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Abstract—The objective of dynamic economic dispatch (DED) Traditionally an approximate quadratic function used todeio
problem is to determine the generation schedule of the committed the generator input-output curves [1], [3]. This would feu
generation units, which minimizes the total operating cost over a an inaccurate dispatch. Because the natural input-outpwec

dispatch period, while satisfying a set of constraints. The effect . . .
of valve-points and prohibited operating zones (POZs) in the is non-linear and non-smooth due to the effect of multipéast

generating units’ cost functions makes the DED a highly non- admission valves (known as valve-points effect) [4], [5].
linear and non-convex optimization problem with multiple local Obtaining the global optimum or better local optimum for

minima. Considering the ramp-rate limits and transmission |OSSGIS, non-convex DED problems is a great challenge. Applicatibn o
makes the DED problem even more complicated. Hence, proposing the classical methods such as Lagrangian relaxation app{6h

an effective solution method for this optimization problem is of dd . . 7 tricted 181, | it
great interest. This paper presents a novel heuristic algorithm and dynamic programming [7] are restricted [8]. In recerirge

to solve DED problem of generating units, by employing hybrid Maclaurin Series approximation has been applied to model th
immune genetic algorithm (IGA). To illustrate the effectiveness valve-point effects [9]-[11] but it has been shown that this
of the proposed approach, four test systems consisting differé  method leads to non-optimal solution. Optimization method
number of generating units are studied. The valve-point effects, pageq on artificial intelligence has shown better perfoean

POZs and ramp-rate constraints along with transmission losses . ving the DED bl ith bility of modeling mor
are also considered in simulation cases. The results obtained'n SO'VING the problem with capability or modeling more

through the proposed method are compared with those reported realistic objective function and constraints. In [12], igbevo-
in the literature. These results substantiate the applicability of the lutionary programming and sequential quadratic programgmi

proposed method for solving the constrained DED problem with (SQP) method has been proposed to solve non-convex DED
non-smooth cost functions. problem. Chiou [13] proposed variable scaling hybrid dife
Index Terms—Dynamic economic dispatch , immune-genetic tial evolution (VSHDE) method for solution of large scale DE
algorithm , Prohibited operation zone (POZ) , valve-point effect problems. Time-varying acceleration coefficients IPSOATY
IPSO) is implemented in [14] for solution of non-convex DED
problem considering different constraints. Differentablution
|. INTRODUCTION algorithm has received a great deal of attention in solvifitpD
Generally, the economic dispatch of power system can peoblems [15]-[21]. Other stochastic search methods haee b
categorized into static economic dispatch (SED) and dyoaanaipplied to solve DED problems in the past decade. Thesedaclu
economic dispatch (DED). The SED optimizes the system ofjenetic algorithm [22], quantum genetic algorithm [23fifemial
jective function (total fuel cost in general) in specifieché and immune system method [24], artificial bee colony algorithm
does not take into account the fundamental relation of sybie  [8], particle swarm optimization [25]-[28], multiple tats@arch
tween the different operating times. The DED takes into anto algorithm [29], enhanced cross-entropy method [30], Sataal
the connection of different operating times by consideramp annealing algorithm [31]. Multiobjective teachingleargibased
rate constraints. The DED is one of the important optimazati optimization (TLBO) has been employed in [32] to solve the
problems used in power systems to obtain the optimal operatdynamic economic emission dispatch problem. Self-adaptiv
schedule of the committed units over the entire dispatcloger modified firefly algorithm is presented in [33] for solutionref
Considering the dynamic constraints like ramp rate limiekes serve constrained dynamic economic dispatch, where thpes t
the DED problem more complicated. One way to simplify thef the system spinning reserve requirements are considered
solution of DED is to consider it as a sequential SED problemsHybrid methods are found to be more effective in solving
[1] and force the ramp rates between the sequential hourscdimplex optimization problems such as DED problem. Hy-
is shown that this method would lead into being trapped inkaidization of SQP algorithm with one of the heuristic aiitgfoms
local optimal solution [2]. Generators are modeled usimutn (for instance: artificial immune systems, EP, seeker ogtition
output curves in most of the power system operation studiedgorithm (SOA) and PSO) are widely used in literature for

. - , solution of DED problem [12], [34]-[37]. Hybrid swarm intel
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is proposed to solve non-convex dynamic economic dispatcB) Ramp up and ramp down constraints: The output power

problem with constraints. More details of the proposed ttigm
are provided in Section lll. Wind power generation is thddas
growing renewable energy resources in the world [40]. Thecef
of the wind power generation is also considered in simutatio

change rate of the thermal unit must be in an acceptable
range to avoid undue stresses on the boiler and combustion
equipments [44]. The ramp rate limits of generation units
can be mathematically stated as follows:

using the methods proposed in [41], [42].

