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Abstract—The objective of dynamic economic dispatch (DED)
problem is to determine the generation schedule of the committed
generation units, which minimizes the total operating cost over a
dispatch period, while satisfying a set of constraints. The effect
of valve-points and prohibited operating zones (POZs) in the
generating units’ cost functions makes the DED a highly non-
linear and non-convex optimization problem with multiple local
minima. Considering the ramp-rate limits and transmission losses,
makes the DED problem even more complicated. Hence, proposing
an effective solution method for this optimization problem is of
great interest. This paper presents a novel heuristic algorithm
to solve DED problem of generating units, by employing hybrid
immune genetic algorithm (IGA). To illustrate the effectiveness
of the proposed approach, four test systems consisting different
number of generating units are studied. The valve-point effects,
POZs and ramp-rate constraints along with transmission losses
are also considered in simulation cases. The results obtained
through the proposed method are compared with those reported
in the literature. These results substantiate the applicability of the
proposed method for solving the constrained DED problem with
non-smooth cost functions.

Index Terms—Dynamic economic dispatch , immune-genetic
algorithm , Prohibited operation zone (POZ) , valve-point effect

I. I NTRODUCTION

Generally, the economic dispatch of power system can be
categorized into static economic dispatch (SED) and dynamic
economic dispatch (DED). The SED optimizes the system ob-
jective function (total fuel cost in general) in specified time and
does not take into account the fundamental relation of system be-
tween the different operating times. The DED takes into account
the connection of different operating times by consideringramp
rate constraints. The DED is one of the important optimization
problems used in power systems to obtain the optimal operation
schedule of the committed units over the entire dispatch period.
Considering the dynamic constraints like ramp rate limits makes
the DED problem more complicated. One way to simplify the
solution of DED is to consider it as a sequential SED problems
[1] and force the ramp rates between the sequential hours. It
is shown that this method would lead into being trapped in a
local optimal solution [2]. Generators are modeled using input-
output curves in most of the power system operation studies.
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Traditionally an approximate quadratic function used to model
the generator input-output curves [1], [3]. This would result in
an inaccurate dispatch. Because the natural input-output curve
is non-linear and non-smooth due to the effect of multiple steam
admission valves (known as valve-points effect) [4], [5].

Obtaining the global optimum or better local optimum for
non-convex DED problems is a great challenge. Application of
the classical methods such as Lagrangian relaxation approach [6]
and dynamic programming [7] are restricted [8]. In recent years,
Maclaurin Series approximation has been applied to model the
valve-point effects [9]–[11] but it has been shown that this
method leads to non-optimal solution. Optimization methods
based on artificial intelligence has shown better performance
in solving the DED problem with capability of modeling more
realistic objective function and constraints. In [12], Hybrid evo-
lutionary programming and sequential quadratic programming
(SQP) method has been proposed to solve non-convex DED
problem. Chiou [13] proposed variable scaling hybrid differen-
tial evolution (VSHDE) method for solution of large scale DED
problems. Time-varying acceleration coefficients IPSO (TVAC-
IPSO) is implemented in [14] for solution of non-convex DED
problem considering different constraints. Differentialevolution
algorithm has received a great deal of attention in solving DED
problems [15]–[21]. Other stochastic search methods have been
applied to solve DED problems in the past decade. These include
genetic algorithm [22], quantum genetic algorithm [23], artificial
immune system method [24], artificial bee colony algorithm
[8], particle swarm optimization [25]–[28], multiple tabusearch
algorithm [29], enhanced cross-entropy method [30], Simulated
annealing algorithm [31]. Multiobjective teachinglearning-based
optimization (TLBO) has been employed in [32] to solve the
dynamic economic emission dispatch problem. Self-adaptive
modified firefly algorithm is presented in [33] for solution ofre-
serve constrained dynamic economic dispatch, where three types
of the system spinning reserve requirements are considered.

Hybrid methods are found to be more effective in solving
complex optimization problems such as DED problem. Hy-
bridization of SQP algorithm with one of the heuristic algorithms
(for instance: artificial immune systems, EP, seeker optimization
algorithm (SOA) and PSO) are widely used in literature for
solution of DED problem [12], [34]–[37]. Hybrid swarm intel-
ligence based harmony search algorithm has been proposed in
[4] for solution of non-convex DED problems. Hybrid Hopfield
neural network (HNN) and quadratic programming (QP) is also
implemented for solution of DED problems in [38], [39].

In this paper, a hybrid immune-genetic algorithm (IGA)
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is proposed to solve non-convex dynamic economic dispatch
problem with constraints. More details of the proposed algorithm
are provided in Section III. Wind power generation is the fastest
growing renewable energy resources in the world [40]. The effect
of the wind power generation is also considered in simulations
using the methods proposed in [41], [42].

