
Designs, Codes and Cryptography manuscript No.
(will be inserted by the editor)

Two-Weight Codes, Graphs and Orthogonal Arrays

Eimear Byrne · Alison Sneyd

Received: date / Accepted: date

Abstract We investigate properties of two-weight codes over finite Frobenius
rings, giving constructions for the modular case. A δ-modular code [15] is charac-
terized as having a generator matrix where each column g appears with multiplic-
ity δ|gR×| for some δ ∈ Q. Generalizing [10] and [5], we show that the additive
group of a two-weight code satisfying certain constraint equations (and in partic-
ular a modular code) has a strongly regular Cayley graph and derive existence
conditions on its parameters. We provide a construction for an infinite family of
modular two-weight codes arising from unions of submodules with pairwise trivial
intersection. The corresponding strongly regular graphs are isomorphic to graphs
from orthogonal arrays.
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1 Introduction

Homogeneous weights have been widely studied in the context of linear codes
over finite rings and modules [3,4,5,12,14,18,24]. They were first proposed for the
integer residue rings in [18]. The concept was generalised in different ways in [12,
24]. We follow the definition given in [12], which requires such a weight on a ring
R to be both invariant under the action of the unit group R× and to yield the
same average value on every principal ideal. Finite Frobenius rings are central to
ring-linear coding, allowing the generalisations of many classical results [12,27]. It
was shown in [3] that regular, projective codes over finite Frobenius rings with two
non-zero homogeneous weights yield strongly regular graphs. Honold asserted that
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this result extended to the case of modular two-weight codes [15], which includes
the class of regular, projective codes. In [5], generalising techniques of Delsarte [10],
new relationships between the parameters of a projective, regular two-weight code
and the eigenvalues of the corresponding strongly regular graph were established.

In this paper, we extend techniques used in [5,10] to describe the parameters of
two-weight codes over finite Frobenius rings, whose corresponding Cayley graphs
are strongly regular. As in [5], relationships between the eigenvalues of a two-weight
code and its Cayley graph yield existence criteria for such objects.

We provide a construction of an infinite family of modular two-weight codes
over a finite Frobenius ring R that arise from unions of submodules of RkR (see also
[6]) and characterize all codes formed in this way. This establishes the existence of
modular two-weight codes of any square order. This is the only known construction
for an infinite family of two-weight codes over rings of non-prime-power order.

2 Preliminaries

2.1 Orthogonal Arrays and Strongly Regular Graphs

We recall some elementary properties of orthogonal arrays and strongly regular
graphs.

Let s, κ ≥ 2. An orthogonal array with parameters s and κ, denoted OA(s, κ),
is an s2×κ array with entries from an s-set S, such that in any two columns of the
array, each ordered pair of symbols from S × S occurs exactly once. Orthogonal
arrays have a variety of applications such as in the design of experiments (where
each row represents a test to be performed) and for constructions of authentication
codes for cryptography. They also have strong connections to error correcting
codes. The reader is referred to [9,13,25] for further details on orthogonal arrays,
their generalisations and their relations to other structures.

An OA(s, κ) is equivalent to a set of κ − 2 mutually orthogonal latin squares
(MOLS) of side s. Other than obtaining new constructions of infinite families of
orthogonal arrays, a classical problem of the theory is to know the maximum value
of κ for which an OA(s, κ) exists (often denoted in MOLS terminology by N(s)).
A well-known upper bound is given by N(s) ≤ s+ 1, which is tight if s is a prime
power [9, Chapter III]. If s is not a power of a prime, little is known and there
is no known value of s for which the maximum value of κ = s + 1 is attained. In
fact, an OA(s, s+ 1) exists if and only if a finite projective plane of order s exists.
MacNeish [23] showed there there exists an OA(s, pd11 +1) for s = pd11 . . . pdrr , where

p1, . . . , pr are primes and pd11 < . . . < pdrr so in particular we have the lower bound

pd11 + 1 ≤ N(s) for such s.
There is an extensive literature on strongly regular graphs. See for example,

[8,9,11]. A K-regular graph Γ that is neither empty nor complete on N vertices
is called strongly regular with parameters (N,K, λ, µ) if every pair of adjacent
vertices have λ common neighbours and every non-adjacent pair have µ common
neighbours. Equivalently, its adjacency matrix A satisfies the equation

AJ = JA = KJ and A2 − (λ− µ)A− (K − µ)I = µJ. (1)

An eigenvalue of A is then called an eigenvalue of Γ . Strongly regular graphs
have three eigenvalues, say ρ1 ≤ −1 < ρ2 ≤ K. If Γ is disconnected, ρ1 = −1 and
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ρ2 = K. If Γ is connected, the three eigenvalues are distinct. In fact, any connected
graph with three distinct eigenvalues is strongly regular. The eigenvalue ρ2 = 0
if and only if the complement of Γ is disconnected. Γ is called imprimitive (or
trivial) if either Γ or is complement is disconnected. If Γ is not imprimitive, Γ
is called primitive. Provided Γ is primitive, unless the ρi occur with the same
multiplicity, they are integers of opposite sign satisfying K > ρ2 > −1 > ρ1.