The remainder of the paper is organized as follows: Section
Il gives the mathematical formulation of the DED problem
considering POZs, ramp-rate limits, valve-point effectsd a ) o
transmission losses. Section Il describes the proposed IG ~ Where UR; is the ramp up limit of thei" generator
algorithm. Section IV presents four application cases anelsg (MW/hr) and DR; is the ramp down limit of thei"
the corresponding comparison results with the most recent 9enerator (MW/hr). Considering ramp rate limits of unit,
applied methods. Conclusions are finally given in Section VI~ 9enerator capacity limit (5) can be rewritten as follows:

Py — Py 1 <UR; (6)
Pi_1 — Py < DR; (7)

max(P™", Py;,_1 — DR;) < Py 8

II. DYNAMIC ECONOMIC DISPATCHPROBLEM Py < min(P"* Py, + UR;)

FORMULATION

It should be mentioned that the constraints (5)- (7) are
replaced with the new compact form presented in (8).

The objective function of DED problem is to minimize the
total production cost over the operating horizon, expresse

HYBRID IMMUNE- GENETIC ALGORITHM

T N
min TC =Y " Cit(Py) (1) 1.
==l One of the most recent heuristic algorithms is immune algo-
where C;; is the production cost of unit at time ¢, N is rithm (IA). The applications of this algorithm have beenagpd
the number of dispatchable power generation units Bpdis in the literature in various fields such as DG planning [45]
the power output oith unit at timet. T is the total number of and voltage control [46]. In this work the best charactisst
hours in the operating horizon. The production cost of gati@n  of |A is hybridized with Genetic algorithm in order to find
unit considering valve-point effects is defined as: a better solution in a non-convex solution space of the DED
problem. The concept of IA is based on the reaction of immune
system of human body to external particles entering into it.
wherea;, b; ande; are the fuel cost coefficients of thth unit, Actually even it does not know them initially but it tries to
e; and f; are the valve-point coefficients of thgh unit. P;™" identify them and find a solution to remove them. The external
is the minimum capacity limit of unit. It should be noted that particles are called antigens and the response of the immune
the added sinusoidal term in the production cost functifiects System would be the antibodies. The antibodies should bemat
the effect of valve-points. The DED problem will be non-cerv With the unknown antigens. This inspires the engineers & us
and non-differentiable considering valve-point effect8][ The it for solving optimization problem. In this regard, the ebjive

objective function of the DED problem (1) should be minintzefunction and its associated constraints form the antigens a
subject to the following constraints: the solution which optimize them are called the antibodide

1) Real power balance human_ b_ody initially produces some antipodies an(_j measures
Hourly power balance considering network transmissid?'PW similar they are to the stranger antigens. This measure
losses is written as: is called affinity factor. The affinity factor(f) indicates the

measure of applicability of antibodies to antigens [47].eTh

Cit(Pi) = a; Pj 4 b; Py + ¢; + |e; sin(f;(P™™ — Py))| (2)

N - . .
affinity factor is defined as:
S" P = Po(t) + Pross() @ MY
- 6= ©)
where P,,.,(t) and Pp(t) are total transmission loss and "TC,

total load demand of the system at timerespectively.

System loss is a function of units power production and ¢
be calculated using the results of load flow problem [3
or Kron’s loss formula known a®3— matrix coefficients o o )
[38]. In this work, B— matrix coefficients method is usedgtep 1. Initialize theV initial solutions randomly.

to calculate system loss as follows: tep 2. Setteration =1. .
Step 3. Evaluate each solution by solving (1).

Step 4. Solve (9) and find the best solutions.

Step 5. Store the beg{ antibodies in the memory.

Step 6. If the stopping criterion is met, go to End, else, iomet

Step 7. Setn = 1.

