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ABSTRACT. In this paper we generalise the classical Julia–Wolff–
Carath́eodory theorem to holomorphic functions defined on bounded
symmetric domains.

1. INTRODUCTION

Throughout, letHol(A,B) denote the holomorphic functions fromA
to B, whereA andB are domains in a complex Banach space and let∆
denote the open unit disc inC. A classical theorem of complex analysis,
known as the Julia–Wolff–Carathéodory theorem, is the following.

Theorem 1.1.Letf ∈ Hol(∆, ∆) satisfy

α := lim inf
ζ→1

1 − |f(ζ)|2

1 − |ζ|2
< ∞

andf(ζn) → 1 for some sequenceζn converging to1. Then the angular
limit of f at 1 exists and equals1, and the angular limit of the derivative
f ′ at 1 exists and equalsα.

If one transfers this theorem to the right half planeΠ ⊂ C by means of
the Cayley transformζ 7→ 1+ζ

1−ζ
then the statement becomes the following.
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Theorem 1.2.LetF ∈ Hol(Π, Π) and leta := inf
Π

Re F (z)

Re z
. Then

a = ∠- lim
z→∞

Re F (z)

Re z
= ∠- lim

z→∞

F (z)

z
= ∠- lim

z→∞
F ′(z).

Generalisations of these results have evolved in two directions. In
1980, Rudin [16] achieved a complete extension for a holomorphic map
from Bn to Bm, whereBn denotes the open unit ball in the Euclidean
norm ofCn (which is a strictly convex bounded symmetric domain). Let
∂Bn denote the boundary ofBn. Rudin’s result contains the following.

Theorem 1.3. Let e ∈ ∂Bn and letF = (f1, . . . , fm) ∈ Hol(Bn, Bm)
satisfyF (0) = 0 and

α := lim inf
z→e

1 − ‖F (z)‖2

1 − ‖z‖2
< ∞.

If (zk)k ⊂ B satisfieslimk zk = e,

lim
k

1 − ‖F (zk)‖
2

1 − ‖zk‖2
= α

andlimk F (zk) = e′ ∈ ∂Bm, then the angular limit ofF (z) asz → e is e′

and the restricted angular limitF ′
1(z)e is αe′, whereF1(z) = 〈F (z), e′〉.

The Hilbert ball is a prototype for two important classes of domain,
namely the strictly pseudoconvex domains and the bounded symmetric
domains. The theory of angular limits and angular derivatives for func-
tions on a strictly pseudoconvex domain is well developed (see [1] for a
comprehensive account). We concentrate on the second category, that of
bounded symmetric domains.

Fan [6], in 1986, proved the following Julia–Wolff–Carathéodory the-
orem for operator valued holomorphic functions on∆. H denotes a com-
plex Hilbert space andL(H) is theC∗-algebra of bounded linear opera-
tors fromH to itself. ΠL(H) := {T ∈ L(H) : Re T > 0} is a generalised
half-plane inL(H).
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Theorem 1.4. Let F ∈ Hol(Π, ΠL(H)). Suppose that there existsA =
A∗ ∈ L(H) with

Re F (z)

Re z
> A

for all z ∈ Π and such that

inf
Π

∥∥∥∥
Re F (z)

Re z
− A

∥∥∥∥ = 0.

Then

A = ∠- lim
z→∞

Re F (z)

Re z
= ∠- lim

z→∞

F (z)

z
= ∠- lim

z→∞
F ′(z).

Włodarczyk [18] generalises Theorem 1.4 by allowing in placeofL(H)
anyJ∗-algebra having a non-zero partial isometry. In [14] the authors fur-
ther extend Theorem 1.4 to the case ofJB∗-triples using the concept of
Siegel domain in aJB∗-triple in place ofΠL(H). In this paper, we pur-
sue a more general result for holomorphic functions betweenarbitrary
bounded symmetric domains, more in the spirit of Theorem 1.3. Results
of this type in the literature are sparse even in finite dimensions, with
the case of the polydisc∆n, that isHol(∆n, ∆m), only being recently re-
solved [2]. A principal reason for this sparsity has been thelack of suit-
able analogues of either the classical Julia’s lemma or Wolff’s theorem
for bounded symmetric domains. These were recently provided in [15]
and play a crucial role in achieving angular limit and angular derivative
results, in particular motivating the definition of angularapproach region
for bounded symmetric domains. The existence of angular limits over
these regions is then reduced by an extension of the classical Lindelöf–
Čirka principle (cf. [16]) to the existence of certain radiallimits. A crucial
tool throughout is the concept of a Bergman operator on aJB∗-triple.

2. BOUNDED SYMMETRIC DOMAINS AND JB∗-TRIPLES

Let D be a bounded domain in a complex Banach spaceE. A symme-
try at a pointa ∈ D is a biholomorphic maps on E for which a is an
isolated fixed point ofs ands = s−1. D is said to be abounded sym-
metric domain if there is a symmetry at everya ∈ D. Every bounded
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symmetric domain (with fixed base-point) is biholomorphically equaiva-
lent to the unit ball of a (unique)JB∗-triple.

Definition 2.1. A JB∗-triple is a complex Banach spaceZ with a con-
tinuous map{·, ·, ·} : Z3 → Z, (x, y, z) → {x, y, z}, which is complex
linear and symmetric inx andz, anti-linear iny and satisfies

(i) the operatorx¤x has spectrum in[0,∞),
(ii) exp(i x¤x ) is both an algebraic automorphism and an isometry,
(iii) ‖{x, x, x}‖ = ‖x‖3,

for all x ∈ Z, wherex¤y denotes the linear mapz 7→ {x, y, z}.

The equality
(1)
{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}

which ensues from (ii) for alla, b, x, y andz ∈ Z is known as the Jordan
triple identity, and provides a weak form of associativity for the triple
product. The inequality

(2) ‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖

is proved in [7].

Any C∗-algebra, and more generally anyJ∗-algebra, is aJB∗-triple
with triple product given by{x, y, z} = 1

2
(xy∗z+zy∗x) wherex∗ denotes

the usual operator adjoint ofx. In particular, every complex Hilbert space
is aJB∗-triple whose triple product is given by{x, y, z} = 1

2
(〈x, y〉z +

〈z, y〉x).

The Bergman operatorB(x, y) ∈ L(Z) defined by

B(x, y) = Id−2 x¤y + QxQy

whereQx(z) = {x, z, x} is an important tool, encoding much of the
geometry ofZ in the same way that an inner product does for a Hilbert
space. On aC∗-algebra, the Bergman operator reduces toB(x, y)z =
(1 − xy∗)z(1 − y∗x).