The following construction of strongly regular graphs will be used later. Let
B be an OA(s, κ). Then B determines a strongly regular graph Γ (B) by taking
its s2 rows as vertices and joining two vertices if they have a common entry in a
column of B. Γ (B) has parameters

(s2, κ(s− 1), s− 2 + (κ− 1)(κ− 2), κ(κ− 1)).

In the case that κ = 2, this graph is often called the s2 graph or lattice graph
associated to B. Given a strongly regular graph Γ , if there exists some OA(s, κ)
B such that Γ is isomorphic to Γ (B), we will call Γ an OA(s, κ)-type graph.

2.2 Homogeneous Weights and Frobenius Rings

We discuss some properties of finite Frobenius rings that will be used later. For
a thorough discussion of ring theory, see [20]. A detailed treatment of (finite or
infinite) Frobenius rings can be found in [19], while [14,27] discuss the finite case.
Let R be a finite ring with identity. We denote the group of units of R by R×. Let
χ : R → C× be a character of (R,+). Let R̂ = HomZ(R,C×) denote the group

of characters of R. R̂ is an (R,R)-bimodule, given by χr(x) = χ(rx) and rχ(x) =

χ(xr), for all x, r in R, and for all χ in R̂.
A finite ring R is a Frobenius ring if it satisfies any of the following equivalent

conditions (or their right counterparts) [14]:

1. RR ∼= RR̂,
2. R(R/Rad(R)) ∼= Soc(RR),
3. The socle of RR, Soc(RR), is a principal left ideal.

Examples of finite Frobenius rings include finite fields and the integer residue
rings. If R is Frobenius so is Mn(R), the ring of n× n matrices over R. The ring
of 2 × 2 upper triangular matrices over a finite field is not Frobenius. For more
examples, see [19].

A character χ of R is called a left (resp. right) generating character if the map

φ : R→ R̂, φ(r) = rχ is an isomorphism of left R modules. Every Frobenius ring
possesses a left (which is also a right) generating character [27].

We now introduce the homogeneous weight on finite rings.

Definition 1 ([12]) A map w: R → R is called a (left) homogeneous weight if
w(0) = 0 and the following hold:

(i) If Rx = Ry, then w(x) = w(y) for all x, y in R.
(ii) There exists a real number γ ≥ 0 (independent of R) such that∑

y∈Rx
w(y) = γ|Rx|, for all x ∈ R\{0}.
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A left homogeneous weight exists on all finite rings and it is unique up to the
choice of γ. Right homogeneous weights are defined similarly. If R is Frobenius, the
right and left homogeneous weights coincide [24]. If γ = 1, we say the homogeneous
weight is normalized.

Let q be a prime power. Over a finite field Fq, the Hamming weight is homoge-
neous with γ = q−1

q . Over Z4, the Lee weight is given by w(0) = 0, w(1) = w(3) =

1, w(2) = 2. It is homogeneous with γ = 1. If R = F2 ⊕ F2, the normalized homo-
geneous weight is given by w(0, 0) = w(1, 1) = 0, w(1, 0) = w(0, 1) = 2. Observe
the non-zero ring element (1, 1) has weight zero. We will call a ring R proper if
the only ring element of weight 0 in R is the zero element.

We now discuss two well-known characterisations of the homogeneous weight.
Let µ denote the Möbius function on the poset of principal left ideals of R

partially ordered by set inclusion (cf. for example [21]). It is the integer-valued
function implicitly defined by

µ(Rx,Rx) = 1, for all x ∈ R,
µ(Ry,Rx) = 0, if Ry 6≤ Rx, and∑

Ry≤Rz≤Rx

µ(Rz,Rx) = 0, if Ry < Rx.

Theorem 2 ([12]) Let R be a finite ring, x ∈ R and γ ≥ 0 be a real number.
Then the homogeneous weight of x is given by:

w(x) = γ

(
1− µ(0, Rx)

| R×x |

)
.