Step 8. Select two antibodies;, X5 according to their affinity
factors (calculated in Step. 4).

Each antibody, is defined as a vector containing the operatin
urly schedule for committed units. The steps of the pregdos
Igorithm are described as follows [47]:

N N N
Pioss(t) =Y > PuBijPjt+ Y _ BioPit + B (4)

i=1 j=1 i=1
2) Generation limits of units:

Pimin S Pit S Pim,a.'c (5)



Step 9. Determine the cloning number, if,,, and the muta-
tion probability, i.e.q,,, as follows [47] :

K, =round(8 x N x 251%%(?)) (20)
__ _max 2m(ll(fn)
Sm = S 51 T 52 (11)

Where, round is a function which gives the nearest
integer value,8 is a control parameter™** is the
maximum mutation probability.

Step 10. Clone the two selected antibodies (in Steg{8)times
and store them.

Step 11. Check ifn < N, thenm = m + 1 and go to step 9,
else add the new population to old oniéeration =
iteration + 1 and go to step 3.

Step 12. End.

The flowchart of the proposed algorithm is depicted in Fig.1.
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Fig. 1. The flowchart of the proposed hybrid Immune-GA

IV. CASE STUDIES AND NUMERICAL RESULTS

TABLE |
HOURLY LOAD PROFILE FOR CASE STUDY SYSTEMS

Hour Case1l Case 2&3 Case 4
1 410 1036 3108
435 1110 3330
3 475 1258 3774
4 530 1406 4218
5 558 1480 4440
6 608 1628 4884
7 626 1702 5106
8 654 1776 5328
9 690 1924 5772
10 704 2072 6216
11 720 2146 6438
12 740 2220 6660
13 704 2072 6216
14 690 1924 5772
15 654 1776 5328
16 580 1554 4662
17 558 1480 4440
18 608 1628 4884
19 654 1776 5328
20 704 2072 6216
21 680 1924 5772
22 605 1628 4884
23 527 1332 3996
24 463 1184 3552

A. Case 1: Five unit system

The first test system is a 5-unit test system. The data for this

system is provided in [31]. Th&— matrix coefficients of this
system are given in [48]. The valve-point effects, transiois

losses, ramp rate constraints and generation limits argidered

in this system. The prohibited operating zones are not densdl

in this test case for the sake of comparison of results witiseh
reported in literature using different methods. Table bwh the

obtained results for this system.

TABLE Il
OPTIMAL SOLUTION OF 5-UNIT USING IGA ALGORITHM (CASE 1)
Hour P P, P Py Ps Cost(3$) Loss(MW)
1 10.00 20.00 30.00 12447 22952 122659 3.99
2 1000 20.00 54.87 12491 22952  1409.12 4.30
3 1000 27.58 87.91 12491 22952  1540.32 4.92
4 1006 5758 11381 12502 229.52  1639.52 6.00
5 1000 87.58 112.67 12491 22952  1615.30 6.68
6 1000 9854 112.67 165.22 229.52  1853.47 7.95
7 1000 9850 86.82 209.82 22952  1852.70 8.65
8 1271 9854 11267 209.82 22952  1797.26 9.26
9 4271 10503 11292 209.88 229.66  2012.79 10.20
10 6401 9854 11267 209.82 22952  1996.60 10.56
11 7500 103.83 112.74 209.96 229.52  2038.13 11.05
12 7500 98.54 138.64 209.82 229.52  2190.02 11.52
13 64.01 9854 11267 209.82 229.52  1996.60 10.56
14  49.62 98.54 11267 209.82 22952  1977.66 10.17
15 3589 98.54 11267 18650 229.52  2010.65 9.13
16 10.00 98.54 11267 13650 229.52  1682.80 7.23
17  10.00 87.93 11256 124.91 229.29 161581 6.68
18  10.00 9854 11267 16522 22952  1853.48 7.95
19 1271 9854 11267 209.82 22952  1797.23 9.26
20 4271 9854 13391 209.82 229.52  2123.66 10.49
21 3935 9854 112,67 209.82 229.52  1944.60 9.90
22 10.00 9854 112,67 16214 229.52  1843.52 7.87
23 10.00 9854 112,67 12491 18679  1677.55 5.91
24 10.00 9852 9439 12491 139.76  1430.01 4.57
Total 43125365 194.804