An elemente ∈ Z for which {e, e, e} = e is called a tripotent and,
from (iii) above, a non-zero tripotent has norm one. For example, a tripo-
tent of aC∗-algebra is an elementv satisfyingv = vv∗v, that is, a partial
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isometry. Each tripotent induces a splitting ofZ, called the Peirce de-
composition, intoZ = Z1 ⊕ Z 1

2

⊕ Z0 whereZk is thek-eigenspace of
e¤ e , with mutually orthogonal projectionsPk onto the subspacesZk,

P1 = QeQe,

P 1

2

= 2 e¤ e − 2QeQe,

P0 = B(e, e),

satisfyingP1 + P 1

2

+ P0 = Id. Where the need arises, we writeP e
j rather

that Pj to highlight the tripotent in question. The tripotente is called
MAXIMAL if Z0 = {0} and this is the case precisely whene is an extreme
point of the unit ball ofZ [10]. The tripotent is calledUNITARY if P0 =
P 1

2

= 0. We sayz ∈ Z is proportional to a tripotent ifz = λe for some
tripotente ∈ Z and someλ ∈ C. We point out that since the triple product
is continuous, the set of tripotents forms a closed subset ofZ.

3. GENERALISED HOROCYCLES AND THE ANGULAR LIMIT

In ∆ the sequence(ξn)n is said to approacha ∈ ∂∆ non-tangentially if
ξn → a and if, for somek > 0, (ξn)n is eventually in the angular region

∆k(a) = {ξ ∈ ∆ :
|a − ξ|

1 − |ξ|2
< k}.

Let f ∈ Hol(∆, ∆). Thenf is said to have angular limitb ata if f(ξn) →
b wheneverξn → a non-tangentially. This is written as∠- limξ→a f(ξ) =
b.

Let B be a bounded symmetric domain, which we may take to be the
open unit ball of aJB∗-triple Z [8]. For e ∈ ∂B andk > 0, we define a
GENERALISED ANGULAR REGIONby

Dk(e) := {w ∈ B : ‖B(w, e)QeQe‖
1

2 < k(1 − ‖w‖2)}.

Of course, ifB = ∆ thenDk(1) = ∆k(1). We note thate is in the bound-
ary ofDk(e) only if B(e, e)QeQe = 0, a condition which is equivalent to
e being a tripotent. As we wish to consider approach paths to a boundary
point e which are contained in the angular regionDk(e) (such approach
paths will be called non-tangential), we take it that from this point on,
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e denotes a tripotent of theJB∗-triple Z. The angular regionDk(e) can
then be rewritten as

Dk(e) := {w ∈ B : ‖B(w, e)|Z1

‖
1

2 < k(1 − ‖w‖2)}

whereZ1 is the Peirce 1-space of the tripotente. Note that ifZ is a Hilbert
space this reduces toDk(e) := {w ∈ B : |1 − 〈w, e〉| < k(1 − ‖w‖2)}.

Another type of domain which appears naturally in any discussion of
angular limits in∆ is the horocycle, which is an open disc in∆ internally
tangent to the boundary. The horocycle

Eλ(a) = {ξ ∈ ∆ :
|a − ξ|2

1 − |ξ|2
< λ}

is a Euclidean disc of radiusλ
λ+1

internally tangent to∂∆ at a. In Fig-
ure 1, we sketch the angular region∆1.2(1) and the horocycleE 1

2

(1) in ∆.
Bergman operators are used to generalise these horocycles toa bounded

�

1:2

(1)

E

1

2

(1)

FIGURE 1. Angular region and horocycle in the unit disc

symmetric domainB. For a tripotente in B andλ > 0, define

Eλ(e) := {w ∈ B : ‖B−1
w B(w, e)QeQe‖ < λ}

whereBw := B(w,w)
1

2 is invertible for‖w‖ < 1 by [8]. We will fre-
quently use the fundamental identity [9] which holds for allx ∈ B,

(3) ‖B−1
x ‖ =

1

1 − ‖x‖2
.

The next result is a concrete realisation of the horocyclesEλ(e). The
proof is a distillation of various results and techniques in[15].
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Proposition 3.1. Let e ∈ ∂B be a tripotent. For allλ > 0, the horocycle
Eλ(e) has the form

Eλ(e) =

(
1

1 + λ

)
e + B(se, se)(B)

for s > 0 satisfying(1 − s2)2 = λ
1+λ

. Moreover, for anyy ∈ B, y ∈

∂Eλy
(e) whereλy := ‖B−1

y B(y, e)QeQe‖ > 0.

We note thatB(se, se) ∈ GL(Z), the group of invertible bounded lin-
ear operators onZ. In particular,Eλ(e) is a convex domain inB contain-
ing e in its boundary.

Proof. It is easy to calculate

(4) B(βe, βe) = P0 + (1 − |β|2)P 1

2

+ (1 − |β|2)2P1

and

(5) B(βe, e) = P0 + (1 − β)P 1

2

+ (1 − β)2P1

for all β ∈ C. Choose a sequence(αk)k, 0 < αk < 1 with limk αk = 1.
Then

B−1
αke = B(αke, αke)

− 1

2

= (P0 + (1 − α2
k)P 1

2

+ (1 − α2
k)

2P1)
− 1

2

= P0 +
1√

1 − α2
k

P 1

2

+
1

1 − α2
k

P1

and therefore

(6) lim
k

(1 − α2
k)B

−1
αke = P1 = QeQe.

Takew ∈ Eλ(e), that is,‖B−1
w B(w, e)QeQe‖ < λ. Then

‖B−1
w B(w,αke)B

−1
αke‖ <

λ

1 − α2
k

for all k large. In the notation of [15], and using [15, Corollary 3.2],we
have thatw belongs to the Kobayashi ballDαke,rk

for all k large where
rk > 0 satisfies(1 − r2

k)
−1 = λ(1 − α2

k)
−1. Proposition 2.3 of [15] then

implies thatw ∈ Dαke,rk
= ck + Tk(B) for all k large where

ck = (1 − r2
k)B

−1
rkαke(αke) ∈ B and Tk = rkBαkeB

−1
rkαke ∈ GL(Z).
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From (4) one can then calculate that

ck =
αk

λ + α2
k

e and Tk = B(ske, ske)

for sk > 0 satisfying(1 − s2
k)

2 = λ(λ + α2
k)

−1. Sincec := limk ck =
(1 + λ)−1e andT := limk Tk = B(se, se) ∈ GL(Z) for s > 0 satisfying
(1− s2)2 = λ(1 + λ)−1, the above shows thatw ∈ c + T (B). Therefore,
Eλ(e) ⊂ c + T (B). One may reverse this argument to show thatc +

T (B) ⊂ Eλ(e) and henceEλ(e) = c + T (B). As T ∈ GL(Z), it follows
thatc + T (B) is a convex domain inB.

T (e) = B(se, se)e = (1 − s2)2e = λ(1 + λ)−1e

implies thate ∈ ∂Eλ(e).