Theorem 3 ([14]) Let R be a finite Frobenius ring with generating character χ.
Then for a real constant γ > 0 and x ∈ R, the homogeneous weight of x is given
by:

w(x) = γ

(
1− 1

| R× |
∑
u∈R×

χ(ux)

)
. (2)

From now on, we assume R is Frobenius with generating character χ and we
let w denote the homogeneous weight on R of average value γ.

2.3 Codes over Rings

A (left) linear code C ≤ RR
n is a submodule of RR

n. The elements of C are
called codewords. For c = (c1, . . . , cn) ∈ C, the homogeneous weight of c is given
by w(c) :=

∑n
i=1 w(ci). A code C is called proper if the only codeword of weight

0 in C is the zero codeword.
A pair of vectors y, z ∈ Rk are called (right) projectively distinct if yR 6= zR as

right R-modules, otherwise we say that y and z are in the same (right) projective
class (which holds if and only if y = za for some a ∈ R×).

For the remainder we fix the following notation. For any x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Rn, we have x·y :=

∑n
i=1 xiyi. We let C ≤ RR

n denote a proper
left linear code generated by the rows of a k×n matrix G = [g1, ..., gn] over R that
has exactly r projectively distinct columns, indexed by a subset I ⊂ {1, ..., n} of
size r. Furthermore, we assume the following:
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1. [i] := {j ∈ {1, ..., n} : giR = gjR}, for each i ∈ I;
2. ηi columns of G are in the same projective class as gi, for each i ∈ I;

3. δi :=
ηi

|giR×|
, for each i ∈ I;

4. for each j ∈ [i], write gj = giτij for some τij ∈ R×, for each i ∈ I;
5. G⊥ := {x ∈ Rk : x · gi = 0 ∀ i ∈ {1, ..., n}};

6. MG :=
r∑
j=1

gjR;

7. for each j ∈ {1, ..., n}, column gj is non-zero.

For each y ∈ Rk we write annR(y) := {s ∈ R : ys = 0} ≤ RR.

A code over a finite Frobenius ring R is called projective if ηi = 1 for all i and is
called regular if {x · gj : x ∈ Rk} = R for all j ∈ {1, . . . , n}.

Lemma 4 Let y ∈ Rk and ν ∈ R×. Then R× ∩ (1 + annR(y)) is a subgroup of
R× and |R× ∩ (ν + annR(y))||yR×| = |R×|.

Proof The subgroup property is easy to check. Now R× acts on Rk by right mul-
tiplication. The orbit of any element y ∈ Rk is given by yR× and its stabilizer is
R×∩(1+annR(y)), which has order |R×|/|yR×|, by the Orbit-Stabilizer Theorem.
The result now follows since for any ν ∈ R× the map : ν + a 7→ 1 + aν−1 is a
bijection from R× ∩ (ν + annR(y)) onto R× ∩ (1 + annR(y)). ut

Definition 5 ([15]) We say that C is a δ-modular code if δi = δ for each i ∈ I.

Example 1 A projective code over the finite field Fq is 1
q−1 -modular. A projective,

regular code over a finite Frobenius ring R is 1
|R×| -modular. Over Z6, the code

generated by

[
1 1 0
0 0 3

]
is modular and the code generated by

[
1 0
0 3

]
is not modular.

Lemma 6 Let C be δ-modular. If γ = δ−1, then w(c) ∈ Z for all c ∈ C.

Proof Let c ∈ C. Then w(c) =
∑
i∈I ηiw(ci). By hypothesis and Theorem 2 we

have

ηiw(ci) =
ηi
δ

(
1− µ(0, ciR)

|ciR×|

)
= |giR×|

(
1− µ(0, ciR)

|ciR×|

)
.

Let x ∈ Rk such that c = xG. Then ci = x · gi, annR(gi) ⊂ annR(x · gi) and
R× ∩ (1 + annR(gi)) is a subgroup of R× ∩ (1 + annR(x · gi)). The result now
follows by Lemma 4. ut

Definition 7 The code C is called a two-weight code if for all c ∈ C, w(c) ∈
{0, w1, w2} for some 0 < w1 < w2.

If C is a two-weight code, we define a graph Γ (C ) as follows: The codewords
of C are the vertices of Γ (C) and two codewords c, c′ ∈ C are adjacent in Γ (C) if
and only if w(c−c′) = w1. Γ (C) is the Cayley graph generated by set of codewords
of C of weight w1. Observe that changing the value γ of w does not affect Γ (C).
In certain cases, Γ (C) is a strongly regular graph, in which case we will call C
primitive if Γ (C) is primitive.
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3 Two-Weight Rings

We call a finite Frobenius ring R a two-weight ring if for all r ∈ R, w(r) ∈
{0, w1, w2} for some 0 < w1 < w2 and there exist some u, v ∈ R such that w(u) =
w1 and w(v) = w2 (that is to say that R has exactly two non-zero homogeneous
weights). For the remainder of this section, we assume all two-weight rings are
proper and that the homogeneous weight is normalised. If R is a two-weight ring,
then Γ (R), the Cayley graph of the set of ring elements of weight w1 in R is
a strongly regular graph (cf. [3,5]). We now show that any two-weight ring is
isomorphic to one of the following:

1. Let R be a local ring with residue field of order q. Then for all non-zero x ∈ R,

w(x) =

{
w1 = 1, if x /∈ Soc(R),
w2 = q

q−1 , otherwise.