In this section, the proposed IGA is applied on four test These results are compared with Adaptive particle swarm
systems with different number of generating units. The psepl optimization (APSO) algorithm [25], Simulated annealirf@A]
algorithm is implemented in MATLAB 7 programming languagelgorithm [31], artificial immune system (AIS) [24], Maclidn
and executed on a Pentium 1V, 3-GHz, 2-GB RAM processaeries based Lagrangian method (MSL) [10], Genetic Algorit
For all cases, The dispatch horizon is selected as one day WiBA) [8], Particle Swarm optimization (PSO) [8], Atrtificial
24 dispatch periods of each one hour. The hourly load profiiee Colony (ABC) algorithm [8], Time-varying acceleration
for all cases are presented in Table. I. The IGA parameters apefficients IPSO (TVAC-IPSO) [14] and GA [8] in Table lIl.
assumed are as followsV is 100, 5 is 30%,¢™** is 5%. The The maximum iteration number is selected to be 1500. The
stopping criteria is defined as reaching to the maximum numhkmnvergence characteristic of the proposed algorithm péctld
of iterations (here 600 iterations) or when no significargrddes in Fig. 2. By investigating the results presented in Table I

observed in the objective function.

it is observed that the obtained results outperform thetiagis



TABLE V

methods. COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULS IN
CASE 2
Method Minimum ($) Average ($) Maximum ($) Computation time (min)
| DE [17] 1019786.000 NA NA 11.25
EP-SQP [12] 1031746.000  1035748.000 NA 20.51
PSO-SQP [37] 1027334.000  1028546.000  1033986.000 16.37
| DGPSO [26] 1028835.000  1030183.000 NA 15.39
& MHEP-SQP [35]  1028924.000  1031179.000 NA 21.23
3 IPSO [27] 1023807.000  1026863.000 NA 0.06
8 — HDE [18] 1031077.000 NA NA NA
3 IDE [19] 1026269.000 NA NA NA
° ABC [8] 1021576.000 1022686.000  1024316.000 2.6029
1 MDE [20] 1031612.000  1033630.000 NA 12.50
CMAES [49] 1023740.000  1026307.000  1032939.000 0.63
AIS [24] 1021980.000  1023156.000  1024973.000 19.01
1 HHS [4] 1019091.000 NA NA 12.233
ICPSO [28] 1019072.000  1020027.000 NA 0.467
AIS-SQP [34] 1029900.000 NA NA
0 100 200 300 400 500 600 700 SOA-SQP [36] 1021460.010 NA NA NA
Iteration CS-DE [15] 1023432.000 1026475.000  1027634.000 0.24
CDE [21] 1019123.000  1020870.000  1023115.000 0.32
AHDE [50] 1020082.000  1022474.000 NA NA
Fig. 2. Convergence characteristics of the IGA algorithmSaunit test system ECE [30] 1022271.579  1023334.930 NA NA
Proposed 1018473.380  1019328.460  1022283.542 3.53

TABLE Il

COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULS IN

NA denotes that the value was not available in the literature.

24

Casel 22 ]
Method Minimum ($) Average ($) Maximum ($) Computation time (min) 2 ]
SA [31] 47356 NA NA 5.86 8
APSO [25] 44678 NA NA NA 7 18 b
AIS [24] 44385.43 44758.8363  45553.7707 4 8
PSO [8] 44253.24 45657.06 46402.52 3.5506 T 16 B
ABC [8] 44045.83 44064.73 44218.64 3.2901 2
TVAC-IPSO [14] 43136.56 43185.664 43302.233 1.1
MSL [24] 49216.81 NA NA 0.024 14 7
GA [8] 44862.42 44921.76 45893.95 3.3242
Proposed 43125.365 43162.243 43259.352 1.65 12 B

NA denotes that the value was not available in the literature.