Fix y ∈ B. Since‖y‖‖e‖ < 1, B(y, e) is invertible [8] and hence

λy := ‖B−1
y B(y, e)QeQe‖ ≥

‖QeQe‖

‖B(y, e)−1By‖
=

1

‖B(y, e)−1By‖
> 0.

It is then clear from the definition thaty ∈ ∂Eλy
(e). ¤

Note 3.2. For a tripotente, one can see from the above formulation of
Eλ(e) that‖x− e

1+λ
‖ < λ

1+λ
for x ∈ P1(Eλ(e)). In particular,‖x− e‖ <

2λ
1+λ

≤ 2λ for x ∈ P1(Eλ(e)).

The following Julia type lemma for a holomorphic function between
bounded symmetric domainsB andB′, contained inJB∗-triples Z and
Z ′, is of a type first proved in [15].

Lemma 3.3. Letf : B → B′ be holomorphic. Lete ∈ ∂B be a tripotent.
If there exists(zk)k ⊂ B such thatzk → e andf(zk) → e′ ∈ ∂B′ where
eachzk and eachf(zk) is proportional to a tripotent, and

α := lim inf
k→∞

1 − ‖f(zk)‖
2

1 − ‖zk‖2
< ∞

thenf(Eλ(e)) ⊂ Eαλ(e
′).

Proof. Since the tripotents form a closed set in anyJB∗-triple it follows
immediately thate′ is also a tripotent. Sincezk = αkek for αk ∈ C and
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ek a tripotent, we have from (4) that

(1 − ‖zk‖
2)B−1

zk
= (1 − |αk|

2)P ek

0 + (1 − |αk|
2)

1

2 P ek
1

2

+ P ek

1

and thus(1 − ‖zk‖
2)B−1

zk
→ P e

1 = QeQe. Similarly,

(1 − ‖f(zk)‖
2)B−1

f(zk) → P e′

1 = Qe′Qe′ .

The following Schwarz–Pick type result holds [15, Corollary3.3] as a
consequence of the Schwarz lemma,

(7) ‖B−1
f(w)B(f(w), f(z))B−1

f(z)‖ ≤ ‖B−1
w B(w, z)B−1

z ‖

for all z andw in B. In particular this holds forz = zk and so for allk
∥∥∥B−1

f(w)B(f(w), f(zk)) (1 − ‖f(zk)‖
2)B−1

f(zk)

∥∥∥

≤
1 − ‖f(zk)‖

2

1 − ‖zk‖2

∥∥B−1
w B(w, zk) (1 − ‖zk‖

2)B−1
zk

∥∥ .

We take a limit overk to obtain

‖B−1
f(w)B(f(w), e′)Qe′Qe′‖ ≤ α‖B−1

w B(w, e)QeQe‖

for all w ∈ B. That is,f(Eλ(e)) ⊂ Eαλ(e
′). ¤

Note 3.4.Theα appearing in the previous result depends of course on the
sequence(zk)k chosen. We will have occasion later to choose the least
possibleα and so the following reformulation may be more appropriate.

Corollary 3.5. Let f : B → B′ be holomorphic. Lete ∈ ∂B be a tripo-
tent and let

α := lim inf
z→e

1 − ‖f(z)‖2

1 − ‖z‖2
< ∞.

If there exists a sequence(zk)k in B converging toe such thatf(zk) →
e′ ∈ ∂B′, eachzk and eachf(zk) is proportional to a tripotent and(zk)k

satisfieslim infk→∞
1−‖f(zk)‖2

1−‖zk‖2 = α thenf(Eλ(e)) ⊂ Eαλ(e
′) for all λ >

0.

Not surprisingly whenB′ = ∆ and the hypothesis of the above result is
satisfied, the sequence(zk)k may be taken to be of the form(rke)k where
eachrk ∈ [0, 1). The proof is similar to that of [1, Lemma 3.2].
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Lemma 3.6. Letf ∈ Hol(B, ∆). Lete ∈ ∂B be a tripotent and suppose
there exists a sequence(zk)k ∈ B converging toe each element of which
is proportional to a tripotent and for which

lim inf
k→∞

1 − |f(zk)|
2

1 − ‖zk‖2
= lim inf

z→e

1 − |f(z)|2

1 − ‖z‖2
.

Then

lim inf
z→e

1 − |f(z)|2

1 − ‖z‖2
= lim inf

ζ→1

1 − |f(ζe)|2

1 − |ζ|2
= lim inf

t→1−

1 − |f(te)|2

1 − t2
.

Proof. Clearly,

α := lim inf
z→e

1 − |f(z)|2

1 − ‖z‖2
≤ lim inf

ζ→1

1 − |f(ζe)|2

1 − |ζ|2

≤ lim inf
t→1−

1 − |f(te)|2

1 − t2
=: β

and so we may suppose thatα < ∞. We need only show therefore that
α ≥ β. Corollary 3.5 implies thatf(Eλ(e)) ⊂ Eαλ(e

′) for somee′ ∈ ∂∆,
for all λ > 0. Without loss of generality, we may assume thate′ = 1.
Therefore for allw ∈ B,

‖B−1
f(w)B(f(w), e′)Qe′Qe′‖ ≤ α‖B−1

w B(w, e)QeQe‖

and, in particular forw = ωe, ω ∈ ∆. Then (4) and (5) imply

|1 − f(ωe)|2

1 − |f(ωe)|2
≤ α

|1 − ω|2

1 − |ω|2
.

Let tk = k−1
k+1

. Then |1−tk|
2

1−|tk|2
= 1

k
and so

|1 − f(tke)|
2

1 − |f(tke)|2
≤

α

k
.

That is,f(tke) ∈ Eα/k(1). We use Note 3.2 to write

1 − |f(tke)| ≤ |1 − f(tke)| ≤
2(α/k)

1 + (α/k)
=

2α

α + k
.
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As 1 − |tk|
2 = 4k/(k + 1)2 we get

β = lim inf
t→1

1 − |f(te)|2

1 − t2
≤ lim inf

k→∞

1 − |f(tke)|
2

1 − t2k

≤ lim
k→∞

(4α)/(α + k)

4k/(k + 1)2
= α

as required. ¤

We now obtain the existence of an angular limit where we take as our
hypothesis the conclusion of Lemma 3.3.

Theorem 3.7. Let f ∈ Hol(B,B′) and lete ∈ ∂B be a tripotent. Lete′

be an extreme point inB′. If there existsα > 0 such thatf(Eλ(e)) ⊂
Eαλ(e

′) for all λ > 0 then

∠- lim
x→e

f(x) = e′.

Proof. Fix an angular regionDk(e) and letε > 0. If w ∈ Dk(e) then

‖B−1
w B(w, e)QeQe‖ ≤ ‖B−1

w ‖‖B(w, e)QeQe‖

=
‖B(w, e)QeQe‖

1 − ‖w‖2

< k2(1 − ‖w‖2).