The remainder of the paper is organized as follows: Section
II gives the mathematical formulation of the DED problem
considering POZs, ramp-rate limits, valve-point effects and
transmission losses. Section III describes the proposed IGA
algorithm. Section IV presents four application cases and gives
the corresponding comparison results with the most recent
applied methods. Conclusions are finally given in Section VI.

II. DYNAMIC ECONOMIC DISPATCH PROBLEM

FORMULATION

The objective function of DED problem is to minimize the
total production cost over the operating horizon, expressed as:

min TC =
T∑

t=1

N∑

i=1

Cit(Pit) (1)

whereCit is the production cost of uniti at time t, N is
the number of dispatchable power generation units andPit is
the power output ofith unit at timet. T is the total number of
hours in the operating horizon. The production cost of generation
unit considering valve-point effects is defined as:

Cit(Pit) = aiP
2

it + biPit + ci + |ei sin(fi(P
min
i − Pit))| (2)

whereai, bi andci are the fuel cost coefficients of theith unit,
ei and fi are the valve-point coefficients of theith unit. Pmin

i

is the minimum capacity limit of uniti. It should be noted that
the added sinusoidal term in the production cost function reflects
the effect of valve-points. The DED problem will be non-convex
and non-differentiable considering valve-point effects [43]. The
objective function of the DED problem (1) should be minimized
subject to the following constraints:

1) Real power balance
Hourly power balance considering network transmission
losses is written as:

N∑

i=1

Pit = PD(t) + Ploss(t) (3)

wherePloss(t) andPD(t) are total transmission loss and
total load demand of the system at timet, respectively.
System loss is a function of units power production and can
be calculated using the results of load flow problem [37]
or Kron’s loss formula known asB− matrix coefficients
[38]. In this work,B− matrix coefficients method is used
to calculate system loss as follows:

Ploss(t) =

N∑

i=1

N∑

j=1

PitBijPjt +

N∑

i=1

Bi0Pit +B00 (4)

2) Generation limits of units:

Pmin
i ≤ Pit ≤ Pmax

i (5)

3) Ramp up and ramp down constraints: The output power
change rate of the thermal unit must be in an acceptable
range to avoid undue stresses on the boiler and combustion
equipments [44]. The ramp rate limits of generation units
can be mathematically stated as follows:

Pit − Pit−1 ≤ URi (6)

Pit−1 − Pit ≤ DRi (7)

where URi is the ramp up limit of theith generator
(MW/hr) and DRi is the ramp down limit of theith

generator (MW/hr). Considering ramp rate limits of unit,
generator capacity limit (5) can be rewritten as follows:

max(Pmin
i , Pit−1 −DRi) ≤ Pit (8)

Pit ≤ min(Pmax
i , Pit−1 + URi)

It should be mentioned that the constraints (5)- (7) are
replaced with the new compact form presented in (8).

III. H YBRID IMMUNE- GENETIC ALGORITHM

One of the most recent heuristic algorithms is immune algo-
rithm (IA). The applications of this algorithm have been reported
in the literature in various fields such as DG planning [45]
and voltage control [46]. In this work the best characteristics
of IA is hybridized with Genetic algorithm in order to find
a better solution in a non-convex solution space of the DED
problem. The concept of IA is based on the reaction of immune
system of human body to external particles entering into it.
Actually even it does not know them initially but it tries to
identify them and find a solution to remove them. The external
particles are called antigens and the response of the immune
system would be the antibodies. The antibodies should be match
with the unknown antigens. This inspires the engineers to use
it for solving optimization problem. In this regard, the objective
function and its associated constraints form the antigens and
the solution which optimize them are called the antibodies.The
human body initially produces some antibodies and measures
how similar they are to the stranger antigens. This measure
is called affinity factor. The affinity factor (ξn) indicates the
measure of applicability of antibodies to antigens [47]. The
affinity factor is defined as:

ξn =
1

TCn

(9)

Each antibody, is defined as a vector containing the operating
hourly schedule for committed units. The steps of the proposed
algorithm are described as follows [47]:

Step 1. Initialize theN initial solutions randomly.
Step 2. Setiteration = 1.
Step 3. Evaluate each solution by solving (1).
Step 4. Solve (9) and find the best solutions.
Step 5. Store the bestN antibodies in the memory.
Step 6. If the stopping criterion is met, go to End, else, continue.
Step 7. Setm = 1.
Step 8. Select two antibodiesX1, X2 according to their affinity

factors (calculated in Step. 4).
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Step 9. Determine the cloning number, i.e.Km, and the muta-
tion probability, i.e.ςm, as follows [47] :

Km = round(β ×N ×
ξ1 + ξ2

2max(ξn)
) (10)

ςm = ςmax ×
2max(ξn)

ξ1 + ξ2
(11)

Where, round is a function which gives the nearest
integer value,β is a control parameter,ςmax is the
maximum mutation probability.