The local R has a non-trivial socle if and only if R is not a finite field, in which
case it is a two-weight ring. If R is a finite field it is not a two-weight ring and
every non-zero element has weight q

q−1 .
2. Let q > 2. Then R = Fq ⊕ Fq is a two-weight ring: for all non-zero x ∈ R,

w(x) =

{
w1 = q(q−2)

(q−1)2 , if x ∈ R×,
w2 = q

q−1 , otherwise.

3. M2(Fq) is a two-weight ring: for all non-zero x ∈ R,1

w(x) =

{
w1 = q(q2−q−1)

(q2−1)(q−1) , if x ∈ R×,
w2 = q2

q2−1 , otherwise.

Let R be a two-weight ring with non-zero weights w1 < w2. It can easily
be deduced from [3,5] that w1 ≤ 1 < w2, with equality if and only if Γ (R) is
imprimitive. It follows that for any non-zero x ∈ R, w(x) = w2 if and only if
µ(0, Rx) < 0 and w(x) = w1 if and only if µ(0, Rx) ≥ 0.

Lemma 1 Let R be a two-weight ring. Then Γ (R) is imprimitive if and only if R
is a local ring.

Proof For a non-zero x ∈ R, w(x) = w1 = 1 if and only if µ(0, Rx) = 0. Since
Soc(RR) is principal, this holds if and only if Soc(RR) is simple. Since R is Frobe-
nius, we have R(R/Rad(R)) ∼= Soc(RR). ut

Recall that a semi-simple ring is one satisfying Rad(R) = {0} (cf. [20]).

Lemma 2 Let R be a two-weight ring. Then if Γ (R) is primitive, R is semi-
simple.

Proof Since Soc(RR) is principal, if Soc(R) 6= R, there exists a /∈ Soc(R) such
that w(a) = 1. This contradicts the assumption Γ (R) is primitive. Applying the
identity R(R/Rad(R)) ∼= Soc(RR) gives Rad(R) = {0}. ut

1 It is well-known that M2(Fq) determines a strongly regular graph by taking the ring
elements as vertices and joining two vertices if their difference has rank 2 (cf. [9]); this is the
same relation as induced by the homogeneous weight.



Two-Weight Codes, Graphs and Orthogonal Arrays 7

Observation 8 In [5, Corollary 15], it was shown that for a proper regular,
projective, two-weight code C, with homogeneous weights 0 < w1 < w2 that
(w2−w1)|R×| is an integral divisor of |C|. Then in particular if R is a two-weight
ring we see that (w2 − w1)|R×| is an integral divisor of |R|.

Observation 9 It is well-known that all finite semi-simple rings are isomorphic
to direct sums of matrix rings over finite fields.

We will use these observations in the proof of the following classification result.

Theorem 10 Let R be a two-weight ring with Γ (R) primitive. Then R is isomor-
phic to either Fq ⊕ Fq, q > 2, or to M2(Fq).

Proof Since R is semi-simple, we may write R ∼= ⊕ti=1Mni(Fqi) for some prime
powers qi and positive integers ni. Observe all minimal (left) ideals Rx in R
have the same order m = w2

w2−1 , since any generator x of such an ideal satisfies

µ(x) = −1 and w(x) = w2 = |Rx|
|Rx|−1 . Now let Rj = Mnj (Fqj ). For xj ∈ Rj , we

let x̄j ∈ R have xj in the jth coordinate and zeroes elsewhere. If Rjxj is minimal
of order mj , it follows that Rx̄j is also minimal of order mj = m (thus mj is
independent of j).

Suppose for the sake of contradiction that t > 2. Then for j ∈ {1, 2, 3}, let
xj ∈ Rj such that Rjxj is minimal of order m. Then x = x̄1 + x̄2 + x̄3 ∈ R satisfies
µ(x) = −1. Therefore w(x) = 1 + 1

(m−1)3 6= w2, unless m = 2. If m = 2, R is not
proper.