It follows that if (wn)n ⊂ Dk(e) converges toe then there existsnε such
thatwn ∈ Eε(e) for all n ≥ nε and thus, by hypothesis, we havef(wn) ∈
Eαε(e

′) for all n ≥ nε. In other words,

‖B−1
f(wn)B(f(wn), e′)Qe′Qe′‖ < αε for all n ≥ nε.

Sinceε is arbitrary,‖B−1
f(wn)B(f(wn), e′)Qe′Qe′‖ → 0. This implies,

from Lemma 3.8 below, thatf(wn) → e′. Sincek is arbitrary this implies
that∠- limx→e f(x) = e′. ¤

Lemma 3.8. Let e be an extreme point ofB. Let(xn)n ⊂ B satisfy

lim
n

‖B−1
xn

B(xn, e)QeQe‖ = 0.

Thenlimn xn = e.
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Proof. We consider the domainsEγn
(e) for γn = ‖B−1

xn
B(xn, e)QeQe‖.

We know from Proposition 3.1 thatxn ande are elements of∂Eγn
(e).

It follows from [15, Proposition 3.15] thatEγn
(e) has the alternative de-

scription

Eγn
(e) = {z ∈ B :

∥∥∥∥
1

tn
P 1

2

(z) +
P1(z) − e

t2n
+ e

∥∥∥∥ < 1}

wheretn =
√

γn

1+γn
. This gives

(8)

∥∥∥∥∥
P 1

2

(xn)

tn
+

P1(xn) − e

t2n
+ e

∥∥∥∥∥ = 1

for all n. Sincetn → 0, one sees easily thatP1(xn) → e. Now consider
the Peirce reflectiong = exp(2πi e¤ e ) which, by definition of aJB∗-
triple, is a linear isometry. It is not difficult to see thatg acts as the identity
Id onZ1 and as− Id onZ 1

2

. Then from (8)

∥∥∥∥∥
−P 1

2

(xn)

tn
+

P1(xn) − e

t2n
+ e

∥∥∥∥∥ = 1

and this implies that

∥∥∥∥
P 1

2

(xn)

tn

∥∥∥∥ < 1. As tn → 0, we must haveP 1

2

(xn) →

0 and solimn xn = limn P1(xn) + limn P 1

2

(xn) = e. ¤

The following rather technical lemma generalises [6, Proposition 2.1]
and [16, Lemma 8.5.5(i)]. It provides useful information about the geom-
etry of the angular regionsDk(e) and is used several times in the sequel.

Lemma 3.9. Suppose1 < β < α and‖b‖ = 1, so thatDβ(b) $ Dα(b).
There existsδ > 0 such that forx ∈ Dβ(b) and‖y‖ ≤ 1,

|λ| ≤ δ‖B(x, b)QbQb‖
1

2 =⇒ x + λy ∈ Dα(b).

Proof. Let δ = (1/β − 1/α)/10 and x ∈ Dβ(b). Of course,δ <
1
10

so |λ| ≤ δ‖B(x, b)QbQb‖
1

2 implies that|λ| < 1 because from (2)
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‖B(u, v)‖ ≤ (1 + ‖u‖‖v‖)2 for anyu andv. We have

‖x + λy‖2 ≤ ‖x‖2 + 2‖x‖|λ| + |λ|2

≤ ‖x‖2 + 3|λ|.

A standard identity for Bergman operators [12, JP34] lets us write

B(x + λy, b)QbQb = B(λy, bx)B(x, b)QbQb

wherebx = B(x, b)−1(x − Qxb) denotes the quasi-inverse ofb with re-
spect tox (see [5, 12]). Thus

(9) ‖B(x + λy, b)QbQb‖ ≤ ‖B(x, b)QbQb‖(1 + |λ|‖bx‖)2.

Since‖b‖‖x‖ < 1, it follows easily from the series expansion (see [12])

bx =
∞∑

j=0

( b¤x )jb

that

(10) ‖bx‖ ≤
‖b‖

1 − ‖b‖‖x‖
=

1

1 − ‖x‖
=

1 + ‖x‖

1 − ‖x‖2
<

2

1 − ‖x‖2
.

Now we use the fact thatx ∈ Dβ(b) to write

‖bx‖ < 2(1 − ‖x‖2)−1 < 2β‖B(x, b)QbQb‖
− 1

2 .

Therefore

‖B(x + λy, b)QbQb‖
1

2 ≤ ‖B(x, b)QbQb‖
1

2

(
1 + |λ|

2β

‖B(x, b)QbQb‖
1

2

)

≤ ‖B(x, b)QbQb‖
1

2 + 2|λ|β.(11)

Sinceβ
α

< 1, we have

‖x + λy‖2+
1

α
‖B(x + λy, b)QbQb‖

1

2 ≤

‖x‖2 + 3|λ| +
1

α
‖B(x, b)QbQb‖

1

2 + 2|λ|

which gives

‖x + λy‖2+
1

α
‖B(x + λy, b)QbQb‖

1

2 ≤

‖x‖2 + (5δ +
1

α
)‖B(x, b)QbQb‖

1

2 .
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Finally, as5δ + 1
α

< 1
β

andx ∈ Dβ(b), we can write

‖x + λy‖2 +
1

α
‖B(x + λy, b)QbQb‖

1

2 ≤ ‖x‖2 +
1

β
‖B(x, b)QbQb‖

1

2

< 1.

That is,x + λy ∈ Dα(b). ¤

The following estimates are required in the sequel.

Lemma 3.10.LetZ be aJB∗-triple and lete ∈ Z be a tripotent. Then,

‖x − e‖2 ≤ ‖B(x, e)QeQe‖ ≤ 3‖x − e‖2

for anyx ∈ Z1.

Proof. The spaceZ1 = P1(Z) is a JB∗-algebra with respect to the
productx ◦ y := {x, e, y} and involutionx∗ := {e, x, e} (cf. [17]).
The Bergman operatorB(x, e)|Z1

may be represented as2L2
e−x −L(e−x)2

whereLx(y) := x ◦ y = {x, e, y}. Thus the right hand inequality is
immediate using (2).

For anyJB∗-algebraA, we have that‖2y(y∗y)− y2y∗‖ = ‖y‖3 for all
y ∈ A. Therefore, forx ∈ Z1,

‖B(x, e)|Z1

‖ ≥ ‖[2L2
e−x − L(e−x)2 ]

(e − x)∗

‖e − x‖
‖

= ‖2(e − x)((e − x)∗(e − x)) − (e − x)2(e − x)∗‖/‖e − x‖

= ‖e − x‖3/‖e − x‖ = ‖e − x‖2.

