ANGULAR DERIVATIVES ON BOUNDED SYMMETRIC
DOMAINS

M. MACKEY AND P. MELLON

ABSTRACT. In this paper we generalise the classical Julia—Wolff—
Caratteodory theorem to holomorphic functions defined on bounded
symmetric domains.

1. INTRODUCTION

Throughout, letHol( A, B) denote the holomorphic functions fror
to B, whereA and B are domains in a complex Banach space andlet
denote the open unit disc {h. A classical theorem of complex analysis,
known as the Julia—Wolff-Carabdory theorem, is the following.

Theorem 1.1.Let f € Hol(A, A) satisfy

o = lim inf L= ©OF

—_— <
11— ©

and f(¢,) — 1 for some sequencg converging tol. Then the angular
limit of f at 1 exists and equal$, and the angular limit of the derivative
f'at1 exists and equals.

If one transfers this theorem to the right half pldihe- C by means of
the Cayley transforn — % then the statement becomes the following.
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Theorem 1.2.Let F' € Hol(IL, II) and leta := irﬁf Re F(Z). Then
€z
F F
o= /- tim 2 i PO o ),
Z—00 ez Z—00 A Z—00

Generalisations of these results have evolved in two diest In
1980, Rudin [16] achieved a complete extension for a holofmommap
from B, to B,,, where B,, denotes the open unit ball in the Euclidean
norm of C" (which is a strictly convex bounded symmetric domain). Let
0B, denote the boundary @,. Rudin’s result contains the following.

Theorem 1.3.Lete € 0B, and letF = (fi,..., fm) € Hol(B,, B.)
satisfyF'(0) = 0 and

1—||F 2
o= liminfM
e—e 1|2

If (zx), C B satisfiedimy, z;, = e,

1—||F 2
A e LT
A Y

andlimy, F'(z;) = € € 0B,,, thenthe angular limitof’(z) asz — eise’
and the restricted angular limit’/ (z)e is ae’, whereF (z) = (F(z),€¢').

The Hilbert ball is a prototype for two important classes ofrin,
namely the strictly pseudoconvex domains and the boundexingjric
domains. The theory of angular limits and angular deriestifor func-
tions on a strictly pseudoconvex domain is well developee (4] for a
comprehensive account). We concentrate on the secondcgtdat of
bounded symmetric domains.

Fan [6], in 1986, proved the following Julia—Wolff—Caratdory the-
orem for operator valued holomorphic functions&nH denotes a com-
plex Hilbert space and(H) is theC*-algebra of bounded linear opera-
tors fromH toitself. Il ) := {T € L(H) : Re T > 0} is a generalised
half-plane in(H ).
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Theorem 1.4.Let F' € Hol(IL, I x)). Suppose that there exists =
A* € L(H) with

Re F(z)
A
Re z =

for all z € IT and such that

inf ’Re Fe) _ AH — 0.

I Re 2
Then

F
Az zotim R EGE) ) FE) i s,
Z—00 ez Z—00 A4 2—00

Wiodarczyk [18] generalises Theorem 1.4 by allowing in plaicé( H )
anyJ*-algebra having a non-zero partial isometry. In [14] thédatg fur-
ther extend Theorem 1.4 to the caseJ&f*-triples using the concept of
Siegel domain in a/B*-triple in place ofll. . In this paper, we pur-
sue a more general result for holomorphic functions betwabitrary
bounded symmetric domains, more in the spirit of Theorem ReSsults
of this type in the literature are sparse even in finite dinms with
the case of the polydist™, that isHol(A™, A™), only being recently re-
solved [2]. A principal reason for this sparsity has beenldlo& of suit-
able analogues of either the classical Julia’s lemma or \&/dtieorem
for bounded symmetric domains. These were recently pravidgl5]
and play a crucial role in achieving angular limit and angudlerivative
results, in particular motivating the definition of angudguproach region
for bounded symmetric domains. The existence of angulatsiover
these regions is then reduced by an extension of the cla&snctelof—
Cirka principle (cf. [16]) to the existence of certain radialits. A crucial
tool throughout is the concept of a Bergman operator dBatriple.

2. BOUNDED SYMMETRIC DOMAINS AND JB*-TRIPLES

Let D be a bounded domain in a complex Banach sgacé symme-
try at a pointa € D is a biholomorphic map on E for which a is an
isolated fixed point ok ands = s~!. D is said to be @ounded sym-
metric domain if there is a symmetry at every € D. Every bounded
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symmetric domain (with fixed base-point) is biholomorpHicaquaiva-
lent to the unit ball of a (uniquejB*-triple.

Definition 2.1. A JB*-triple is a complex Banach spac¢ewith a con-
tinuous map{-,-,-} : Z% — Z, (z,y,2) — {z,y, 2}, which is complex
linear and symmetric in andz, anti-linear iny and satisfies
(i) the operatorz Oz has spectrum if0), o),
(i) exp(ixOx ) is both an algebraic automorphism and an isometry,
(i) [{z, z, a}| = ||«

forall z € Z, wherex Oy denotes the linear map— {x,y, z}.

The equality
1)
{a,b.{z,y,2}} = {{a,b, 2}, y, 2} — {z,{b,a,y}, 2} + {z,y,{a, b, 2}}
which ensues from (ii) for alb, b, z, y andz € Z is known as the Jordan

triple identity, and provides a weak form of associativity the triple
product. The inequality

(2) H{z,y, 23 < Ml llllyl]l=]]
is proved in [7].