Step 10. Clone the two selected antibodies (in Step. 8)Km times
and store them.

Step 11. Check ifm < N , thenm = m + 1 and go to step 9,
else add the new population to old one,iteration =
iteration+ 1 and go to step 3.

Step 12. End.
The flowchart of the proposed algorithm is depicted in Fig.1.
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Fig. 1. The flowchart of the proposed hybrid Immune-GA

IV. CASE STUDIES AND NUMERICAL RESULTS

In this section, the proposed IGA is applied on four test
systems with different number of generating units. The proposed
algorithm is implemented in MATLAB 7 programming language
and executed on a Pentium IV, 3-GHz, 2-GB RAM processor.
For all cases, The dispatch horizon is selected as one day with
24 dispatch periods of each one hour. The hourly load profile
for all cases are presented in Table. I. The IGA parameters are
assumed are as follows:N is 100,β is 30%, ςmax is 5%. The
stopping criteria is defined as reaching to the maximum number
of iterations (here 600 iterations) or when no significant changes
observed in the objective function.

TABLE I
HOURLY LOAD PROFILE FOR CASE STUDY SYSTEMS.

Hour Case 1 Case 2&3 Case 4
1 410 1036 3108
2 435 1110 3330
3 475 1258 3774
4 530 1406 4218
5 558 1480 4440
6 608 1628 4884
7 626 1702 5106
8 654 1776 5328
9 690 1924 5772
10 704 2072 6216
11 720 2146 6438
12 740 2220 6660
13 704 2072 6216
14 690 1924 5772
15 654 1776 5328
16 580 1554 4662
17 558 1480 4440
18 608 1628 4884
19 654 1776 5328
20 704 2072 6216
21 680 1924 5772
22 605 1628 4884
23 527 1332 3996
24 463 1184 3552

A. Case 1: Five unit system

The first test system is a 5-unit test system. The data for this
system is provided in [31]. TheB− matrix coefficients of this
system are given in [48]. The valve-point effects, transmission
losses, ramp rate constraints and generation limits are considered
in this system. The prohibited operating zones are not considered
in this test case for the sake of comparison of results with those
reported in literature using different methods. Table II shows the
obtained results for this system.

TABLE II
OPTIMAL SOLUTION OF 5-UNIT USING IGA ALGORITHM (CASE 1)

Hour P1 P2 P3 P4 P5 Cost($) Loss(MW)
1 10.00 20.00 30.00 124.47 229.52 1226.59 3.99
2 10.00 20.00 54.87 124.91 229.52 1409.12 4.30
3 10.00 27.58 87.91 124.91 229.52 1540.32 4.92
4 10.06 57.58 113.81 125.02 229.52 1639.52 6.00
5 10.00 87.58 112.67 124.91 229.52 1615.30 6.68
6 10.00 98.54 112.67 165.22 229.52 1853.47 7.95
7 10.00 98.50 86.82 209.82 229.52 1852.70 8.65
8 12.71 98.54 112.67 209.82 229.52 1797.26 9.26
9 42.71 105.03 112.92 209.88 229.66 2012.79 10.20
10 64.01 98.54 112.67 209.82 229.52 1996.60 10.56
11 75.00 103.83 112.74 209.96 229.52 2038.13 11.05
12 75.00 98.54 138.64 209.82 229.52 2190.02 11.52
13 64.01 98.54 112.67 209.82 229.52 1996.60 10.56
14 49.62 98.54 112.67 209.82 229.52 1977.66 10.17
15 35.89 98.54 112.67 186.50 229.52 2010.65 9.13
16 10.00 98.54 112.67 136.50 229.52 1682.80 7.23
17 10.00 87.93 112.56 124.91 229.29 1615.81 6.68
18 10.00 98.54 112.67 165.22 229.52 1853.48 7.95
19 12.71 98.54 112.67 209.82 229.52 1797.23 9.26
20 42.71 98.54 133.91 209.82 229.52 2123.66 10.49
21 39.35 98.54 112.67 209.82 229.52 1944.60 9.90
22 10.00 98.54 112.67 162.14 229.52 1843.52 7.87
23 10.00 98.54 112.67 124.91 186.79 1677.55 5.91
24 10.00 98.52 94.39 124.91 139.76 1430.01 4.57

Total 43125.365 194.804

These results are compared with Adaptive particle swarm
optimization (APSO) algorithm [25], Simulated annealing (SA)
algorithm [31], artificial immune system (AIS) [24], Maclaurin
series based Lagrangian method (MSL) [10], Genetic Algorithm
(GA) [8], Particle Swarm optimization (PSO) [8], Artificial
Bee Colony (ABC) algorithm [8], Time-varying acceleration
coefficients IPSO (TVAC-IPSO) [14] and GA [8] in Table III.
The maximum iteration number is selected to be 1500. The
convergence characteristic of the proposed algorithm is depicted
in Fig. 2. By investigating the results presented in Table III,
it is observed that the obtained results outperform the existing
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methods.
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Fig. 2. Convergence characteristics of the IGA algorithm for 5-unit test system