¤

4. THE L INDELÖF PRINCIPLE

The Lindel̈of principle [11] allows one to deduce the existence of an
angular limit atb ∈ ∂∆ for a bounded function on∆ from the existence
of a limit along any one approach curve tob. The following result is a
version of this principle for functions mapping∆ to aJB∗-triple Z. The
proof, which we include for completeness, is a very slight modification
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of the classical one provided in [16]. For a bounded symmetric domainB
andb ∈ ∂B, we define ab-CURVE to be a continuous curveσ : [0, 1) → B
such thatσ(t) → b ast → 1.

Theorem 4.1. Let f : ∆ → Z be holomorphic and bounded andγ :
[0, 1) → ∆ be a 1-curve. Iflimt→1− f(γ(t)) = l ∈ Z thenf has angular
limit l at 1.

Proof. Without loss of generality,‖f‖ = 1 and l = 0. Let Σ denote
the strip{z ∈ C : |Re z| < 1} and letϕ : ∆ → Σ be a conformal
mapping for whichϕ(0) = 0. Let Γ = ϕ ◦ γ andF = f ◦ ϕ−1. Then
Im (Γ(t)) → ∞ andF (Γ(t)) → 0 ast → 1. In this setting, an angular
limit of f(t) ast → 1 in ∆ is equivalent to a uniform limit ofF (x + iy)
asy → ∞ in the strip{x + iy ∈ C : |x| ≤ 1 − δ} for anyδ > 0.

Givenδ ∈ (0, 1) we have to show therefore thatF (x + iy) → 0 uni-
formly asy → ∞ for |x| ≤ 1 − δ. If we fix ε ∈ (0, 1), and choose
y0 > Im Γ(0) such that‖F (Γ(t))‖ < ε for Im Γ(t) ≥ y0, the proof will
follow from the statement that

(12) ‖F (x + iy0)‖ ≤ εδ/6 if |x| ≤ 1 − δ.

To show (12) we can assume, by a vertical translation ofΣ, thaty0 = 0.
Choosingt0 with Im Γ(t0) = 0 andIm Γ(t) > 0 for all 1 > t > t0, we
let E = {Γ(t) : t0 ≤ t < 1} andE be the reflection ofE in thex-axis.
Let x0 = Γ(t0) ∈ IR. Supposex0 ≤ x ≤ 1 − δ. Then we can define, for
η ∈ (0, 1

3
) andz ∈ Σ,

(13) Gη(z) = {F (z), F (z), F (z)}
ε(1+z)/2

1 + η(1 + z)
.

Gη is a holomorphic function and is bounded onΣ.

Since‖F (z)‖ < ε onE and‖F (z)‖ < ε onE, we have that

‖{F (z), F (z), F (z)}‖ < ε

on E ∪ E. It follows that‖Gη(z)‖ < ε on E ∪ E. On the right hand
boundary ofΣ, ‖Gη(z)‖ < ε and for|Im z| sufficiently large we also have
‖Gη(z)‖ < ε. Now we apply the maximum principle in the component of
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the strip bounded byRe z = 1, E ∪ E and±∞ to get that‖Gη(z)‖ < ε
in this component. In particular,

‖F (x)‖3 ε(1+x)/2

1 + η(1 + x)
= ‖{F (x), F (x), F (x)}

ε(1+x)/2

1 + η(1 + x)
‖

= ‖Gη(x)‖ < ε

and so‖F (x)‖3 < ε.ε−(1+x)/2(1 + η(1 + x)). We let η → 0 to get
‖F (x)‖3 ≤ ε(1−x)/2 < εδ/2 and so‖F (x)‖ < εδ/6 for x0 ≤ x < 1 − δ.
On the other hand, ifx0 > x > −1 + δ then we simply replace1 + z
in equation (13) by1 − z and repeat the argument to conclude that (12)
holds. ¤

Note. We can slightly change the statement of this theorem to the follow-
ing: Let f : ∆ → Z be holomorphic and bounded in the angular region
∆k(1). Letα > β andγ : [0, 1) → ∆ be a 1-curve contained in∆α(1) .
If limt→1− f(γ(t)) = l ∈ Z thenf has the limitl at 1 along any approach
curve in∆β(1).

Čirka [4] extended Lindelöf’s result to functions of several variables
and we show that this can be improved to include functions defined on
a bounded symmetric domainB. For b ∈ ∂B, a key tool required is a
continuous linear projectionπ = πb : B → b∆ = {ζb : ζ ∈ ∆} of
the bounded symmetric domain onto the one dimensional subspace con-
taining b which satisfiesπ(Dk(b)) ⊂ Dk(b) for all k > 0 andπ(b) = b.
Following the terminology of [2], we will callπb a PROJECTIVE DEVICE

at b. Throughout the remainder of this paper, we restrict attention to a
boundary pointb of a bounded symmetric domainB for which a projec-
tive deviceπ at b exists. In many situations, there is a canonical choice
for the projective device. For example, ifB is then-dimensional Hilbert
ball then one can takeπ to be the orthogonal projection ofB onto b∆.
A canonical choice forπ whenB = ∆n is given [2] byπ(x) = 1

d
〈x, b̂〉b

whered is the cardinality of the set{j : |bj| = 1}, b = (b1, . . . , bn) and
b̂ = (b′1, . . . , b

′
n) where

b′j =

{
bj, |bj| = 1

0, |bj| < 1
.
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Here〈·, ·〉 denotes the usual inner product onCn.

In the followingΓ : [0, 1) → B will be ane-curve for some tripotent
e. An e-curve is called non-tangential if it lies eventually inDk(e) for
somek > 0. Clearly, if Γ is a non-tangentiale-curve then the projection
of Γ underπ = πe, denotedγ, is also a non-tangentiale-curve since
π(Dk(e)) ⊂ Dk(e) for all k > 0. The proof of the following theorem is a
modification of that ofČirka’s result given in [16].

Theorem 4.2. Let e be a tripotent inZ having projective deviceπe and
let Γ be a non-tangentiale-curve. Letγ = πe ◦ Γ. Let f : B → Z ′ be
holomorphic and bounded in every angular regionDk(e). If

lim
t→1−

1 − ‖γ(t)‖

‖Γ(t) − γ(t)‖
= ∞

then
lim

t→1−
f(Γ(t)) − f(γ(t)) = 0.

Proof. DefineR(t) := 1−‖γ(t)‖
‖Γ(t)−γ(t)‖

. Fix λ ∈ C and chooset0 such that

R(t) >
√

R(t) > |λ| for t > t0. Then fort > t0,

Cλ(t) := λΓ(t) + (1 − λ)γ(t)

is an element ofB. This is due to the fact that‖λ(Γ(t)− γ(t)) + γ(t)‖ <
R‖Γ(t) − γ(t)‖ + ‖γ(t)‖ = 1. As Γ is non-tangential, there existsk > 0
such that fort sufficiently close to 1, sayt > t1 ≥ t0, Γ(t) ∈ Dk(e) and
soγ(t) ∈ Dk(e).