Any C*-algebra, and more generally any-algebra, is a/B*-triple
with triple product given bz, y, 2} = $(2y*z+zy*z) wherez* denotes
the usual operator adjoint af In particular, every complex Hilbert space
is a JB*-triple whose triple product is given by, y, 2} = +((z,y)z +

<Z7 y>$)
The Bergman operatds(z,y) € L£(Z) defined by

B(x,y) =1d =220y + Q.0

where@Q.(z) = {z,z,x} is an important tool, encoding much of the
geometry ofZ in the same way that an inner product does for a Hilbert
space. On & *-algebra, the Bergman operator reducedto, y)z =

(1 —ay")z(1 —yx).

An elemente € Z for which {e,e,e} = e is called a tripotent and,
from (iii) above, a non-zero tripotent has norm one. For gxama tripo-
tent of aC*-algebra is an elementsatisfyingv = vv*v, that is, a partial
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isometry. Each tripotent induces a splitting 6f called the Peirce de-
composition, intoZ = Z; & Z% @ Zy whereZ, is the k-eigenspace of
eOe, with mutually orthogonal projection8, onto the subspacées;,

Pl = QeQea
P% =2e0e —2Q.Q.,
Py = Ble,e),

satisfyingP; + P14+ Py = Id. Where the need arises, we writ rather
that P; to highlight the tripotent in question. The tripotenis called
MAXIMAL if Z, = {0} and this is the case precisely wheis an extreme
point of the unit ball ofZ [10]. The tripotent is calledNITARY if Py =
P% = 0. We sayz € Z is proportional to a tripotent if = \e for some
tripotente € Z and some\ € C. We point out that since the triple product
is continuous, the set of tripotents forms a closed subsgt of

3. GENERALISED HOROCYCLES AND THE ANGULAR LIMIT

In A the sequencg,,),, is said to approach € JA non-tangentially if
¢, — a and if, for somek > 0, (), is eventually in the angular region

ja — ¢
1 —[¢]?
Let f € Hol(A, A). Thenf is said to have angular limitata if f(&,) —

b whenevek,, — a non-tangentially. This is written as-lim,_, f(£) =
b.

Ap(a) ={¢ € A:

< k}.

Let B be a bounded symmetric domain, which we may take to be the
open unit ball of a/B*-triple Z [8]. Fore € 0B andk > 0, we define a
GENERALISED ANGULAR REGIONby

Di(e) = {w € B : ||B(w,e)QQel < k(1 — [[w]*)}.

Of course, ifB = A thenDy(1) = Ax(1). We note that is in the bound-
ary of Dy (e) only if B(e, e)Q.Q. = 0, a condition which is equivalent to
e being a tripotent. As we wish to consider approach paths twadary
point e which are contained in the angular regibi(e) (such approach
paths will be called non-tangential), we take it that frors thoint on,
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e denotes a tripotent of théB*-triple Z. The angular regioy(e) can
then be rewritten as

Di(e) == {w € B ||B(w,e)|,||> < k(1 = [[w]*)}

whereZ is the Peirce 1-space of the tripoteniNote that ifZ is a Hilbert
space this reduces 0, (¢) := {w € B : |1 — (w,e)| < k(1 — |Jw|*)}.

Another type of domain which appears naturally in any disimurs of
angular limits inA is the horocycle, which is an open discAninternally
tangent to the boundary. The horocycle

Ja —¢?
r—ep <M

is a Euclidean disc of radiuﬁ—1 internally tangent t@A ata. In Fig-
ure 1, we sketch the angular regidn »(1) and the horocycl€: (1) in A.
Bergman operators are used to generalise these horocytﬁdmlmded

Exla) ={E€A:

FIGURE 1. Angular region and horocycle in the unit disc

symmetric domairB. For a tripotent in B and\ > 0, define
E\(e) :={w € B :||B,'B(w,e)Q.Q.| < \}

whereB,, := B(w,w)? is invertible for||w| < 1 by [8]. We will fre-
quently use the fundamental identity [9] which holds for:alt B,

1
1= [l

3) 1B, =

The next result is a concrete realisation of the horocyélgg). The
proof is a distillation of various results and techniquefLH.
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Proposition 3.1. Lete € 0B be a tripotent. For all\ > 0, the horocycle
E,(e) has the form

1
E\(e) = (—1 m )\) e + B(se, se)(B)
for s > 0 satisfying(1 — s?)? = ﬁ Moreover, for anyy € B, y €
O, (e) where), == || B ' B(y, e)Q.Qc| > 0.

We note thatB(se, se) € GL(Z), the group of invertible bounded lin-
ear operators o#. In particular,E, (e) is a convex domain i3 contain-
ing e in its boundary.

Proof. Itis easy to calculate

4) B(fe, fe) = Py + (1 |6]°) Py + (1 = [B")* Ay
and
(5) B(fe,e) = Py+ (1= B)Py + (1 = §)*P,

for all 5 € C. Choose a sequencey, ), 0 < a; < 1 with limg o, = 1.
Then
B;kle = B(age, ake)_%

= (P+(1—a})P, + (1 —a})’Pr) ">

1 1
=h+ P +

P
Vi—ap® 1-ap’!
and therefore
(6) lim (1 — a;)BLL = P = Q.Q..
Takew € E)\(e), thatis,||B,' B(w, €)Q.Q.|| < A. Then
_ _ A
HBwlB(wvoéke)BakleH < 1 — ai

for all £ large. In the notation of [15], and using [15, Corollary 32g
have thatw belongs to the Kobayashi bal),, . ., for all £ large where
re > 0 satisfies(1 — r?)~' = A(1 — a?)~!. Proposition 2.3 of [15] then
implies thatw € D, ., = ¢ + Ti(B) for all k large where

e, =(1—r))B L (awe) € B and Ty =r.B,,.B.\. . € GL(Z).