Let t = 2 and without loss of generality, suppose n1 > 1. Then m = qn1
1 . Let

A ∈ Mn1(Fq1) have a11 = a22 = 1 and all other coordinates equal to zero. Then
Ā ∈ R satisfies µ(Ā) = q1, |R×Ā| = q1(qn1

1 − 1)(qn1−1
1 − 1) and w(Ā) = w1 =

1 − 1

(q
n1
1 −1)(q

n1−1
1 −1)

. Now for j = {1, 2}, let xj ∈ Rj such that Rjxj is minimal.

Then µ(x̄1 + x̄2) = 1 and w(x̄1 + x̄2) = 1− 1
(q

n1
1 −1)2

6= w1 as required.

Finally, suppose t = 1 and R = Mn(Fq). Suppose for the sake of contradiction
that n ≥ 3. Since m = qn, w2 = qn

qn−1 , and using the same notation as above,

w(A) = w1 = 1− 1
(qn−1)(qn−1−1) . As |Mn(Fq)×| = qn(n−1)/2

n∏
i=1

(qi − 1), it follows

by [5, Corollary 15] that

|R×|(w2 − w1) = qn(n−1)/2+n−1
n−2∏
i=1

(qi − 1)

is an integral divisor of |R| = qn
2

. This only happens if n = 3 and q = 2, in
which case, R = M3(F2) and w2 = 8

7 . It can be checked that µ(0, RI) = −8 and
w(I) = 22

21 6= w2. The result follows. ut

4 The Order of Linear Codes

We establish results on the order of linear codes over finite Frobenius rings that
will be needed later. First, we again fix some notation.
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Definition 11 Let S be a non-empty subset of Rk.

S⊥ := {x ∈ Rk : x · s = 0 for all s ∈ S} < RR
k,

C(S) := {(x · s)s∈S\{0} : x ∈ Rk} < RR
|S\{0}|,

MS :=
∑
s∈S

sR < RkR.

Let S1, ..., St be non-empty subsets of Rk. We denote by C(S1, ..., St) the left R-
linear code of length

∑t
i=1 |Si\{0}| defined by

C(S1, ..., St) := {((x · s1)s1∈S1\{0}, ..., (x · st)st∈St\{0}) : x ∈ Rk}

Given a k × n matrix Y = [y1, ..., yn] over R with each yi non-zero, we write
C(Y ) in place of C({y1}, ..., {yn}). Then with respect to this notation, we have
C = C(G).

Lemma 12 Let S1, ..., St be non-empty subsets of Rk. Then the codes C(S1, ..., St)
and C(

∑t
i=1MSi

) are isomorphic as left R-modules. In particular, |C(S1, ..., St)|
= |C(

∑t
i=1MSi

)|.

Proof Clearly, we have the left R-module isomorphisms

C(S1, ..., St) ∼= Rk/
t⋂
i=1

Si
⊥ and C

(
t∑
i=1

MSi

)
∼= Rk/

(
t∑
i=1

MSi

)⊥
.

The result now follows from the fact that

(
t∑
i=1

MSi

)⊥
=

t⋂
i=1

MSi

⊥ and that for

each i, S⊥i = M⊥Si
. ut

Since R is Frobenius, for any left or right ideal I of R, the average value of the
homogeneous weight of its elements is also constant, that is,

∑
x∈I w(x) = γ|I|

[12,14]. This gives the following two results.

Lemma 13 (See also [26, Lemma 15]) Let M < RkR. Then every non-zero code-
word c ∈ C(M) satisfies w(c) = γ|M |.

Lemma 14 ([12]) For each i ∈ {1, ..., n},
∑
c∈C w(ci) = γ|C|.

Lemma 15 Let M ≤ RkR. Then |C(M)| = |M |.

Proof We count the total weight of the codewords of C(M) in two ways. Applying
Lemmas 13 and 14 gives (|C(M)| − 1)γ|M | = (|M | − 1)γ|C(M)|. ut

Corollary 16 |C| = |MG|.

Proof C = C(G) ∼= C(MG) by Lemma 12. From Lemma 15 we then get |C| =
|C(MG)| = |MG|. ut
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5 Two-Weight Codes and Graphs

We determine relations between the parameters of a two-weight code and its cor-
responding Cayley graph. We will use the concept of the distance matrix of a code
[5,10].

Definition 17 The distance matrix of C is the |C| × |C| matrix D with rows and
columns indexed by the elements of C and whose (u, v)-th entry is Duv = w(u−v)
for u, v ∈ C. For each i ∈ I, the ith coordinate distance matrix of C is the |C|×|C|
matrix Di defined by (Di)uv = w(ui − vi).