Fix k′ > k. Notice that‖B(γ(t), e)QeQe‖ ≥ ‖γ(t)−e‖2 by Lemma 3.10
and so from Lemma 3.9, there existsδ > 0 such that

(14) |µ| < δ‖e − γ(t)‖ =⇒ γ(t) + µy ∈ Dk′(e) for ‖y‖ = 1.

Also, for t > t1 we have|λ| <
√

R(t), and so

‖λ(Γ(t) − γ(t))‖ <
√

R(t)
1 − ‖γ(t)‖

R(t)

=
1 − ‖γ(t)‖√

R(t)
.(15)
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Since
√

R(t) → ∞ there existst2 ≥ t1 such that fort > t2 we have
δ
√

R(t) > 1 ≥ 1−‖γ(t)‖
‖e−γ(t)‖

and so

1 − ‖γ‖√
R(t)

< δ‖e − γ(t)‖.

From (15), this gives,

‖λ(Γ(t) − γ(t))‖ < δ‖e − γ(t)‖

for all t > t2. This suggests a choice ofµ in (14). Takingy = λ(Γ−γ)
‖λ(Γ−γ)‖

(t)

andµ = ‖λ(Γ(t) − γ(t))‖ we conclude thatγ + λ(Γ − γ) ∈ Dk′(e)
whenevert > t2. In other words,Cλ(t) ∈ Dk′(e) for all t > t2.

The rest of the proof proceeds as in the classical case [16] which we
now recall. Define the holomorphic functiongt from the open disc of
radius

√
R(t) in C to the ball of radius‖f‖Dk′

in Z ′ by

gt(λ) := f
(
λΓ(t) + (1 − λ)γ(t)

)
.

Of coursegt(1) = f(Γ(t)) and gt(0) = f(γ(t)). The mapht(λ) :=
gt(λ) − gt(0) is a holomorphic function from the complex disc of radius√

R(t) to the ball of radius2‖f‖Dk′ (e)
which maps 0 to 0. The Schwarz

Lemma then gives

‖ht(λ)‖ ≤
2‖f‖Dk′√

R(t)
|λ|

and, in particular,‖ht(1)‖ ≤ 2‖f‖Dk′ (e)
/
√

R(t) for all t ≥ t2. Since
R(t) → ∞ we have thatlimt→1− ht(1) = 0 and from this it follows that
limt→1− f(Γ(t)) − f(γ(t)) = 0. ¤

The terminology given below is modelled on that of Rudin [16] al-
though our definitions do not agree exactly with those made inthe Hilbert
space case. (When working in a Hilbert space one may square thequo-
tient factor occurring in (16) below. This allows a larger collection of re-
stricted curves.) Our definition seems a more appropriate one for bounded
symmetric domains.

Definition 4.3. We say ab-curveΓ is SPECIAL if

(16) lim
t→1−

1 − ‖γ(t)‖

‖Γ(t) − γ(t)‖
= ∞,
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whereγ = πb ◦ Γ. Further, we say ab-curveΓ is RESTRICTED if it is
special andγ([0, 1)) is eventually contained inb∆k(1) for somek > 0.
In other words,Γ is a restricted curve if it is special and the projection of
Γ onto the discb∆ has non-tangential approach tob.

We say thatf : B → Z ′ hasRESTRICTED ANGULAR LIMIT l AT b if

lim
t→1−

f(Γ(t)) = l

for every restrictedb-curveΓ. For this we write R-limz→b f(z) = l.

It is not obvious from the definition, but any restrictedb-curve is non-
tangential ifb is a tripotent.

Lemma 4.4. Let e be a tripotent and letΓ be a restrictede-curve. Then
Γ is a non-tangentiale-curve.

Proof. Let Γ be a restrictede-curve. Thenlimt→1−
‖Γ(t)−γ(t)‖
1−‖γ(t)‖

= 0 and

there existsk > 0 andt0 ∈ (0, 1) such that‖γ(t)−e‖
1−‖γ(t)‖2 < k for t > t0.

‖B(Γ(t), e)QeQe‖ = ‖B(γ + (Γ − γ), e)QeQe‖

= ‖B(Γ − γ, eγ) B(γ, e)QeQe‖ using [12, JP34]

≤ ‖B(γ, e)QeQe‖ ‖B(Γ − γ, eγ)‖

≤ ‖B(γ, e)QeQe‖(1 + ‖Γ − γ‖‖eγ‖)2

which by Lemma 3.10 and (10) is

≤ 3‖γ − e‖2
(
1 + ‖Γ − γ‖

‖e‖

1 − ‖e‖‖γ‖

)2

≤ 3‖γ − e‖2
(
1 +

‖Γ − γ‖

1 − ‖γ‖

)2

< 4‖γ − e‖2

for t > t1 ∈ [t0, 1) since‖Γ(t)−γ(t)‖
1−‖γ(t)‖

→ 0 ast → 1−. Thus, fort > t1,

‖B(Γ(t), e)QeQe‖
1

2 < 2‖γ(t) − e‖ < 2k(1 − ‖γ(t)‖2).
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Since‖Γ‖ ≤ ‖Γ − γ‖ + ‖γ‖ we have

1 − ‖Γ(t)‖ ≥ 1 − ‖Γ − γ‖ − ‖γ‖ = 1 −
‖Γ − γ‖

1 − ‖γ‖
(1 − ‖γ‖) − ‖γ‖

= (1 − ‖γ‖)(1 −
‖Γ − γ‖

1 − ‖γ‖
)

≥
1

2
(1 − ‖γ(t)‖)

for t ≥ t2 ∈ [t1, 1). Sincelimt→1− ‖Γ(t)‖ = limt→1− ‖γ(t)‖ = 1 we can
chooset3 ∈ [t2, 1) such that1+‖Γ(t)‖ ≥ 1

2
(1+‖γ(t)‖) for t ≥ t3. Thus,

for t ≥ t3, 1 − ‖Γ(t)‖2 ≥ 1
4
(1 − ‖γ(t)‖2). The resulting inequality

‖B(Γ(t), b)QeQe‖
1

2

1 − ‖Γ(t)‖2
< 8k

for t ≥ t3 implies thatΓ(t) ∈ D8k(e) for t ≥ t3. That is,Γ is eventually
in some angular region ate, and thusΓ is a non-tangential approach curve
to e. ¤

TheRADIAL limit of a functionf at e is the limit off along the radial
pathΓ(t) = te, t ∈ [0, 1). Notice that this radial path is restricted and
contained inDk(e) for k > 1. We will use the notationlimt→1− f(te) for
the radial limit off at e.

Corollary 4.5. Let e be a tripotent and letf ∈ Hol(B,Z ′) be bounded
in every angular regionDk(e). If the radial limit off exists ate then the
restricted angular limit off exists ate.