TLOEE TEOLE
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From (4) one can then calculate that
ay,

Ck:)\+az

e and Ty = B(sge, sie)

for s, > 0 satisfying(1 — s7)? = A(A+af)~'. Sincec := limy ¢, =
(1+ M) ~teandT :=lim; T}, = B(se,se) € GL(Z) for s > 0 satisfying
(1—s%)2= X1+ \)"!, the above shows that € c + T'(B). Therefore,
E\(e) C ¢+ T(B). One may reverse this argument to show that
T(B) C Ex(e) and hencey(e) = ¢+ T(B). AsT € GL(Z), it follows
thatc + T'(B) is a convex domain ir3.

T(e) = B(se,se)e = (1 — s*)%e = A1+ ) te

implies thate € 0E) (e).
Fix y € B. Since||y|||le]| < 1, B(y, e) is invertible [8] and hence
_ QeQe|l 1
A i= 1B, By, 0Q.Qu) > ) - >
v = 1B B RN = gty 1B, ~ By e) 15,1
It is then clear from the definition thgte 0F) (e). O

0.

Note 3.2. For a tripotente, one can see from the above formulation of

Ex(e) that||z — 55|l < 25 for z € Pi(Ex(e)). In particularz — e]] <

25 < 2xforz € Pi(Ex(e)).

The following Julia type lemma for a holomorphic functiontlween
bounded symmetric domain$ and B’, contained in/B*-triples Z and
7', is of a type first proved in [15].

Lemma 3.3.Let f: B — B’ be holomorphic. Let € 9B be a tripotent.
If there existq z;), C B such that:; — e and f(z) — ¢ € 9B’ where
eachz;, and eachf(z;) is proportional to a tripotent, and

1— | fCa)|I?

o = llﬁgfw < o0

thenf(E,\(e)) C Ea)\(6/>.

Proof. Since the tripotents form a closed set in affy*-triple it follows
immediately that'’ is also a tripotent. Since, = aye;, for o, € C and
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e a tripotent, we have from (4) that

(1= llzl®) B2l = (1 lowl*) P + (1 — o )2 P§* + P
and thug(1 — ||z]|*)B., — Pf = Q.Q.. Similarly,

(L= If )P B, — Pf = QeQe

The following Schwarz—Pick type result holds [15, Coroll&¥8] as a
consequence of the Schwarz lemma,

(7) 1By B(f(w), f(2)) B, | < 1By B(w, 2) B
for all z andw in B. In particular this holds for = z;, and so for allk
HB;(L)B(f(w),f( W) (1= £ By,
= [If Cz)lI?

T la?
We take a limit ovek to obtain
1B}, B(f(w),e)QuQu | < al B, Bw, e)QeQe|
forallw € B. Thatis,f(E\(e)) C Eax(€). O

HB 'B(w, z) (1 — ||z|*) B 1“

Note 3.4.The« appearing in the previous result depends of course on the
sequencez; ), chosen. We will have occasion later to choose the least
possiblerr and so the following reformulation may be more appropriate.

Corollary 3.5. Let f: B — B’ be holomorphic. Let € 0B be a tripo-
tent and let )
o= liminfM < 00.
e 1= |22
If there exists a sequencge; ), in B converging toe such thatf(z;) —
e’ € OB’, eachz;, and eachf(z;) is proportional to a tripotent andzy, ),

satisfiedim inf;_. % = athenf(E\(e)) C E.x(€e) forall A >
0.

Not surprisingly wherB’ = A and the hypothesis of the above result is
satisfied, the sequence; ), may be taken to be of the fortm,e), where
eachr; € [0,1). The proof is similar to that of [1, Lemma 3.2].
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Lemma 3.6. Let f € Hol(B, A). Lete € 9B be a tripotent and suppose
there exists a sequence, ), € B converging ta: each element of which
is proportional to a tripotent and for which

1— 2 1— 2
lim inf M = lim inf M
koot L=z e 1 l2]]
Then
lim inf M = lim inf M = lim inf M-
ze 1 - ||Z||2 ¢—1 1-— |C|2 t—1— 1— t?
Proof. Clearly,
_ 2 B )
o = timinf S CI e L1 COE
e 1—|lz]] —1 1—]
1 |f(te)?
< liminf — 0 =7

and so we may suppose that< oco. We need only show therefore that
a > (3. Corollary 3.5 implies thaf (E\(e)) C E,x(¢’) for somee’ € 0A,
for all A > 0. Without loss of generality, we may assume thlat 1.
Therefore for alkw € B,

”B;(L)B<f(w)a el)Qe’Qe/H S OCHB;IB<IU, B)QGQSH
and, in particular forw = we, w € A. Then (4) and (5) imply

1- fwe)f _ [1-wf?
T~ f@of = *T-u®

1—t5]2 1
|1—|tZI2 = Landso

11— f(tee)]* _ «
L f e = &

Lett, = $=. Then

Thatis, f(tre) € Eq/k(1). We use Note 3.2 to write

2a/k) 2«
L= [f(tre)| < |1 = f(tre)| < T+ (a/k) ath
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As1 — [tx]* = 4k/(k + 1)* we get

1—|f(te)]”
_ t2

o 2
] < lim inf —1 |f(tre)l

< lim (o) /(o + k)
as required. O

6= hItIL 1lnf

We now obtain the existence of an angular limit where we takeua
hypothesis the conclusion of Lemma 3.3.

