOTAL REDUCED STATES AND THEIR PROBABILITIES FOR IRAN

1274-BUS SYSTEM

New State No Original State No Load State Contingency State Probability
(% of BaseCase Load) (RSI value)

S1 31 20.00 0.2063 0.00998
S2 32 17.60 0.0000 0.05421
S3 63 15.48 0.0000 0.10020
S4 80 15.48 2.8604 0.00654
S5 94 14.26 0.0000 0.15779
S6 103 14.26 3.8392 0.00770
S7 125 13.00 0.0000 0.15746
S8 135 13.00 3.7977 0.00397
S9 139 13.00 3.5904 0.00364
S10 156 11.70 0.0000 0.15452
S11 157 11.70 18.1860 0.00200
S12 172 11.70 3.0803 0.00815
S13 187 10.20 0.0000 0.15452
S14 206 10.20 2.6365 0.00896
S15 218 09.02 0.0000 0.08573
S16 220 09.02 5.6370 0.00156
S17 248 09.02 0.2063 0.00128
S18 249 08.12 0.0000 0.04541
S19 253 08.12 4.5605 0.00463
S20 280 07.02 0.0000 0.03175

TABLE VI
OPTIMAL PILOT NODES AND PERFORMANCE INDEX BY APPLYING THE

SECOND CONTROL LAW, 118-BUS SYSTEM

Solution Method Optimal Pattern Performance Index

Simulated Annealing [4] 12,17,23,39,56,68,71,77,92,103 1.1099× 10
−2

Greedy Search [6] 14,77,92,38,56,103,23,47,71,60 1.1481× 10
−2

Extended Greedy Search [6] 12,23,38,47,56,60,71,77,88,103 1.1399× 10
−2

Immune Algorithm [8] 12,39,77,88,55,105, 47,28,71,15 1.0510× 10
−2

Proposed Algorithm 11,20,30,38,63,70,77,86,93,108 0.9183× 10
−2

reduced combined states are given in Table. I, Table. III, and
Table. V. The obtained results are given in Table. VIII. The
total 32 pilot points are given for each region with and without
uncertainty modeling. Referring to the single line diagramof
the Iranian National Grid it can be seen that the obtained
results have been distributed throughout the network.

V. CONCLUSION

The previously proposed model of secondary voltage control
was modified to take into account topological and opera-
tional disturbances. The optimization model as a full integer
programming problem was solved using a new Immune-
GA based algorithm which was robust and could find better
solutions with low computational burden by considering load
and structural uncertainty. To reduce the computational burden
the total number of states was reduced by a scenario reduction
technique. The proposed scheme was applied to IEEE 118-
Bus test case and Iranian 1274-Bus transmission grid and
the obtained results verified the robustness of the proposed
method.
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Fig. 4. Voltage deviation of load buses for different sets ofpilot nodes
without uncertainty modeling, 118-Bus system
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Fig. 5. Voltage deviation of load buses for different sets ofpilot nodes with
uncertainty modeling, 118-Bus system

TABLE VII
OPTIMAL PILOT NODES AND PERFORMANCE INDEX BY APPLYING THE

SECOND CONTROL LAW, 118-BUS SYSTEMWITH UNCERTAINTY

MODELING

Solution Method Optimal Pattern Performance Index

Simulated Annealing [4] 12,17,23,39,56,68,71,77,92,1032.01019× 10
−4

Greedy Search [6] 14,77,92,38,56,103,23,47,71,601.98944× 10
−4

Extended Greedy Search [6] 12,23,38,47,56,60,71,77,88,103 2.02530× 10
−4

Immune Algorithm [8] 12,39,77,88,55,105, 47,28,71,151.90971× 10
−4

Proposed Algorithm 11,20,38,44,50,68,70,86,93,1081.57271× 10
−4

APPENDIX: SCENARIO REDUCTION TECHNIQUE

The purpose of scenario reduction is selection of a set, i.e.
ΩS , with the cardinality ofNΩS

, from the original set, i.e.ΩJ

[16]. This procedure should be done in a way that makes a
trade off between the loss of the information and decreasing
the computational burden [24]. The scenario reduction tech-
nique used in this paper is described as the following steps
[15]:

step. 1 Construct the matrix containing the distance between
each pair of scenariosc(w, ẃ)

Fig. 6. Iranian National Transmission Grid (400 kV backbone)



8

TABLE VIII
OPTIMAL PILOT NODES AND PERFORMANCE INDEX FORIRANIAN

1274-BUS NATIONAL TRANSMISSIONGRID

Uncertainty Region Optimal Pilots PI
Modeling

Azarbaijan Miandoab-230
Bakhtar Amirkabir-400
Isfahan Tiran-400,Mobarake-230,Najafabad-400,Zobahan-400,
Fars Fars-400, Asaluyeh-400
Gharb EastKermansh-400
Gilan GilanCC-230

Without Hormozgan BandarAbbas-400 0.5024

Uncertainty Kerman Sirjan-400
Khorasan Neyshabur-400, Tus-400, KohSangi-400
Khuzestan Andimshk-230,Abaspour-400,Ahwaz-400,Godar-400,Gotvand-400
Mazandaran Neka-400, AliAbad-400
Semnan Ahuan-400
Tehran Damavand-400, Jalal-400, RudShur-400,Ziaran-400,Pardis-400,Mosalla-230
Sistan NZahedan-230
Zanjan Zanjan-400, SheykheBaha-400

Azarbaijan Tabriz 400
Bakhtar Anjirak-400,Khoramabad-400,Amirkabir-400
Isfahan NChelstun-400,Tiran-400,Golpayegan-400,
Fars Asaluyeh-400,Fasa-400,
Gharb EastKermansh-400
Gilan NGilan-230

With Hormozgan Pyam-230, Almahdi-230,Geno-400 0.00875

Uncertainty Kerman ArgeBam-230
Khorasan Sarakhs-400,Toos-400,
Khuzestan Ahwaz22-230,Ahwaz4-400,Omidyeh-400,Godar-400,Sushtar-400,Gotvand-400
Mazandaran Minodasht-230,Darys-230,Neka-400
Tehran Damavand4-400,RudSur-400,FiruzBahram-230,Ziaran-400,Sheikh-400
Sistan NZahedan-230,Polan2-230

step. 2 Select the fist scenariow1 as follows:

w1 = arg

{

min
w′∈ΩJ

∑

w∈ΩJ

πwc(w,w
′)

}

(32)

ΩS = {w1} ,ΩJ = ΩJ − ΩS

step. 3 Select the next scenario to be added toΩS as follows:

wn = (33)

arg







min
w′∈ΩJ

∑

w∈ΩJ−{w′}

πw min
w′′∈ΩS∪{w}

c(w,w′′)







ΩS = ΩS ∪ {wn} ,ΩJ = ΩJ − ΩS

step. 4 If the number of selected set is sufficient then end and
go to step 2 ; else continue.

step. 5 The probabilities of each non-selected scenario will be
added to its closest scenario in the selected set.

step. 6 End.
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