Proof. If Γ is any restrictede-curve then, by Theorem 4.2 and Lemma 4.4,
f has the same limit alongΓ as it does along its projectionγ = πe ◦ Γ.
Defineϕ : ∆ → Z ′ by ϕ(ζ) = f(ζe). Thenϕ is bounded in every∆k(1)
and limt→1− ϕ(t) exists. Letl be the value of this limit. Theorem 4.1
implies thatϕ has non-tangential limitl at 1. Asγ is a non-tangential
e-curve ine∆, limt→1− f(γ(t)) may be identified with a non-tangential
limit of ϕ in ∆. As the value of this limit isl, we conclude that the limit
of f along the restricted curveΓ is alsol. ¤
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Corollary 4.5 implies thatf has an angular derivative at a tripotent
e ∈ ∂B (by which we mean a restricted angular limit of the functionz 7→
f ′(z)e) if the mapz 7→ f ′(z)e is, firstly, bounded in every angular region
Dk(e) and, secondly, has a radial limit ate. A natural simplification is to
consider instead the ‘projected’ mapz 7→ P ′

1f
′(z)e whereP ′

1 is the Peirce
1-projection ofe′, wheree′ ∈ Z ′ is the tripotent that arises as the angular
limit of f at e.

In the classical setting,B = B′ = ∆, one shows that the function
z 7→ f ′(z) is bounded in every angular region∆k(e) by using the Cauchy
integral formaula to writef ′(z) as an integral of the incremental ratios
f(z)−e′

z−e
wheree, e′ ∈ ∂∆ ande′ = ∠- limz→e f(z) and then showing that

these incremental ratios are themselves bounded in every angular region.
Our approach is essentially the same, using the Banach space version of
Cauchy’s integral formula (see, for example, [3]) and a natural analogue
for the ratiosf(z)−e′

z−e
. We take as this analogue

‖B(f(z), e′)P ′
1‖

‖B(z, e)P1‖

whereP1 = QeQe andP ′
1 = Qe′Qe′ are the Peirce 1-projections corre-

sponding to the tripotentse ande′ respectively. (This reduces to
∣∣∣f(z)−e′

z−e

∣∣∣
2

when B = ∆.) Part of the argument therefore in proving thatz 7→
P ′

1f
′(z)e is bounded in every angular regionDk(e) is to show that the

map

z 7→
‖B(P ′

1f(z), e′)P ′
1‖

‖B(z, e)P1‖

is bounded in everyDk(e). As we requiree′ to be∠- limz→e f(z) we
adopt here the hypothesis of Theorem 3.7.

Theorem 4.6. Let f ∈ Hol(B,B′). Suppose thate ∈ ∂B ande′ ∈ ∂B′

are tripotents and that for someα > 0,

f(Er(e)) ⊂ Eαr(e
′)

for all r > 0. Then the following functions are bounded in every angular
regionDk(e).

(i) z 7→
‖B(P ′

1f(z), e′)P ′
1‖

‖B(z, e)P1‖
, (ii) z 7→ P ′

1f
′(z)e,
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whereP1 = QeQe andP ′
1 = Qe′Qe′ are the Peirce 1-projections of the

tripotentse ande′ respectively.

Proof. (i) Fix an angular regionDk(e) = {z ∈ B : ‖B(z, e)QeQe‖
1

2 <

k(1 − ‖z‖2)}. Let z ∈ Dk(e) and letr = k‖B(z, e)QeQe‖
1

2 . Then

‖B(z, e)QeQe‖ =
r

k
‖B(z, e)QeQe‖

1

2 < r(1 − ‖z‖2)

and hence from (9)

‖B−1
z B(z, e)QeQe‖ ≤

‖B(z, e)QeQe‖

1 − ‖z‖2
< r,

that is,z ∈ Er(e). By hypothesis therefore,f(z) ∈ Eαr(e
′) andP ′

1f(z) ∈
P ′

1Eαr(e
′). From Note 3.2,‖P ′

1f(z) − e′‖ < 2αr and by Lemma 3.10,

‖B(P ′
1f(z), e′)Qe′Qe′‖ ≤ 3‖P ′

1f(z) − e′‖2 < 12α2r2.

Thus ‖B(P ′
1f(z), e′)Qe′Qe′‖ < 12α2r2 = 12α2k2‖B(z, e)QeQe‖ and

we have

‖B(P ′
1f(z), e′)P ′

1‖

‖B(z, e)P1‖
< 12α2k2

giving (i).

(ii) Fix an angular regionDk(e) and fixk′ > k. By Lemma 3.9 choose
δ > 0 so that forz ∈ Dk(e), |λ| ≤ δ‖B(z, e)QeQe‖

1

2 impliesz + λe ∈

Dk′(e). Let r = δ‖B(z, e)QeQe‖
1

2 . By the Cauchy integral formula

P ′
1f

′(z)e =
1

2πi

∫

|λ|=r

P ′
1f(z + λe)

λ2
dλ

=
1

2πi

∫

|λ|=r

P ′
1f(z + λe) − e′

λ2
dλ

=
1

2πi

∫

|λ|=r

A(λ) B(λ) C(λ) dλ
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where

A(λ) =
P ′

1f(z + λe) − e′

‖B(P ′
1f(z + λe), e′)P ′

1‖
1

2

,

B(λ) =
‖B(P ′

1f(z + λe), e′)P ′
1‖

1

2

‖B(z + λe, e)P1‖
1

2

,

C(λ) =
‖B(z + λe, e)P1‖

1

2

λ2
.

Therefore

‖P ′
1f

′(z)e‖ ≤
(

sup
|λ|=r

‖A(λ)‖
)(

sup
|λ|=r

B(λ)
)(

sup
|λ|=r

r|C(λ)|
)
.

Lemma 3.10 implies thatsup|λ|=r ‖A(λ)‖ is bounded (that is, uniformly
bounded overz ∈ Dk(e)). By part (i), sup|λ|=r B(λ) is bounded, since
z + λe is contained in the angular regionDk′(e). A glance back at (11)
in the proof of Lemma 3.9 shows thatr|C(λ)| = 1

|λ|
‖B(z + λe, e)P1‖

1

2

is bounded by2k + 1
δ

and hence (ii) is proved. ¤

The above result, combined with Corollary 4.5 applied toz 7→ P ′
1f

′(z)e,
allows us to conclude the existence of a restricted angular limit of P ′

1f
′(z)e

from the existence of a radial limit. To examine this radial limit,

lim
t→1−

P ′
1f

′(te)e

we again use Cauchy’s integral formula to write

P ′
1f

′(te)e =
1

2πi

∫

|λ|=r

P ′
1f((t + λ)e) − e′

λ2
dλ

=
1

2πi

∫

|λ|=r

(
P1f((t + λ)e) − e

1 − (t + λ)

)(
1 − (t + λ)

λ

)
dλ

λ

=
1

2π

∫ π

−π

P1f((t + reiθ)e) − e

t + reiθ − 1
(1 −

1 − t

reiθ
) dθ

Fix 1 < k < k′. As te ∈ Dk(e) we again use Lemma 3.9 to chooseδ > 0
such that

|λ| ≤ δ‖B(te, e)QeQe‖
1

2
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implies (t + λ)e ∈ Dk′(e). In particular,|λ| ≤ δ(1 − t) implies that
(t + λ)e ∈ Dk′(e). If we taker = δ(1 − t) then

(17) P ′
1f

′(te)e =
1

2π

∫ π

−π

P ′
1f((t + reiθ)e) − e′

t + reiθ − 1
(1 −

e−iθ

δ
)dθ.