Theorem 3.7.Let f € Hol(B, B’) and lete € 0B be a tripotent. Let’
be an extreme point i®’. If there existsy > 0 such thatf(E\(e)) C
E.(€) forall A > 0 then

Z-lim f(z) = €.

r—e

Proof. Fix an angular regiol;(e) and lete > 0. If w € Dy(e) then
1B, B(w, €)QeQell < [|B,, [ B(w, £)QeQe |

B, ) Qe
T Jwl?
< K1~ [,

It follows that if (w,,), C D (e) converges t@ then there exists. such
thatw, € E.(e) for alln > n. and thus, by hypothesis, we haf@u,,) €
E,.(¢') forall n > n.. In other words,

IB;L, B(f(wa),¢)QuQu]| < as foralln > n..

Sincee is arbitrary,||B;(L7L)B(f(wn),e’)Qe,Qe,H — 0. This implies,
from Lemma 3.8 below, that(w,,) — ¢'. Sincek is arbitrary this implies
thatZ-lim, . f(z) = €. 0

Lemma 3.8. Lete be an extreme point d8. Let(x,), C B satisfy
lim || B, ' B(z,,, €)QcQe|| = 0.

Thenlim,, ,, = e.
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Proof. We consider the domains,, (e) for v, = || B, B(z,, €)QQe||.
We know from Proposition 3.1 that, ande are elements ofE,, (e).

It follows from [15, Proposition 3.15] that, (e¢) has the alternative de-
scription

1 Py(2) —
E (e)={:€B: t—Pé(zH%H <1}
wheret,, = lX#.This gives
Pi(r,) P T,) — €
®) v ) ooy

for all n. Sincet,, — 0, one sees easily th&t (x,,) — e. Now consider
the Peirce reflectiog = exp(2mieTe ) which, by definition of a/B*-
triple, is a linear isometry. It is not difficult to see thgdcts as the identity
Id on Z; and as— Id on Z%. Then from (8)

=1

H —P1(7y,) Pi(z,) —e L

2
tn 2

(n)

ln
0 and sdim,, x,, = lim,, P (z,) + lim,, P%(xn) =e.

Py
and this implies thajf =2

< 1. Ast, — 0, we must haveP%(:cn) —

The following rather technical lemma generalises [6, Pstipm 2.1]
and [16, Lemma 8.5.5(i)]. It provides useful informatioroabthe geom-
etry of the angular regionB;(e) and is used several times in the sequel.

Lemma 3.9. Supposd < < a and|[b|| = 1, so thatDs(b) S Dq(b).
There exist$ > 0 such that forz € Ds(b) and||y|| < 1,

IA| < 8||B(z,b)QuQb||2 => x4 Ay € Do (b).

Proof. Letd = (I)3—1/a)/10 andz € Dgy(b). Of course,d <
& s0 || < 6||B(z, b)Q, Q|2 implies that|A| < 1 because from (2)
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| B(u, )| < (14 ||ul/l]v]|)? for anyu andv. We have

lz+ Ayll* < [l2]* + 2]l [ IA] + [A*

< lll* + 3JAl.
A standard identity for Bergman operators [12, JP34] lets titew
B(LC + )\y, b)Qbe = B()\y, bz)B<SL’, b)Qbe

whereb® = B(x,b)"'(x — Q.b) denotes the quasi-inverse iofvith re-
spect tar (see [5, 12]). Thus
9 1B+ My, 0)Qu@sll < [ B2, 0)Qu@lI (1 + [Al[[67]])*.
Since||b||||z|| < 1, it follows easily from the series expansion (see [12])

oo

" = (bOx)'b

j=0
that
bl 1 1+ 2
(ollflell 1=zl =zl 1= [l
Now we use the fact that € Ds(b) to write

1711 < 2(1 = [|2]|*) ™" < 28] B(w, H)QuQs| 2.

10 )< —

Therefore

IB(@+ Ay, )@ @ul1* < 1B, b)QQull* (1+ A

20 1)
| B(z,b)QsQsl|2
(12) < |[B(z,0)QuQsl|> + 2|A15.

SinceZ < 1, we have

1 1
|z + /\yH2+aHB(x + Ay, ) QpQu|? <

1
el + B + ~ 1B, B)QuQsI= + 2/

which gives
1 1
|7+ MylP+ =Bz + Ay, D)Qu@ul|? <

e+ (55 + )| B, Q.
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Finally, ashé + 1 < % andz € Dg(b), we can write

1 1 1 1
|M+AMP+5ﬂB@+A%®@Qm2SHMF+BW%%®Q&%W
< 1.
Thatis,z + Ay € D, (b). O

The following estimates are required in the sequel.

Lemma 3.10. Let Z be aJB*-triple and lete € Z be a tripotent. Then,
[ —ell* < [|B(z,)QcQe|| < 3[|lz — ef®
foranyzx € Z;.

Proof. The spaceZ; = P,(Z) is a JB*-algebra with respect to the
productz o y := {z,e,y} and involutionz* := {e,z,e} (cf. [17]).
The Bergman operatds(z, )|, may be represented A82 , — Lc—s
where L.(y) := x oy = {x,e,y}. Thus the right hand inequality is
immediate using (2).