TABLE III
COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULTS IN

CASE 1

Method Minimum ($) Average ($) Maximum ($) Computation time (min)
SA [31] 47356 NA NA 5.86
APSO [25] 44678 NA NA NA
AIS [24] 44385.43 44758.8363 45553.7707 4
PSO [8] 44253.24 45657.06 46402.52 3.5506
ABC [8] 44045.83 44064.73 44218.64 3.2901
TVAC-IPSO [14] 43136.56 43185.664 43302.233 1.1
MSL [24] 49216.81 NA NA 0.024
GA [8] 44862.42 44921.76 45893.95 3.3242
Proposed 43125.365 43162.243 43259.352 1.65

NA denotes that the value was not available in the literature.

B. Case 2: Ten unit system without transmission loss

The second test system is ten-unit test system. In this case,
generators capacity limits, ramp rate constraint and valve-point
effects are considered. The transmission losses are ignored in
this case for sake of comparison. The data for this system can
be found in [48]. Table IV shows the obtained results for 10-unit
system without considering transmission losses.

The obtained optimal results are compared with results of
previously developed algorithms such as differential evolution
(DE) [17], hybrid EP and SQP [12], Hybrid PSO-SQP [37],
deterministically guided PSO (DGPSO) [26], modified hybrid
EP-SQP (MHEP-SQP) [35], improved PSO (IPSO) [27], Hybrid
DE (HDE) [18], Improved DE (IDE) [19], artificial bee colony
algorithm (ABC) [8], modified differential evolution (MDE)
[20], covariance matrix adapted evolution strategy (CMAES)
[49], artificial immune system (AIS) [24], hybrid swarm intel-
ligence based harmony search algorithm (HHS) [4], improved
chaotic particle swarm optimization algorithm (ICPSO) [28],
hybrid artificial immune systems and sequential quadratic pro-
gramming (AIS-SQP) [34], hybrid SOA-SQP algorithm [36],
chaotic sequence based differential evolution algorithm (CS-
DE) [15], chaotic differential evolution (CDE) method [21],
adaptive hybrid differential evolution algorithm (AHDE) [50],
and enhanced cross-entropy method (ECE) [30] in Table V.

The maximum iteration number is selected to be 2000. The
convergence characteristic of the proposed algorithm is depicted
in Fig. 3. It is evidently observed that the obtained resultswith
IGA algorithm is less than those of reported in literature.

TABLE V
COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULTS IN

CASE 2

Method Minimum ($) Average ($) Maximum ($) Computation time (min)
DE [17] 1019786.000 NA NA 11.25
EP-SQP [12] 1031746.000 1035748.000 NA 20.51
PSO-SQP [37] 1027334.000 1028546.000 1033986.000 16.37
DGPSO [26] 1028835.000 1030183.000 NA 15.39
MHEP-SQP [35] 1028924.000 1031179.000 NA 21.23
IPSO [27] 1023807.000 1026863.000 NA 0.06
HDE [18] 1031077.000 NA NA NA
IDE [19] 1026269.000 NA NA NA
ABC [8] 1021576.000 1022686.000 1024316.000 2.6029
MDE [20] 1031612.000 1033630.000 NA 12.50
CMAES [49] 1023740.000 1026307.000 1032939.000 0.63
AIS [24] 1021980.000 1023156.000 1024973.000 19.01
HHS [4] 1019091.000 NA NA 12.233
ICPSO [28] 1019072.000 1020027.000 NA 0.467
AIS-SQP [34] 1029900.000 NA NA NA
SOA-SQP [36] 1021460.010 NA NA NA
CS-DE [15] 1023432.000 1026475.000 1027634.000 0.24
CDE [21] 1019123.000 1020870.000 1023115.000 0.32
AHDE [50] 1020082.000 1022474.000 NA NA
ECE [30] 1022271.579 1023334.930 NA NA
Proposed 1018473.380 1019328.460 1022283.542 3.53

NA denotes that the value was not available in the literature.
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Fig. 3. Convergence characteristics of the IGA algorithm for 10-unit test system

C. Case 3: Ten unit system with transmission loss

The data for this case is similar to Case 2. In this case, the
transmission losses also considered. TheB− matrix coefficients
of this system in per unit in 100 MW base can be found in
[31]. The proposed algorithm applied to ten-unit test case with
taking into account the transmission losses. The corresponding
generation dispatch is presented in Table VI.