B. Case 2: Ten unit system without transmission loss

The second test system is ten-unit test system. In this case,
generators capacity limits, ramp rate constraint and vpbiat
effects are considered. The transmission losses are ignore C. Case 3: Ten unit system with transmission loss

this case for sake of comparison. The data for this system can
be found in [48]. Table IV shows the obtained results for hit-u

system without considering transmission losses.

previously developed algorithms such as differential atroh

100 200

300

400

Iteration

500

600 700

Fig. 3. Convergence characteristics of the IGA algorithmlf@-unit test system

The data for this case is similar to Case 2. In this case, the

transmission losses also considered. Bhe matrix coefficients

The obtained optimal results are compared with results @k this system in per unit in 100 MW base can be found in
[31]. The proposed algorithm applied to ten-unit test cagh w

(DE) [17], hybrid EP and SQP [12], Hybrid PSO-SQP [37]§aking into account the transmission losses. The correipgn
deterministically guided PSO (DGPSO) [26], modified hybrigeneration dispatch is presented in Table VI.

EP-SQP (MHEP-SQP) [35], improved PSO (IPSO) [27], Hybrid The obtained optimal results are compared with the reséilts o
DE (HDE) [18], Improved DE (IDE) [19], artificial bee colony Evolutionary Programming (EP) [35], hybrid EP-SQP (EP-$QP
algorithm (ABC) [8], modified differential evolution (MDE) [35], modified hybrid EP-SQP (MHEP-SQP) [35], GA [8], PSO
[20], covariance matrix adapted evolution strategy (CMAES8], improved PSO (IPSO) [27], enhanced cross-entropy ateth
[49], artificial immune system (AIS) [24], hybrid swarm ikte (ECE) [30] and artificial immune system (AIS) [24] in TablelVI
ligence based harmony search algorithm (HHS) [4], improved

chaotic particle swarm optimization algorithm (ICPSO) ]j28 TABLE VI
. i - . . . COST AND COMPUTATION TIME COMPARISON OF OPTIMIZATION RESULS IN
hybrid artificial immune systems and sequential quadratiz p CASE 3

gramming (AIS-SQP) [34], hybrid SOA-SQP algorithm [36],

chaotic sequence based differential evolution algorit®s-( ety Minimum () Average (8) Maximum (8) Computation,fme (min)
1 i i i EP-SQP [35 1052668 1053771 NA 27.53
DE) [_15], chgotlc_ dlﬁergntlal evo_lunon (C_DE) method [21] MHEgsép][ss] 1052668 losarrt A 27.53
adaptive hybrid differential evolution algorithm (AHDE®Q], GA [8] 1052251 1058041 1062511 3.4436
. PSO [8] 1048410 1052092 1057170 4.0933
and enhanced cross-entropy method (ECE) [30] in Table V.  ipso 7 1046275 1048145 NA NA
. . . . ECE [30] 1043989.154  1044470.0849 NA NA
The maximum iteration number is selected to be 2000. The a&c g 1043381 1044963 1046805 3.4083
s e . .. AIS [24 1045715 10,47,050 10,48,431 23.22
convergence characteristic of the proposed algorithm pscikl pmp[osld 1041087.802 1042980147  1044926.653 38

in Fig. 3. It is evidently observed that the obtained reswiit
IGA algorithm is less than those of reported in literature.

NA denotes that the value was not available in the literature.



TABLE IV
OPTIMAL 24-HOUR SCHEDULE OF10-UNIT TEST SYSTEM NEGLECTING TRANSMISSION LOSSEBCASE 2)

Hour Py Py Ps Py Ps Ps Pr Py Py Pio Cost($)
1 150.00 135.00 193.43 60.00 122.87 123.12 129.59 47.00 20.00 55.00 0.8824
226.66 135.00 190.96 60.00 122.88 122.90 129.60 47.00 20.00 55.00 0.2983
3 303.25 14227 18525 60.00 172.86 142.79 12959 47.00 20.00 55.00 2.B334
4 379.87 22227 197.08 60.00 172.74 12245 12959 47.00 20.00 55.00 1.8629
5 379.87 22227 18519 60.00 222.60 158.48 12959 47.00 20.00 55.00 6.3398
6
7
8