For anyJ B*-algebraA, we have thall2y(y*y) — v*y*|| = ||y||* for all
y € A. Therefore, forwr € 77,

1B | 2 2L — Loyl =
= l2(e ~ )((e — 2)*(e — ) ~ (e — 2)*(e ~ a'[/le ~ x|
= lle 2l /lle — 1| = lle ~ 2l

4

4. THE LINDELOF PRINCIPLE

The Lindebf principle [11] allows one to deduce the existence of an
angular limit atb € 0A for a bounded function ok from the existence
of a limit along any one approach curve#to The following result is a
version of this principle for functions mappiny to a JB*-triple Z. The
proof, which we include for completeness, is a very slightdification
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of the classical one provided in [16]. For a bounded symmetrimainB
andb € 0B, we define &-CURVEto be a continuous curve: [0,1) — B
such that (t) — bast — 1.

Theorem 4.1. Let f: A — Z be holomorphic and bounded and:
[0,1) — A be a 1-curve. lfim, ;- f(y(t)) = € Z then f has angular
limit [ at 1.

Proof. Without loss of generalityl| f|| = 1 and/ = 0. Let X denote
the strip{z € C : |Rez| < 1} and lety : A — ¥ be a conformal
mapping for whichp(0) = 0. LetT' = poyandF = fo o~ Then
Im (I'(t)) — oo and F(I'(t)) — 0 ast — 1. In this setting, an angular
limit of f(¢) ast — 1in A is equivalent to a uniform limit of’(x + iy)
asy — oo inthe strip{x + iy € C: |z| <1 — 4§} foranyd > 0.

Givend € (0,1) we have to show therefore thalx + iy) — 0 uni-
formly asy — oo for || < 1 — 4. If we fix e € (0,1), and choose
yo > Im I'(0) such that| F'(I'(¢))|| < € for Im I'(¢) > yo, the proof will
follow from the statement that

(12) 1F (2 + o) || < if o] <1 -4,

To show (12) we can assume, by a vertical translation,dhaty, = 0.
Choosingty with Im I'(tg) = 0 andIm I'(¢) > O forall 1 > ¢ > t,, we
let E = {T'(t) : t, < t < 1} andE be the reflection of in the z-axis.
Letzy = I'(ty) € IR. Suppose:, < z < 1 — 4. Then we can define, for
ne(0,35)andz € %,

c(1+2)/2
14+nl+2)
G, is a holomorphic function and is bounded Xin

(13) Gy(2) = {F(2), F(2), F(2)}

Since||F(z)|| < e on E and| F(z)|| <  on E, we have that
I{F(2), F(z), F(2)}| <«

on E U E. It follows that||G,(z)|| < € on E U E. On the right hand
boundary o, ||G,(z)|| < and for|Im z| sufficiently large we also have
|Gy (2)]] < e. Now we apply the maximum principle in the component of
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the strip bounded bfe = = 1, F U E and+oo to get that|G,,(2)|] < ¢
in this component. In particular,

L+a)/2 c(1+z)/2
= I1F @), Fo), Pl s

= [|Gy(z)ll <

el

HF(JE)HSm

and so||F(z)|® < e.e~M9/2(1 + n(1 + x)). We letn — 0 to get
|F(z)]]? < =22 < £9/2 and so||F(z)| < /¢ forzg <z < 1 — 6.
On the other hand, it, > = > —1 + ¢ then we simply replacé + =
in equation (13) byl — = and repeat the argument to conclude that (12)
holds. O

Note. We can slightly change the statement of this theorem to tileerfo
ing: Let f: A — Z be holomorphic and bounded in the angular region
Ag(1). Leta > fand~y : [0,1) — A be a 1-curve contained i, (1) .

If lim, ;- f(v(t)) =1 € Zthenf has the limit at 1 along any approach
curve inAg(1).

Cirka [4] extended Lindéif’s result to functions of several variables

and we show that this can be improved to include functionsddfon

a bounded symmetric domai. Forb € 0B, a key tool required is a
continuous linear projection = m, : B — bA = {¢b : ( € A} of
the bounded symmetric domain onto the one dimensional sgbsgon-
taining b which satisfiesr(Dy (b)) C Dy (b) for all £ > 0 andn(b) = b.
Following the terminology of [2], we will calir, a PROJECTIVE DEVICE
atb. Throughout the remainder of this paper, we restrict atiarto a
boundary poinb of a bounded symmetric domai# for which a projec-
tive devicer atb exists. In many situations, there is a canonical choice
for the projective device. For example,Afis then-dimensional Hilbert
ball then one can take to be the orthogonal projection @ onto bA.

A canonical choice forr whenB = A" is given [2] byn(z) = %(z,b)b
whered is the cardinality of the seftj : |b;| = 1}, b = (by,...,b,) and

b= (¥,,...,b,) where
70, <1
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Here(-, -) denotes the usual inner product Gh.

In the followingT" : [0,1) — B will be ane-curve for some tripotent
e. An e-curve is called non-tangential if it lies eventually i (e) for
somek > 0. Clearly, ifI" is a non-tangential-curve then the projection
of I underr = m., denotedy, is also a non-tangentiatcurve since
(D (e)) C Dy(e) for all £ > 0. The proof of the following theorem is a
modification of that ofCirka’s result given in [16].