The obtained optimal results are compared with the results of
Evolutionary Programming (EP) [35], hybrid EP-SQP (EP-SQP)
[35], modified hybrid EP-SQP (MHEP-SQP) [35], GA [8], PSO
[8], improved PSO (IPSO) [27], enhanced cross-entropy method
(ECE) [30] and artificial immune system (AIS) [24] in Table VII.

TABLE VII
COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULTS IN

CASE 3

Method Minimum ($) Average ($) Maximum ($) Computation time (min)
EP [35] 1054685 1057323 NA 47.23
EP-SQP [35] 1052668 1053771 NA 27.53
MHEP-SQP [35] 1050054 1052349 NA 24.33
GA [8] 1052251 1058041 1062511 3.4436
PSO [8] 1048410 1052092 1057170 4.0933
IPSO [27] 1046275 1048145 NA NA
ECE [30] 1043989.154 1044470.0849 NA NA
ABC [8] 1043381 1044963 1046805 3.4083
AIS [24] 1045715 10,47,050 10,48,431 23.22
Proposed 1041087.802 1042980.147 1044926.653 3.8
NA denotes that the value was not available in the literature.
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TABLE IV
OPTIMAL 24-HOUR SCHEDULE OF10-UNIT TEST SYSTEM NEGLECTING TRANSMISSION LOSSES(CASE 2)

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost ($)
1 150.00 135.00 193.43 60.00 122.87 123.12 129.59 47.00 20.00 55.00 28240.69
2 226.66 135.00 190.96 60.00 122.88 122.90 129.60 47.00 20.00 55.00 29830.09
3 303.25 142.27 185.25 60.00 172.86 142.79 129.59 47.00 20.00 55.00 33342.17
4 379.87 222.27 197.08 60.00 172.74 122.45 129.59 47.00 20.00 55.00 36291.06
5 379.87 222.27 185.19 60.00 222.60 158.48 129.59 47.00 20.00 55.00 37986.53
6 456.49 302.27 260.14 62.37 172.73 122.41 129.59 47.00 20.00 55.00 41423.26
7 379.87 309.53 303.50 112.37 222.63 122.51 129.59 47.00 20.00 55.00 42802.50
8 456.50 316.80 297.96 120.42 172.73 160.00 129.59 47.00 20.00 55.00 44600.31
9 456.50 396.80 305.55 130.96 222.60 160.00 129.59 47.00 20.00 55.00 47875.33
10 456.50 460.00 302.04 180.96 222.60 160.00 129.59 55.31 50.00 55.00 51946.10
11 456.50 460.00 326.04 230.96 222.60 160.00 129.59 85.31 20.00 55.00 53612.65
12 456.50 460.00 339.31 241.25 243.00 160.00 129.63 85.31 50.00 55.00 55663.56
13 456.50 396.80 310.38 235.82 222.60 160.00 129.59 85.31 20.00 55.00 51402.52
14 456.50 396.80 299.79 185.82 172.73 122.45 129.59 85.31 20.00 55.00 47799.73
15 379.87 396.75 287.02 177.13 122.87 122.45 129.59 85.31 20.00 55.00 44601.80
16 303.25 316.75 321.50 127.13 73.00 122.46 129.60 85.31 20.00 55.00 39939.73
17 226.60 309.53 288.30 120.38 122.86 122.43 129.59 85.31 20.00 55.00 37974.15
18 303.25 314.06 305.08 120.42 172.74 122.54 129.60 85.31 20.00 55.00 41275.92
19 379.86 394.06 296.58 120.42 172.73 122.45 129.59 85.31 20.00 55.00 44391.27
20 456.50 460.00 340.00 170.42 222.60 132.58 129.60 85.31 20.00 55.00 51860.44
21 456.50 389.54 322.55 120.42 222.63 122.45 129.60 85.31 20.00 55.00 47914.43
22 379.79 309.54 283.19 70.42 172.73 122.44 129.59 85.31 20.00 55.00 41282.78
23 303.25 229.54 203.19 60.00 123.00 123.12 129.59 85.31 20.00 55.00 34953.61
24 226.63 222.27 189.58 60.00 73.00 122.62 129.60 85.31 20.00 55.00 31462.75

Total 1018473.380

TABLE VI
OPTIMAL 24-HOUR SCHEDULE OF10-UNIT TEST SYSTEM CONSIDERING TRANSMISSION LOSSES(CASE 3)