Definition 18 ([5,10]) We denote by X the complex |C| × |R×|n matrix whose
components satisfy (X )c,(λ,i) := χ(ciλ) for each c ∈ C, i ∈ {1, ..., n} and λ ∈ R×.

For each i ∈ I we let Xi be the |C| × |R×|ηi submatrix of X whose columns are
those indexed by (j, λ) for j ∈ [i] and λ ∈ R×.

Given a complex matrix X, we write X∗ to denote the conjugate transpose
matrix of X. We let J denote the |C| × |C| all-ones matrix.

Theorem 19

(i) DJ = γn|C|J and

(ii) D2 = γ|C|

(
γ

(
n2 + γ

∑
i∈I

δiηi

)
J −

∑
i∈I

δiηiDi

)
.

Proof The proof of (i) follows immediately from Lemma 14 since

(DJ)uv =
∑
x∈C

w(u− x) =
∑
x∈C

w(x) =
n∑
i=1

∑
x∈C

w(xi) = γn|C|,

for any u, v ∈ C.
For fixed i, j ∈ {1, ..., n} and λ, τ ∈ R×, define

Λ : Rn −→ R : c = (c1, ..., cn) 7→ cjτ − ciλ.

Then Λ is the zero map on C if and only if gjτ − giλ = 0, in which case j ∈ [i]
and gj = giτij , which holds if and only if τijτ − λ ∈ annR(gi). It follows that

(X ∗X )(i,λ),(j,τ) =
∑
c∈C

χ (cjτ − ciλ)

=

{
|kerΛ ∩ C| if Λ(C) = {0},

0 otherwise.

=

{
|C| if j ∈ [i] and λ ∈ τijτ + annR(gi),
0 otherwise.

Then from Lemma 4,

((X ∗X )X ∗)(i,λ),c = |C|
∑
j∈[i]

∑
λ∈τijτ

+annR(yi)

χ(x · giλ) = |C||R×| ηi
|giR×|

χ(x · giλ).
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It is straightforward to show that X ∗J = 0, XiX ∗i = |R×|ηi(J − γ−1Di) and
XX ∗ = |R×|(nJ − γ−1D). It follows that

X ∗(XX ∗) = |R×|X ∗
(
J − γ−1D

)
= −|R×|γ−1X ∗D,

and so for each i ∈ I, |C||R×| ηi
|giR×|

X ∗i + |R×|γ−1X ∗i D = 0. Then

0 = |C||R×|
∑
i∈I

δiXiX ∗i + |R×|γ−1XX ∗D,

= |C||R×|
∑
i∈I

δiηi(J − γ−1Di) + |R×|γ−1(nJ − γ−1D)D.

The result now follows from (i). ut

The proof of the following corollary uses arguments similar to those in [5,10].

Corollary 20 Let C be a proper two-weight code with non-zero weights w1 < w2.
Then Γ (C) is strongly regular if and only if there exist some α, β ∈ R such that∑
i∈I δiηiDi = αD + β(J − I), in which case the eigenvalues K, ρ1, ρ2 of Γ (C)

satisfy

(i) (w2 − w1)K = w2(|C| − 1)− γn|C|,
(ii) (w2 − w1)ρ1 = −w2 +

1

2

(
γ|C|α−

√
γ2|C|2α2 + 4γ|C|β

)
,

(iii) (w2 − w1)ρ2 = −w2 +
1

2

(
γ|C|α+

√
γ2|C|2α2 + 4γ|C|β

)
,

(iv) |R×|2|C|2α2 and |R×||C|β are integers and
√
|R×|2|C|2α2 + 4|R×||C|β is an

integer divisible by ρ2 − ρ1.

Proof The adjacency matrix A of Γ (C) satisfies (w2 − w1)A = w2(J − I) − D.
Then from Equation (1), Γ (G) is strongly regular if and only if D2 is an R-linear
combination of D, J and I. Suppose there exist α, β ∈ R such that

∑
i∈I δiηiDi =

αD+β(J−I). Then any restricted eigenvalue ρ of A satisfies (w2−w1)ρ = −w2−θ,
where θ is a restricted eigenvalue of D. From Theorem 19, such θ are roots of the
polynomial x2 + γ|C|α+ γ|C|β ∈ R[x] which gives (ii) and (iii). Part (iv) follows
since the homogeneous weight is integer-valued for γ = |R×| and so, using (ii) and
(iii), we get (w2 − w1)(ρ2 − ρ1) =

√
|R×|2|C|2α2 + 4|R×||C|β ∈ Z. The rest can

be deduced from (ii). ut

Example 2 Let R = Z6 and let C be the code generated by [2 3 2 2 2 3 3]. C
is a two-weight code of order 6 with normalized weights w1 = 6, w2 = 12. Then
I = {1, 2}, δ1 = 2, δ2 = 3, η1 = 4 and η2 = 3. Then Γ (C) is strongly regular if
and only if there exist α, β ∈ Q such that 8w(c1) + 9w(c2) = αw(c) + β for all
non-zero c ∈ C. It is easy to check that no such α and β exist.