Theorem 4.2. Lete be a tripotent inZ having projective device, and
let I be a non-tangentiat-curve. Lety = n,oI'. Letf: B — Z' be
holomorphic and bounded in every angular regibg(e). If

L=l
A T — )]

then
Jim f(I(#)) = f(+(1)) = 0.
Proof. DefineR(t) := 2% Fix A € € and choose, such that

R(t) > \/R(t) > |\| for t > t,. Then fort > t,,

Ca(t) == AL(t) + (1 — A)v(2)
is an element o3. This is due to the fact thdit\(T'(t) — v(¢)) +v(t)|| <

R|T'(t) — ~(t)]| + ||[7v(¢)|| = 1. AsT is non-tangential, there exists> 0
such that for sufficiently close to 1, say > t; > ¢y, I'(t) € Dy(e) and

S07(t) € Di(e).
Fix k' B(1(1),€)QeQcl| > |1(t)—e|> by Lemma 3.10
and so from Lemma 3.9, there exisgts- 0 such that
(14) |yl <dlle =~v@)| = () + ny € Dy (e) for [Jy|| = 1.
Also, fort > t; we have|\| < \/R(t), and so
1—|v@)]
MIO(t) — ~(t t)———————
AT (&) = @)l < vV R(?) R

1ol
(19) 0]
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Sincew/R( ) — oo there existg, > t¢; such that for > ¢, we have

1— |Iv ||
VR >1> == and so

— Il
R(t) < dlle =~

From (15), this gives,
IAT(E) =) < dlle = (@)

for all ¢ > t,. This suggests a choice pfin (14). Takingy = ;G4 A(F_m (t)

andu = [|AT'(t) — ~v(¢))|| we conclude thaty + A\(T' — v) € Dy (e)
whenever > t,. In other words(”(¢) € Dy (e) for all t > t,.

The rest of the proof proceeds as in the classical case [1@ghwte
now recall. Define the holomorphic functigp from the open disc of
radius,/R(t) in C to the ball of radiug|f||p,, in Z’ by

g9:(A) = FAL(1) + (1 = A)y(1)).-
Of courseg,(1) = f(I'(¢)) and ¢,(0) = f(y(t)). The maph,(\) =
gt(A) — g:(0) is a holomorphic function from the complex disc of radius

V/ R(t) to the ball of radiug|| f||p,, ) which maps 0 to 0. The Schwarz
Lemma then gives

1M < RY
\/_
DI < 2(fllp, )/ R(t) forall t > t,. Since

R(t) — oo we have thatim, ;- h(1) =0 and from this it follows that

lim, .y f(D(1)) = f(5(£)) = 0. O

The terminology given below is modelled on that of Rudin [1B] a
though our definitions do not agree exactly with those madesaiilbert
space case. (When working in a Hilbert space one may squarpitihe
tient factor occurring in (16) below. This allows a largeflection of re-
stricted curves.) Our definition seems a more appropriagdarbounded
symmetric domains.

Definition 4.3. We say a-curvel' is SPECIAL if

el
(16) T — o)~
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where~y = m, o I'. Further, we say &-curvel' is RESTRICTEDIf it is
special andy([0, 1)) is eventually contained ihA,(1) for somek > 0.

In other words]' is a restricted curve if it is special and the projection of
I’ onto the dis@A has non-tangential approachito

We say thatf: B — Z' haSRESTRICTED ANGULAR LIMIT[ AT b if

lim f(D(t)) =

t—1—

for every restricted-curvel'. For this we write Rtim, ., f(z) = L.

It is not obvious from the definition, but any restrictedurve is non-
tangential ifb is a tripotent.

Lemma 4.4. Lete be a tripotent and let” be a restrictece-curve. Then
' is a non-tangentiaté-curve.

Proof. LetI be a restricte@-curve. Thenim,_,;- % = 0 and

there exists > 0 andt, € (0,1) such that% < kfort > t,.
IB((1), €)QeQell = [[B(y + (T' = 7), €) Q|
= [|B(I' = 7,€") B(7,€)QcQc[|  using [12, JP34]
< [1B(7, €)QeQell [|B(T' = v, €7)]|
< 1B(7,€)QeQell(L + T =~ [le]])*

which by Lemma 3.10 and (10) is

2 el 2
<3l = el (1 + 1T =2l =)
1T — y[1\2
<3l — o2 (1 + 1L271
T
< 4y —e|?

fort >t € [to,1) since% — 0ast — 1-. Thus, fort > t,,

IBL(1), €)QeQe]1? < 2|l7(t) — €]l < 2k(1 = [1(®)]*)-



20 M. MACKEY AND P. MELLON

Since||T|| < ||IT = ~|| + ||v|| we have

I'—

I
L= PO =1 = [T =~ =[v =1

~ (- - Y20
> (1= )

fort >ty € [t1,1). Sincelim, .- ||I'(¢)]| = lim;_- ||7(¢)|| = 1 we can
choose; € [ta, 1) such thatl + [|T(¢)]| > 1(1+4||v(t)||) for ¢ > ¢5. Thus,
fort >t5,1— |T()||* > (1 — ||7(¢)]|*). The resulting inequality

IB(t), H)QQ 2
L= [IT@)?

< 8k

for ¢t > t3 implies thatl'(t) € Dg(e) for t > t3. Thatis,I" is eventually
in some angular region af and thud" is a non-tangential approach curve
toe. O

TheRADIAL limit of a function f ate is the limit of f along the radial
pathT'(t) = te, t € [0,1). Notice that this radial path is restricted and
contained inDy(e) for £ > 1. We will use the notatiotim, ;- f(te) for
the radial limit of f ate.

Corollary 4.5. Lete be a tripotent and leff € Hol(B, Z’) be bounded
in every angular regiorDy(e). If the radial limit of f exists ate then the
restricted angular limit off exists ate.