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost ($) Loss (MW)
1 150.00 135.00 202.22 60.00 122.90 126.41 129.60 47.00 20.00 55.00 28608.59 12.14
2 226.64 137.46 197.57 60.00 123.04 127.11 129.59 47.00 20.00 55.00 30274.05 13.41
3 303.25 142.27 186.03 60.00 172.74 160.00 130.00 47.00 20.00 55.00 33733.61 18.28
4 379.87 222.27 221.95 60.00 172.73 122.45 130.00 47.00 20.00 55.00 36999.72 25.28
5 379.89 225.96 208.31 60.00 222.73 160.00 129.59 47.00 20.00 55.00 38851.32 28.48
6 456.48 305.96 288.31 66.04 172.73 122.45 129.59 47.00 20.00 55.00 41956.89 35.56
7 379.87 309.53 303.99 116.04 222.73 122.69 129.59 77.00 20.00 55.00 43797.56 34.45
8 456.50 310.44 297.23 166.04 172.73 160.00 129.59 47.00 20.00 55.00 45589.58 38.52
9 456.50 390.44 300.32 180.83 222.73 160.00 129.59 55.31 20.96 55.00 49250.32 47.68
10 456.50 460.00 316.57 191.31 222.60 160.00 129.59 85.31 50.96 55.00 53264.45 55.84
11 456.59 460.00 340.00 241.31 223.67 160.00 129.59 85.32 52.06 55.00 55019.27 57.54
12 456.51 460.00 340.00 241.25 242.03 160.00 129.59 115.32 80.00 55.00 57657.18 59.70
13 456.50 396.80 325.96 241.25 222.71 160.00 129.59 85.32 50.00 55.00 52780.38 51.12
14 456.50 396.80 297.36 233.52 172.71 122.45 129.59 85.31 20.00 55.00 48916.02 45.23
15 379.87 396.63 310.10 183.52 123.00 131.26 130.00 85.31 20.00 55.00 45556.45 38.69
16 303.25 316.63 297.22 178.90 73.00 122.45 129.59 85.31 20.00 55.00 40409.72 27.34
17 226.63 309.53 301.11 128.90 123.00 127.02 129.59 85.31 20.00 55.00 38667.14 26.09
18 299.87 309.53 297.26 166.11 172.73 122.44 129.59 85.31 20.00 55.00 42115.73 29.85
19 379.87 389.53 297.40 163.32 172.72 122.44 129.59 85.31 20.00 55.00 45638.91 39.18
20 456.50 460.00 327.71 180.83 222.72 160.00 129.59 85.31 50.00 55.00 53187.96 55.66
21 456.50 389.53 318.18 170.42 222.63 122.48 129.60 85.31 20.00 55.00 49130.96 45.64
22 379.86 309.53 264.80 120.42 172.63 122.44 129.59 85.31 20.00 55.00 42092.45 31.57
23 303.25 229.53 213.62 70.42 123.00 122.45 129.59 85.31 20.00 55.00 35608.19 20.17
24 226.65 222.27 198.48 62.82 73.00 126.61 130.00 85.31 20.00 55.00 31981.37 16.14

Total 1041087.802 853.53

D. Case 4: Thirty unit system

This case is a 30-unit test system which is obtained by tripling
the ten-unit system of Case 2. The load demand is given in Table
I. The obtained results for this case are compared with results
reported in literature in Table VIII. The compared methods
include evolutionary programming (EP) [12], hybrid EP and
SQP (EP-SQP) [12], modified hybrid EP and SQP (MEP-SQP)
[35], improved PSO (IPSO) [27], Improved chaotic particle
swarm optimization algorithm (ICPSO) [28], harmony search
algorithm (HS) [4], hybrid swarm intelligence based harmony
search algorithm (HHS) [4], deterministically guided PSO (DG-
PSO) [26], cross-entropy method (CE) [30] and enhanced cross-
entropy method (ECE) [30].

E. Effect of wind power generation

In order to investigate the ability of the proposed approach
for solving the DED problem in the presence of wind power
generation, and its superiority to the existing methods, two
additional studies conducted on the 5-unit test system. In the
first study (i.e. Case 5), a wind farm with the capacity, equals

TABLE VIII
COST COMPARISON OF OPTIMIZATION RESULTS FOR30-UNIT TEST SYSTEM

(CASE 4)

Method Minimum ($) Average ($) Maximum ($)
EP [12] 3164531 3,200,171 NA
EP-SQP [12] 3159204 3,169,093 NA
MEP-SQP [35] 3151445 3,157,438 NA
IPSO [27] 3090570 3,090,570 NA
ICPSO [28] 3064497 3,071,588 NA
HS [4] 3143253.84 NA NA
HHS [4] 3057313.39 NA NA
DGPSO [26] 3148992 3154438 NA
CE [30] 3086109.595 3088869.8572 NA
ECE [30] 3084649.032 3087847.1893 NA
Proposed 3055435.068 3058126.233 3066754.92
NA denotes that the value was not available in the literature.

to fixed fraction of the system’s load demand is considered, in
order to compare the obtained results with the results presented
in [41]. In the second study (Case 6), forecasted output power
of the wind farm considered. In this case, up-spinning reserves
(USR) and down-spinning reserves (DSR) are also included in
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the DED model, through the following equations.