456.49 302.27 260.14 6237 17273 122.41 12959 47.00 20.00 55.00 3.2642
379.87 309.53 30350 112.37 222.63 12251 129.59 47.00 20.00 55.00 02.828
456.50 316.80 297.96 120.42 172.73 160.00 129.59 47.00 20.00 55.00 00.326
9 456.50 396.80 30555 130.96 222.60 160.00 129.59 47.00 20.00 55.00 75.338
10 456.50 460.00 302.04 180.96 222.60 160.00 129.59 55.31 50.00 55.00946.50
11  456.50 460.00 326.04 230.96 222.60 160.00 129.59 8531 20.00 55.00612.68
12 456.50 460.00 339.31 241.25 243.00 160.00 129.63 8531 50.00 55.00663.56
13 45650 396.80 310.38 235.82 222.60 160.00 129.59 8531 20.00 55.00402.52
14 456,50 396.80 299.79 18582 172.73 12245 12959 8531 20.00 55.00799.43
15 379.87 396.75 287.02 177.13 122.87 12245 12959 85.31 20.00 55.00601.8@
16 303.25 316.75 32150 127.13 73.00 12246 129.60 8531 20.00 55.00 39.339
17 226.60 309.53 288.30 120.38 122.86 122.43 12959 85.31 20.00 55.00974.3%
18 303.25 314.06 305.08 120.42 172.74 12254 129.60 85.31 20.00 55.00275.92
19 379.86 394.06 296.58 120.42 172.73 12245 12959 85.31 20.00 55.00391.2%4
20  456.50 460.00 340.00 170.42 22260 13258 129.60 85.31 20.00 55.00860.54
21 456,50 389.54 32255 120.42 22263 12245 129.60 8531 20.00 55.00914.43
22 379.79 309.54 283.19 7042 17273 12244 12959 8531 20.00 55.00 82.782
23 303.25 229.54 203.19 60.00 123.00 123.12 129.59 8531 20.00 55.00 53.849
24 226.63 222.27 189.58 60.00 73.00 122.62 129.60 85.31 20.00 55.00 2.3346
Total 1018473.380

TABLE VI
OPTIMAL 24-HOUR SCHEDULE OF10-UNIT TEST SYSTEM CONSIDERING TRANSMISSION LOSSERCASE 3)

Hour P P, Ps P, Ps Ps P; Ps Py Pro Cost () Loss (MW)
1 150.00 135.00 202.22 60.00 12290 126.41 129.60 47.00 20.00 55.00 8.2860 12.14

2 226.64 137.46 19757 60.00 123.04 127.11 129.59 47.00 20.00 55.00 4.8827 13.41
3 303.25 142.27 186.03 60.00 172.74 160.00 130.00 47.00 20.00 55.00 3.8873 18.28
4 379.87 22227 221.95 60.00 17273 122.45 130.00 47.00 20.00 55.00 09.3B99 25.28
5 379.89 22596 208.31 60.00 222.73 160.00 129.59 47.00 20.00 55.00 1.3885 28.48
6 456.48 305.96 288.31 66.04 172.73 122.45 12959 47.00 20.00 55.00 6.8995 35.56
7 379.87 309.53 303.99 116.04 222.73 122.69 129.59 77.00 20.00 55.00 97.887 34.45
8 456.50 310.44 297.23 166.04 172.73 160.00 129.59 47.00 20.00 55.00 89.885 38.52
9 456.50 390.44 300.32 180.83 222.73 160.00 129.59 55.31 20.96 55.00 50.392 47.68
10 456.50 460.00 316.57 191.31 222.60 160.00 129.59 85.31 50.96 55.00264.53 55.84
11  456.59 460.00 340.00 241.31 223.67 160.00 129.59 85.32 52.06 55.00019.88 57.54
12 456.51 460.00 340.00 241.25 242.03 160.00 129.59 115.32 80.00 55.00657.58 59.70
13 456.50 396.80 325.96 241.25 22271 160.00 129.59 85.32 50.00 55.00780.32 51.12
14  456.50 396.80 297.36 233.52 172.71 12245 129.59 85.31 20.00 55.00916.@3 45.23
15 379.87 396.63 310.10 183.52 123.00 131.26 130.00 85.31 20.00 55.00556.45 38.69
16 303.25 316.63 297.22 17890 73.00 12245 12959 8531 20.00 55.00 09.4R4 27.34
17 226.63 309.53 301.11 128.90 123.00 127.02 129.59 85.31 20.00 55.00667.38 26.09
18 299.87 309.53 297.26 166.11 172.73 122.44 12959 85.31 20.00 55.00115.42 29.85
19 379.87 389.53 297.40 163.32 17272 12244 12959 8531 20.00 55.00638.95 39.18
20  456.50 460.00 327.71 180.83 222.72 160.00 129.59 8531 50.00 55.00187.98 55.66
21 45650 389.53 318.18 170.42 222.63 12248 129.60 8531 20.00 55.00130.96 45.64
22 379.86 309.53 264.80 120.42 172.63 122.44 12959 85.31 20.00 55.00092.42 31.57