Example 3 Let R = Z4 and M1 = Z4(0, 1),M2 = Z4(1, 0) ≤ Z4
2. Then C =

C(M1,M2,Z4
2) is a non-modular two-weight code with normalized weights w1 =

20, w2 = 24. As α = 3, β = −24 satisfy
∑
i∈I δiηiw(ci) = αw(c) + β for all non-

zero c ∈ C, Γ (C) is strongly regular (in fact Γ (C) is an OA(4, 2)-type strongly
regular graph).
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These existence criteria are greatly simplified for the case β = 0, in which case
the eigenvalues of D are 0 and γ|C|α.

Corollary 21 Let C be a proper two-weight code with non-zero weights w1 < w2

and suppose that
∑
i∈I δiηiDi = αD for some α ∈ R. Let Γ (C) have restricted

eigenvalues ρ1 < ρ2. Then

(i) ρ2 − ρ1 is an integral divisor of |R×||C|α;

(ii) w1 =
γ|C|(ρ1 + 1)α

(ρ1 − ρ2)
and w2 =

γ|C|ρ1α

(ρ1 − ρ2)
;

(iii) the multiplicities m1 and m2 of ρ1 and ρ2, respectively, satisfy

m1 = |C| − 1− n

α
and m2 =

n

α
.

In particular, if C satisfies the hypothesis of Corollary 21, then α ∈ Q.

Corollary 22 Let C satisfy the hypothesis of Corollary 21. Then Γ (C) is imprim-
itive if and only if w2 = γα|C|.

Proof Using Part (ii) of Corollary 21 we see that w2 = γα|C| if and only if ρ2 = 0,
in which case the complement of Γ (C) is disconnected. If Γ (C) itself is discon-
nected then we have ρ1 = −1, which, again from Part (ii), yields w1 = 0, giving a
contradiction. ut

6 Modular Two-Weight Codes

The code C is modular if for each i ∈ I, δi = δ = α and β = 0. We have the
following result.

Corollary 23 Let C be a δ-modular code. Then

D2 + γ|C|δD = nγ2|C| (γδ + n) J.

In particular, if C is a proper two-weight code, then Γ (C) is strongly regular.

Proof This follows immediately from Theorem 19, since δi = δ for each i and∑
i∈I ηi = n. ut

We remark that it was already known that a proper modular two-weight code
has a strongly regular Cayley graph: Honold asserted this in [15]. A proof may
be read in [16, Theorem 12], which appeared on arXiv.org during the review of
this paper. An important component of our approach is that Corollaries 21 and 23
yield explicit relations between the weights of a proper modular two-weight code
C and the eigenvalues of Γ (C) in the form of Corollary 26. This provides useful
existence criteria for modular two-weight codes and their corresponding strongly
regular Cayley graphs.

We now consider existence questions for modular two-weight codes. We first
show that we may assume δ = 1 without loss of generality.

Lemma 24 Let C be a δ-modular two-weight code with non-zero weights 0 < w1 <
w2. Then there exists a 1-modular two-weight code C′ ≤ RR

n′ of order |C′| = |C|
and length n′ = nδ−1 with non-zero weights w′1 = w1δ

−1 and w′2 = w2δ
−1 such

that Γ (C) is isomorphic to Γ (C′).
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Proof Let G′ be the k×
∑
i∈I |giR

×|matrix formed by replacing, for each i ∈ I the

ηi columns that are unit multiples of gi with some (not necessarily distinct) |giR×|
unit multiples of gi. Then C′ = C(G′) has length n′ =

∑
i∈I |giR

×| =
∑
i∈I

ηi
δ =

n
δ and is 1-modular. The order of C′ is |C′| = |MG′ | = |MG| by Lemma 16 and so
there is a one-to-one correspondence between the words of C and C′. Explicitly,
given any c = xG ∈ C, let c′ = xG′ be the corresponding codeword in C′. Clearly
for any i ∈ I, w(c′i) = w(ci), so that

w(c′) =
∑
i∈I
|giR×|w(c′i) =

∑
i∈I
|giR×|w(ci) =

∑
i∈I

ηi
δ
w(ci) = δ−1w(c).