We know from part (i) of Theorem 4.6 that the first factor in this integral
is bounded since(t + reiθ)e lies in the angular regionDk′(e). Moreover,
if the radial limit of these incremental ratios exists and equalsl, that is if

(18) lim
t→1−

P ′
1f(te) − e′

t − 1
= l

then we apply Theorem 4.1 to the function

g(ζ) =
P ′

1f(ζe) − e′

ζ − 1

for ζ ∈ ∆ to get that the angular limit

∠- lim
z→1

P ′
1f(ζe) − e′

ζ − 1

exists and equalsl. Hence, the integral (17) above has the limitl ast ∈
[0, 1) tends to 1. We have proved the following.

Theorem 4.7. Let f ∈ Hol(B,B′) and lete ∈ ∂B, e′ ∈ ∂B′ be tripo-
tents. Suppose that for someα > 0, f(Er(e)) ⊂ Eαr(e

′) for all r > 0. If
the radial limit

lim
t→1−

e′ − P ′
1f(te)

1 − t
= l

then the restricted angular limit, R-limz→e P ′
1f

′(z)e = l.

We now turn our attention to proving that the limit in (18) above does
indeed exist in a reasonably general setting.

Theorem 4.8.Letf ∈ Hol(B, ∆) and lete ∈ ∂B be a tripotent such that

α := lim inf
z→e

1 − |f(z)|2

1 − ‖z‖2
< ∞.
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Suppose there exists a sequence(zk)k in B converging toe, each element
of which is proportional to a tripotent and which satisfies

lim inf
k

1 − |f(zk)|
2

1 − ‖zk‖2
= α

andf(zk) → e′ ∈ ∆. Then the radial limit

lim
t→1−

e′ − f(te)

1 − t
= αe′

and hence R-limz→e f ′(z)e = αe′.

Proof. Defineϕ ∈ Hol(∆, ∆) by ϕ(ζ) = f(ζe). Lemma 3.6 implies that

lim inf
ζ→1

1 − |ϕ(ζ)|2

1 − |ζ|2
= α

and so we can apply the one dimensional result (Theorem 1.1) to ϕ to get
∠- limζ→1 ϕ′(ζ) = αe′. In particular,

∠- lim
ζ→1

e′ − ϕ(ζ)

1 − ζ
= αe′

which gives the result. ¤

If we add the condition thatf(0) = 0 then the above result can be
extended to include the case where the range off is a Hilbert space.

Theorem 4.9. Let f ∈ Hol(B,B′), whereB′ is the open unit ball of a
Hilbert space, satisfyf(0) = 0. Let

α := lim inf
z→e

1 − ‖f(z)‖2

1 − ‖z‖2
< ∞.

Suppose there exists a sequence(zk)k in B, each element of which is
proportional to a tripotent and which satisfieslim infk

1−‖f(zk)‖2

1−‖zk‖2 = α

andf(zk) → e′ wheree′ ∈ ∂B′ is a tripotent. Then the radial limit

lim
t→1−

e′ − P ′
1f(te)

1 − t
= αe′

and hence R-limz→e P ′
1f(z)e = αe′.
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Proof. Lemma 3.6 implies that

α = lim inf
z→e

1 − ‖f(z)‖2

1 − ‖z‖2
= lim inf

t→1−

1 − ‖f(te)‖2

1 − t2
.

Let c = 1
2
(1 − t). From Proposition 3.1,te ∈ ∂E c

1−c
(e) and so by

Lemma 3.3f(te) ∈ Eα c
1−c

(e′) and thus (recall Note 3.2)‖P ′
1f(te)−e′‖ ≤

2αc
1−(1−α)c

. Sincef(0) = 0, the Schwarz lemma implies thatα ≥ 1 and thus
‖P ′

1f(te) − e′‖ ≤ 2αc.

We now have that

1 − ‖f(te)‖2 ≤ 1 − ‖P ′
1f(te)‖2

≤ (1 + ‖P ′
1f(te)‖)‖P ′

1f(te) − e′‖

≤ 2αc(1 + t) = α(1 − t2)

giving

1 − ‖f(te)‖2

1 − t2
≤

1 − ‖P ′
1f(te)‖2

1 − t2
≤ α.

Hence,lim inft→1−
1−‖P ′

1
f(te)‖2

1−t2
≤ α. Thus,

α = lim inf
z→e

1 − ‖f(z)‖2

1 − ‖z‖2
≤ lim inf

z→e

1 − ‖P ′
1f(z)‖2

1 − ‖z‖2

≤ lim inf
t→1−

1 − ‖P ′
1f(te)‖2

1 − t2
≤ α.

We conclude that

lim inf
z→e

1 − ‖P ′
1f(z)‖2

1 − ‖z‖2
= α.

As P ′
1 is nothing but the orthogonal projection ofB′ ontoe′, P ′

1f may be
identified with a holomorphic function fromB to ∆ and the rest of the
proof proceeds as in Theorem 4.8. ¤

For example, we have the following.
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Corollary 4.10. Let f ∈ Hol(B, ∆) satisfyf(0) = 0, whereB is the
open unit ball of aC∗-algebra with identity1. If

α := lim inf
z→1

1 − |f(z)|2

1 − ‖z‖2
< ∞

and there exists a sequencezk → 1 such that eachzk is a scalar mul-
tiple of a partial isometry,limk→∞

1−‖f(zk)‖2

1−‖zk‖2 = α and f(zk) → 1 then
the angular limit∠- limz→1 f(z) = 1 and the restricted angular limit
R-limz→1 f ′(z)1 = α.

In particular, ifB is then-dimensional polydisc we obtain the follow-
ing, which is contained in [2].

Corollary 4.11. Letf ∈ Hol(∆n, ∆) satisfyf(0) = 0. If

α := lim inf
z→1=(1,...,1)

1 − |f(z)|2

1 − ‖z‖2
< ∞

and there exists a sequencezk → 1 such that eachzk is a scalar mul-
tiple of an extreme point,limk→∞

1−‖f(zk)‖2

1−‖zk‖2 = α and f(zk) → 1 then
the angular limit∠- limz→1 f(z) = 1 and the restricted angular limit
R-limz→1 f ′(z)1 = α.
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