23 303.25 229.53 213.62 70.42 123.00 122.45 12959 85.31 20.00 55.00 08.886 20.17
24  226.65 22227 19848 6282 73.00 126.61 130.00 8531 20.00 55.00 1.37198 16.14
Total 1041087.802 853.53

D. Case 4: Thirty unit system COST COMPARISON OF OPTIMIIﬁEIC_)ﬁ \R/II—Z”SULTS FORBO-UNIT TEST SYSTEM
This case is a 30-unit test system which is obtained by tipli (Case4)
the ten-unit system of Case 2. The load demand is given ireTabl Nethod Winimum (@) Average (§)  Wiaximum )
I. The obtained results for this case are compared with tesul EP [12] 3164531 3,200,171 NA
reported in literature in Table VIII. The compared methods I\E/IPE-I§-%ZIL1[2315] S g:ig%ggg A
include evolutionary programming (EP) [12], hybrid EP and IPSO [27] 3090570 3,090,570 NA
SQP (EP-SQP) [12], modified hybrid EP and SQP (MEP-SQP) (PP 8l SOOMDT - 3,078 o
[35], improved PSO (IPSO) [27], Improved chaotic particle HHS [4] 3057313.39 NA NA
swarm optimization algorithm (ICPSO) [28], harmony search CEs) - RN g B A
algorithm (HS) [4], hybrid swarm intelligence based harmon ECE [30] 3084649.032  3087847.1893 NA
search algorithm (HHS) [4], deterministically guided PS¢ Proposed 3055435068 3058126.233 _ 3066754.92

NA denotes that the value was not available in the literature.

PSO0) [26], cross-entropy method (CE) [30] and enhancedseros
entropy method (ECE) [30].

E. Effect of wind power generation

In order to investigate the ability of the proposed approach fixed fraction of the system’s load demand is considened, i
for solving the DED problem in the presence of wind powesrder to compare the obtained results with the results ptede
generation, and its superiority to the existing methodsy twn [41]. In the second study (Case 6), forecasted output powe
additional studies conducted on the 5-unit test systemhdén tof the wind farm considered. In this case, up-spinning reser
first study (i.e. Case 5), a wind farm with the capacity, egualUSR) and down-spinning reserves (DSR) are also included in



the DED model, through the following equations.

TABLE IX

OPTIMAL SOLUTION OF 5-UNIT TEST SYSTEM CONSIDERING WIND POWER

GENERATION (CASE 5)

N
USR; = Z RUiy > LSR; + WP, X u (12) Hour P g 7 I P; Loss(MW)  Cost($)
i=1 T 10.00 6741 3000 12491 139.76 3.08 1243.78
_ .. pmaz , ‘ 2 1000 90.36 3000 124.88 139.76 3.50 1208.42
RU;t = min(P] — Py, UR;) (13) 3 1000 8819 6861 12489 139.76 3.95 1459.43
. i i 4 1000 9854 10861 12491 139.76  4.82 1385.43
where,U SR, indicates the required total USR at timeRU;, 5  40.00 90.16 112.65 124.90 139.73 5.23 1564.16
i H i H 6 70.00 106.07 112.69 12492 139.76 6.24 1647.05
IS Fhe. supplied USR by unit LSR; a}nd WP, are the reqUIred 7 7500 9877 112.69 143.79 139.76 6.61 1745.24
spinning reserve and forecasted wind power, respectivelg. 8 7500 9854 112,67 12491 184.73 7.25 1887.48
; ; P 9 6354 9854 112.67 12491 229.52 8.18 1798.19
the percentage of wind generation contributing to the USR. 10 7500 9999 11269 12491 22952 851 1807 71
N 11 75.00 114.82 112.69 12491 229.52 8.94 1920.66
12 7500 9854 112.67 159.65 229.52 9.38 2048.04
DSR; = Z RD; > (WP™ —WPR,) xd (14) 13 7500 99.98 11271 12491 22952 8.51 1807.72
o 14 63.53 98.54 112.67 12491 229.52 8.18 1798.20
L= X 15 75.00 9854 112.67 12491 184.73 7.25 1887.48
RD;; = min(Pyy — P™", DR;) (15) 16 51.78 9854 112.67 12491 139.76 5.66 1572.97
E 17 4500 8509 112.66 12491 139.76 522 1595.50
H H : H 18 75.00 100.90 112.84 124.93 139.76 6.23 1605.10
W.here,RD,ét is the Sup.plle_d DSR by unit d is the percentage of 19 75.00 9854 112.67 12491 184.73 7.25 1887.48
wind generation contributing to the DSR aridP™** represents 20 7500 99.98 11271 12491 22952 851 1807.72
the maximum power capacity of wind turbines. It should be 5, 3330 oaod 1o 1oaor -bios b3 1
noted that the real power balance constraint equation @)ldh 23 10.00 9854 112.67 11808 139.76 4.75 1400.17
ige . . . . . 24 10.00 89.89 112.66 68.08 139.76 3.69 1428.00
be modified considering wind power generation as follows: Total 155129 40096 41
N
Z P)it + WPt = PD (t) + Ploss (t) (16) . . . .
Pt DSR constraints are not considered. By comparing the adadain