Proof. If I"is any restricted-curve then, by Theorem 4.2 and Lemma 4.4,
f has the same limit along as it does along its projection = 7, o I'.
Definep: A — Z' by () = f(Ce). Thenyp is bounded in everA, (1)
andlim, ;- ¢(t) exists. Letl be the value of this limit. Theorem 4.1
implies thaty has non-tangential limit at 1. As~ is a non-tangential
e-curve ineA, lim, ;- f(y(¢)) may be identified with a non-tangential
limit of ¢ in A. As the value of this limit ig, we conclude that the limit
of f along the restricted curdéis alsol. O
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Corollary 4.5 implies thatf has an angular derivative at a tripotent
e € 0B (by which we mean a restricted angular limit of the function-
f'(z)e) if the mapz — f'(2)e s, firstly, bounded in every angular region
Dy (e) and, secondly, has a radial limit@tA natural simplification is to
consider instead the ‘projected’ map— P| f'(z)e whereP is the Peirce
1-projection ofe’, wheree’ € 7' is the tripotent that arises as the angular
limit of f ate.

In the classical settingB = B’ = A, one shows that the function
z +— f'(z) is bounded in every angular regidy).(e) by using the Cauchy
integral formaula to writef’(z) as an integral of the incremental ratios
% wheree, ¢’ € 0A ande’ = Z-lim,_.. f(z) and then showing that
these incremental ratios are themselves bounded in evgolarmegion.
Our approach is essentially the same, using the Banach spesiervof
Cauchy'’s integral formula (see, for example, [3]) and a ratanalogue

for the ratios%. We take as this analogue
|B(f(2),€) A
|1B(z,e) P

whereP, = Q.Q. and P| = Q. Q. are the Peirce 1-projections corre-
2

sponding to the tripotentsande’ respectively. (This reduces #é(j)f—;e

when B = A.) Part of the argument therefore in proving that—
P/ f'(2)e is bounded in every angular regidpy(e) is to show that the
map

IB(P1f(2), ¢) Al
1B(z,e) Pl
is bounded in evenyD,(e). As we requiree’ to be Z-lim, .. f(z) we
adopt here the hypothesis of Theorem 3.7.

Theorem 4.6.Let f € Hol(B, B’). Suppose that € 0B ande’ € 0B’
are tripotents and that for some > 0,
f(E.(e)) C Ear(€)

for all » > 0. Then the following functions are bounded in every angular
region Dy(e).

BRI P )
O T e T (1)

z— P f'(2)e,
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whereP, = Q.Q. and P| = Q. Q. are the Peirce 1-projections of the
tripotentse ande’ respectively.

Proof. (i) Fix an angular regiorDy(e) = {z € B : HB(Z,e)QeQeII% <
k(1 —||z]|2)}. Letz € Dy(e) and letr = k|| B(z, e)Q.Q.||2. Then

1Bz €)QuQull = Z1B(z )QuQu|* < r(1 = ||2I]")

and hence from (9)

IB(,0QQll _

1 — [|z[f? ’

IBZ'B(2,)QeQell <

thatis,z € E.(e). By hypothesis thereforgz) € E,,.(¢) andP| f(z) €
P/E,.(¢'). From Note 3.2||P| f(z) — ¢'|| < 2ar and by Lemma 3.10,

|B(P|f(2),e)QuQul < 3||Pf(2) — € < 12a%7.

Thus | B(P{f(2),¢)QuQull < 1201 = 120°k?||B(2,€)Q.Q.| and
we have
|B(Pif(2),e)P|

< 12a%K?
|1B(z, ) P

giving (i).

(i) Fix an angular regiorDy(e) and fixk’ > k. By Lemma 3.9 choose
§ > 0sothatforz € Di(e), || < 8| B(z,e)Q.Q.||2 impliesz + \e €
Dy (e). Letr = §||B(z, €)Q.Q.||2. By the Cauchy integral formula

1 Pl f(z+ Xe
P/ f'(z)e = 2 J —1f<A2 L

1 Pl _ !
_ L f(z+ Xe) —e I\
211 |A|=r )\2

L[ A0 BOYCO) dr

21 |\|=r




ANGULAR DERIVATIVES ON BOUNDED SYMMETRIC DOMAINS 23

where
A = Pllf(z—l-/\e)—e/ |
|B(Pif(z+ Ae), €)Pi||2
B()\) — HB(Plf<Z+ )\6),6)?1”5 7
|B(z + Ae, e) Py||2
B(z+ Xe,e)P; 2
oy = IBEHAeARIE
Therefore
[P f'(2)ell < (sup [JAN)] ) { sup B(A) ) ( sup 7|C(N)] ).
! <|>\—'r ><|)\—r )<)\|—r >

Lemma 3.10 implies thatup,, _, | A(A)|| is bounded (that is, uniformly
bounded over € Dy(e)). By part (i), sup,—, B(A) is bounded, since
z + e is contained in the angular regidpy (e¢). A glance back at (11)
in the proof of Lemma 3.9 shows tha{t”'(\)| = ﬁHB(z + Xe,e)Py||2
is bounded bk + % and hence (ii) is proved. O

The above result, combined with Corollary 4.5 applied te P f'(z)e,
allows us to conclude the existence of a restricted anguotérdf P, f'(z)e
from the existence of a radial limit. To examine this radialit,

lim Pjf'(te)e
t—1—
we again use Cauchy’s integral formula to write

! pl o 1 P/f((t+/\)6)_el
Pl f'(te)e = 5 /M:r 1 2 d\

- () () 2

1 /7T Pif((t+re)e) —e
o) t+re? —1

1—-t
reif

(1

Fix 1 < k < k'. Aste € Dy(e) we again use Lemma 3.9 to chodse 0
such that

) df

Al < 6||B(te, €)Q.Q. |2
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implies (¢t + M)e € Dy(e). In particular,|A\| < §(1 — ¢) implies that
(t+ Ne € Dy (e). If we taker = 6(1 — t) then

i/” Pl f((t+re?)e) — e’<1 B e_w)de.