USRt =
N∑

i=1

RUit ≥ LSRt +WPt × u (12)

RUit = min(Pmax
i − Pit, URi) (13)

where,USRt indicates the required total USR at timet. RUit

is the supplied USR by uniti. LSRt andWPt are the required
spinning reserve and forecasted wind power, respectively.u is
the percentage of wind generation contributing to the USR.

DSRt =
N∑

i=1

RDit ≥ (WPmax −WPt)× d (14)

RDit = min(Pit − Pmin
i , DRi) (15)

where,RDit is the supplied DSR by uniti. d is the percentage of
wind generation contributing to the DSR andWPmax represents
the maximum power capacity of wind turbines. It should be
noted that the real power balance constraint equation (3) should
be modified considering wind power generation as follows:

N∑

i=1

Pit +WPt = PD(t) + Ploss(t) (16)

In the following two cases, the USR and DSR requirement
are considered as a simple fraction of the total wind power
generation, i.e. (u% = 20) and (d% = 40). Also, theLSRt

is assumed to be a fraction of10% the corresponding hourly
load (i.e.LSRt = 0.1× PD(t)).

1) Case 5: Similar to [41], in this case it assumed that the
wind power capacity of wind farm in each hour is a fraction of
the system load demand in that hour. Specifically, it is assumed
that the wind generation capacity in each hour equals to 10%
of that hour’s active power demand. Also, valve point effects,
ramp-rate limits and transmission losses are considered, without
considering USR and DSR constraints. Table IX gives the
obtained results by the HIGA algorithm. The obtained thermal
power generation cost, and transmission losses are $40,096.41
and 155.129 MW, respectively. The obtained total power loss
is 1.064% of the system total load demand. These results
are compared with the results presented in [41], i.e. the total
cost of $47,522.60, and total transmission loss of 1.155% (i.e.
168.36 4MW). This comparison indicates that the proposed IGA
approach obtains a solution with lower cost and less transmission
losses.

2) Case 6: The forecasted power output of the wind farm
with 70MW capacity, is presented in Fig. 4. In this case, USR
and DSR constraints along with valve-points effect, transmission
losses and ramp-rate constraints are considered. The system
reserve requirement (LSR) is supposed to be 10% of the
total system load at each hour. Table X gives the obtained
results by the proposed HIGA approach. The overall cost of
thermal power generation, and transmission losses are obtained
equal to $40,403.957 and 165.957 MW (1.138% of the system
total load), respectively. Due to the uncertain nature of wind
power generation, the USR and DSR are employed to ensure
the reliability of the system in the presence of wind farms.
Consequently, the total cost in Case 6 is higher than that in
Case 5, where the wind power generation effects in the USR and

TABLE IX
OPTIMAL SOLUTION OF 5-UNIT TEST SYSTEM CONSIDERING WIND POWER

GENERATION (CASE 5)

Hour P1 P2 P3 P4 P5 Loss(MW) Cost($)
1 10.00 67.41 30.00 124.91 139.76 3.08 1243.78
2 10.00 90.36 30.00 124.88 139.76 3.50 1208.42
3 10.00 88.19 68.61 124.89 139.76 3.95 1459.43
4 10.00 98.54 108.61 124.91 139.76 4.82 1385.43
5 40.00 90.16 112.65 124.90 139.73 5.23 1564.16
6 70.00 106.07 112.69 124.92 139.76 6.24 1647.05
7 75.00 98.77 112.69 143.79 139.76 6.61 1745.24
8 75.00 98.54 112.67 124.91 184.73 7.25 1887.48
9 63.54 98.54 112.67 124.91 229.52 8.18 1798.19
10 75.00 99.99 112.69 124.91 229.52 8.51 1807.71
11 75.00 114.82 112.69 124.91 229.52 8.94 1920.66
12 75.00 98.54 112.67 159.65 229.52 9.38 2048.04
13 75.00 99.98 112.71 124.91 229.52 8.51 1807.72
14 63.53 98.54 112.67 124.91 229.52 8.18 1798.20
15 75.00 98.54 112.67 124.91 184.73 7.25 1887.48
16 51.78 98.54 112.67 124.91 139.76 5.66 1572.97
17 45.00 85.09 112.66 124.91 139.76 5.22 1595.50
18 75.00 100.90 112.84 124.93 139.76 6.23 1605.10
19 75.00 98.54 112.67 124.91 184.73 7.25 1887.48
20 75.00 99.98 112.71 124.91 229.52 8.51 1807.72
21 54.31 98.54 112.68 124.91 229.52 7.95 1788.96
22 33.30 98.54 112.67 124.91 181.31 6.23 1801.51
23 10.00 98.54 112.67 118.08 139.76 4.75 1400.17
24 10.00 89.89 112.66 68.08 139.76 3.69 1428.00

Total 155.129 40096.41

DSR constraints are not considered. By comparing the obtained
optimal values for fuel costs in Cases 1, 5 and 6, it is concluded
that contribution of wind power generation in the DED problem
considerably reduces the fuel cost and transmission losses.
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Fig. 4. Forecasted wind power profile for the study period.