optimal values for fuel costs in Cases 1, 5 and 6, it is coredlud

In the following two cases, the USR and DSR requiremeﬂ1atc

are considered as a simple fraction of the total wind power
generation, i.e. % = 20) and % = 40). Also, the LSR;

is assumed to be a fraction @b% the corresponding hourly
load (i.e. LSR; = 0.1 x Pp(t)).

1) Case 5: Similar to [41], in this case it assumed that the
wind power capacity of wind farm in each hour is a fraction c
the system load demand in that hour. Specifically, it is agslm
that the wind generation capacity in each hour equals to 1(
of that hour’s active power demand. Also, valve point effect
ramp-rate limits and transmission losses are considerigdout
considering USR and DSR constraints. Table IX gives tt..
obtained results by the HIGA algorithm. The obtained thérm
power generation cost, and transmission losses are $49109
and 155.129 MW, respectively. The obtained total power loss
is 1.064% of the system total load demand. These results
are compared with the results presented in [41], i.e. thal tot

ig.

ontribution of wind power generation in the DED prable

considerably reduces the fuel cost and transmission losses

2 4 [ 8 10 14 16 18 20 22 24

12
Time (h)

4. Forecasted wind power profile for the study period.

V. DISCUSSION OF THERESULTS

cost of $47,522.60, and total transmission loss of 1.15586 (i The results are compared in terms of minimum cost, mean
168.36 4MW). This comparison indicates that the proposed IG®st, and maximum cost over 100 runs with the results of
approach obtains a solution with lower cost and less trassioni  Other reported algorithms in six case studies. The resdlts o

losses. the

2) Case 6. The forecasted power output of the wind farnVIl,

aforementioned methods that presented in Tables I, V,
VIII, have been directly quoted from their correspongi

with 7OMW capacity, is presented in Fig. 4. In this case, USRferences. Observing the results obtained from the pempos
and DSR constraints along with valve-points effect, trassion  methodology, the following re-marks are made:

losses and ramp-rate constraints are considered. Thensystee
reserve requirementLGR) is supposed to be 10% of the
total system load at each hour. Table X gives the obtained
results by the proposed HIGA approach. The overall cost ofe
thermal power generation, and transmission losses arénebta
equal to $40,403.957 and 165.957 MW (1.138% of the systeme
total load), respectively. Due to the uncertain nature ofidwi
power generation, the USR and DSR are employed to ensure
the reliability of the system in the presence of wind farms.
Consequently, the total cost in Case 6 is higher than that ine
Case 5, where the wind power generation effects in the USR and

The minimum and maximum solutions of the proposed
method are close to each other, which indicates stability
of the results of the IGA.

The proposed algorithm always gives the minimum cost
less than the other methods.

It is observed that the proposed method performance is
better for large scale cases too, and the proposed method
can be used for scheduling of practical large power systems.
The computational burden of the algorithm is not high.

By comparing the obtained results, with and without con-
sidering wind power generations, it is evidently observed
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