17 P! f'(te)e = ;
( ) lf( 6)6 o t_i_?neze -1

—T

We know from part (i) of Theorem 4.6 that the first factor irstimtegral
is bounded sincé + rei?)e lies in the angular regiow,. (e). Moreover,
if the radial limit of these incremental ratios exists andagq/, that is if

(18) lim M
t—1— t—1

=1

then we apply Theorem 4.1 to the function

_ Plf(Ce) =€
9(¢) = o1

for ¢ € A to get that the angular limit
/ !
4_ hm Plf(Ce) €
z—1 C — 1

exists and equals Hence, the integral (17) above has the lilmgist €
[0,1) tends to 1. We have proved the following.

Theorem 4.7.Let f € Hol(B, B’) and lete € 0B, ¢ € 0B’ be tripo-
tents. Suppose that for some> 0, f(E,(e)) C E,.(¢') forall r > 0. If
the radial limit
r_ p!
lim € 1f<t€)
t—1- 1—t
then the restricted angular limit, Rim, .. P f'(z)e = L.

=1

We now turn our attention to proving that the limit in (18) abaloes
indeed exist in a reasonably general setting.

Theorem 4.8.Let f € Hol(B, A) and lete € 0B be a tripotent such that
1—[f(2)[’

o = 11];'n—>1£f1——H2H2 < Q.
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Suppose there exists a sequefgg, in B converging te, each element
of which is proportional to a tripotent and which satisfies

1 - |f(2k)’2 _
1 —lzl?
and f(zx) — € € A. Then the radial limit

/ —_
i €100
t—1—- 1 —1¢

and hence Rim,_.. f'(z)e = ae'.

lim inf
k

Proof. Definep € Hol(A, A) by ¢(¢) = f(Ce). Lemma 3.6 implies that
1—le@F _

liminf ———— =«
-1 1=
and so we can apply the one dimensional result (Theoremd.d)d get
Z-lim¢_; ¢'(¢) = ae€’. In particular,
/-lim O = ac
(—1 1 — C

which gives the result. O

If we add the condition thaf(0) = 0 then the above result can be
extended to include the case where the ranggisfa Hilbert space.

Theorem 4.9. Let f € Hol(B, B’), whereB’ is the open unit ball of a
Hilbert space, satisfy(0) = 0. Let

. 2
o= liminfM < 00
a—e 1 —||2]]

Suppose there exists a sequelicg, in B, each element of which is
proportional to a tripotent and which satisfiésn inf}, Rl (G701 N

e

and f(z,) — € wheree’ € 0B’ is a tripotent. Then the radial limit
¢ —Piflte)

lim ———~ = qe
t—1— 1—1¢

and hence Rim,_.. P/ f(z)e = ae’.
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Proof. Lemma 3.6 implies that

1— 2 1 — 2
o= liminfM = liminfM,
e [ T

Let ¢ = 1(1 — ¢). From Proposition 3.1, € JE < (e) and so by

Lemma 3.3f(te) € E,<_(¢') and thus (recall Note 3.2ﬂ)P{f(te)—e’H <
17(21016&)0- Sincef(0) = 0, the Schwarz lemma implies that> 1 and thus

1P f(te) — €| < 2ac.

We now have that
L—[[f(te)|* <1— P/ f(te)]”
< (L+ [P fte)lDI P f(te) — €]
<2ac(l+t) = a(l — %)

giving
— 2 _ / 2
L—f@)l” 1= IBfCe)|”
1 —¢2 - 1 —¢2 -
Hence liminf,_ .- M < a. Thus,

el A1 NS o 5 WA

o = lim inf

ame  L— 2|2 T ame 122
1 —||P! f(te)|]?
< limiug LB )
o1 1 —¢2
We conclude that
1— || P f(2)]]
liminM:
e—e 1|7

As P/ is nothing but the orthogonal projection Bf ontoe’, P f may be
identified with a holomorphic function fron® to A and the rest of the
proof proceeds as in Theorem 4.8. O

For example, we have the following.
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Corollary 4.10. Let f € Hol(B, A) satisfy f(0) = 0, whereB is the
open unit ball of aC*-algebra with identityl. If

1_ 2
o= li:nainfizé| < 00
=1 1 — 7]

and there exists a sequeneg — 1 such that each;, is a scalar mul-
. . . _ 2
tiple of a partial isometry)imy_,o, = —  and f(z,) — 1 then

1—|lzx 2
the angular limitZ-lim,_.; f(z) = 1 and the restricted angular limit
R-lim,_,1 f'(2)1 = .

In particular, if B is then-dimensional polydisc we obtain the follow-
ing, which is contained in [2].

Corollary 4.11. Let f € Hol(A", A) satisfyf(0) = 0. If

1— 2
o := liminf M <00
z—1=(1,..,1) 1 — ||Z”

and there exists a sequeneg — 1 such that each, is a scalar mul-

tiple of an extreme pointim;,_, % = «a and f(z) — 1 then

the angular limitZ-lim, .; f(z) = 1 and the restricted angular limit
R-lim, .; f'(2)1 = a.
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