V. D ISCUSSION OF THERESULTS

The results are compared in terms of minimum cost, mean
cost, and maximum cost over 100 runs with the results of
other reported algorithms in six case studies. The results of
the aforementioned methods that presented in Tables III, V,
VII, VIII, have been directly quoted from their corresponding
references. Observing the results obtained from the proposed
methodology, the following re-marks are made:

• The minimum and maximum solutions of the proposed
method are close to each other, which indicates stability
of the results of the IGA.

• The proposed algorithm always gives the minimum cost
less than the other methods.

• It is observed that the proposed method performance is
better for large scale cases too, and the proposed method
can be used for scheduling of practical large power systems.
The computational burden of the algorithm is not high.

• By comparing the obtained results, with and without con-
sidering wind power generations, it is evidently observed
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TABLE X
OPTIMAL SOLUTION OF 5-UNIT TEST SYSTEM CONSIDERING WIND POWER

GENERATION AND RESERVE CONSTRAINTS(CASE 6)

Hour P1 P2 P3 P4 P5 Loss(MW) Cost($)
1 10.00 20.00 30.00 93.35 229.52 3.47 1320.22
2 10.00 20.00 30.00 124.90 218.56 3.77 1272.42
3 10.00 20.00 30.00 147.10 229.52 4.42 1406.81
4 12.64 20.00 30.00 197.10 229.52 5.56 1490.72
5 10.00 20.00 54.12 209.82 229.52 6.16 1602.97
6 10.00 20.00 86.45 209.82 229.52 6.68 1683.66
7 10.00 20.00 111.30 209.82 229.52 7.14 1615.74
8 10.00 36.54 112.67 209.82 229.52 7.55 1729.23
9 27.24 66.54 112.67 209.82 229.52 8.69 1946.52
10 10.00 87.13 111.27 209.82 229.52 8.84 1819.97
11 10.95 98.56 112.67 209.82 229.52 9.22 1786.17
12 40.00 106.32 112.69 209.83 229.52 10.16 2009.07
13 10.00 86.13 112.67 209.82 229.52 8.84 1817.43
14 10.00 67.44 112.65 209.82 229.52 8.33 1841.16
15 11.94 37.44 112.67 209.83 229.52 7.61 1747.52
16 10.00 20.00 112.67 166.80 229.52 6.10 1688.39
17 24.51 20.00 112.67 136.19 229.52 5.70 1601.22
18 10.00 22.94 112.67 186.19 229.52 6.62 1714.17
19 10.00 52.94 112.68 209.82 229.52 7.95 1812.71
20 15.83 82.94 112.67 209.82 229.52 8.88 1862.33
21 28.11 52.94 112.67 209.82 229.52 8.35 1923.34
22 10.00 22.94 112.67 186.91 229.52 6.64 1712.76
23 31.86 20.00 76.65 136.91 229.52 5.24 1720.33
24 10.00 20.00 36.65 124.91 229.52 4.07 1279.12

Total 165.96 40403.96

that the fuel cost of thermal power generation cost and
transmission losses are reduced in the presence of wind
power generation. Besides, considering USR and DSR
constraints in order to compensate the errors in forecasting
the scheduled wind farms’ output power, increases the fuel
costs and transmission losses, in comparison with the case
of neglecting reserve constraints.

• The computation time of the proposed algorithm is accept-
able for DED problem solution. It is worth to mention that
the DED problem is solved offline and solution time of
several minutes is acceptable. However if the network’s
power flow constraints are also considered, the problem
would become a DED-OPF. The non-convexity of this prob-
lem can be dealt with semi-definite programming (SDP)
optimization to construct the dual of an equivalent form
of the problem. For real time applications of DED-OPF
problem, the method presented in [51] can be helpful.

VI. CONCLUSION

A heuristic optimization method called immune genetic algo-
rithm (IGA) is developed for determination of optimal solution
for dynamic economic dispatch (DED) problem. The practical
operational constraint of generators like ramp-rate limits and
valve-point effects along with transmission loss constraints are
considered in the analysis. The feasibility and efficiency of the
proposed method was demonstrated on five, ten, and thirty-unit
test systems. The numerical results have been compared withthe
recently reported approaches. Besides, due to the recent trends
toward utilization of wind power generation, applicability of
the proposed IGA approach to solve DED with wind power
generation constraints, is investigated. The numerical results
reveal that the dispatch solution obtained by the proposed IGA
approach, leads to a less operating cost than those found by
other methods, which shows the capability of the algorithm to
determine the global or near global solutions for DED problem.
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