Then C′ is a 1-modular two-weight code with Γ (C′) isomorphic to Γ (C).
ut

We now show that if C is a 1-modular two-weight code, there exists a 1-modular
two-weight code C′ such that Γ (C′) is isomorphic to Γ (C)c, the complement of
Γ (C).

Lemma 25 Suppose C is a primitive, proper 1-modular two-weight code with non-
zero normalized weights 0 < w1 < w2. Then C′ = C

(
MG \ ∪ni=1giR

×) is a proper,
1-modular two-weight code of order |C| with non-zero normalized weights w′1 < w′2
where w′1 = |C|−w2 and w′2 = |C|−w1. Moreover, Γ (C)c is isomorphic to Γ (C′).

Proof As C is 1-modular, C′ is 1-modular. Now if xG = 0 then x ∈ MG
⊥ and

xG′ = 0. By Lemma 13, for any x ∈ Rk such that xG 6= 0, w(xG′) + w(xG) =
|MG| = |C|. As Γ is primitive, Corollary 22 implies w2 < |C| and |C| − w2 > 0.
Then C′ is a two-weight code with the weights claimed. Further, if w(xG′) = 0,
xG = 0 (else we would have w(xG) = |C|) and so xG′ = 0. It follows that C′ is
proper and |C| = |C′|. Finally, as w(xG) = w1 if and only if w(xG′) = w′2, Γ (C)c

is isomorphic to Γ (C′). ut

Corollary 26 Let Γ be a strongly regular graph with parameters (N,K, λ, µ) and
restricted eigenvalues ρ1 < ρ2 of multiplicities m1,m2 respectively. Then Γ is the
Cayley graph of a δ-modular two-weight code over R if and only if Γ is isomorphic
to Γ (C), where C is a 1-modular two-weight code with non-zero weights w1, w2

such that the following hold.

(i) |C| = N and ρ1 − ρ2 is an integer dividing N .
(ii)

w1 =
(ρ1 + 1)N

ρ1 − ρ2
and w2 =

ρ1N

ρ1 − ρ2
.

(iii) The length of C is given by n = m2.
(iv) C′ = C(MG\ ∪ni=1 giR

×) has length n′ = m1, two non-zero weights w′1 =
N −w2, w′2 = N −w1 and Γ (C′) is a strongly regular graph with parameters
(N,N −K − 1, N − 2K + µ− 2, N − 2K + λ).

This result can be used to analyse a feasible parameter set (N,K, λ, µ) [2] of a
strongly regular graph that might arise from a modular two-weight code C, or
conversely to check the existence of a modular two-weight code. Moreover, if a
strongly regular graph is the Cayley graph of a modular two-weight code, so is
its complement, thus it suffices to check parameters up to complements only. For
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example, the first constraint “ρ1 − ρ2 divides N” shows that at most 732 of the
2140 feasible parameters sets (counted up to complements) for graphs on at most
1300 vertices listed in [2] could be the parameters of a strongly regular graph Γ (C)
for a modular two-weight code C. Among these there are 1514 putative parameter
sets, for which graph existence is not known, and only 433 of these could come
from a a modular two-weight code.

A search was carried out in [5] for the sub-class of regular projective two-
weight codes. There are significant differences between this and the more general
case of modular codes. In the first instance, the complement of a strongly regular
graph Γ (C) coming from a two-weight code C does not necessarily arise from a
regular-projective two-weight code, so any search cannot exclude complementary
parameters. Secondly, in the projective, regular case, N = |C| is an upper bound
on |R|. It is therefore often possible to produce an exhaustive list of candidate
coefficient rings over which search can be conducted. A further complication in
both cases is that canonical descriptions of generator matrices for rings that are
not direct products of chain rings are not known in general, making a complete
search a very difficult task. We remark that in the regular projective case, out of
the 2956 (up to complements 1514) putative parameter sets for which the existence
of a graph is not yet known, there remain only 82 open cases. All regular projective
two-weight codes found by the search had order the square of a prime power.

Example 4 The parameter set (64, 36, 20, 20) corresponds to a graph with eigen-
values -4,4 and respective multiplicities 27, 36. Any 1-modular two-weight code
determining a graph with these parameters has order 64, length 27 and normal-
ized weights w1 = 24, w2 = 32. Over R = M2(F2)⊕F4, we suppose C is generated
by a single codeword c and the identity element (I, 1) of R is a coordinate of c.
Then 18 entries of c are units in R and they contribute weight 20 to c. By exam-
ining the weights of the ring elements, we see the remaining nine coordinates of c
must have total weight 12 and therefore be ring elements of the form (A, 0), where
A has rank 1 in M2(F2). It can be checked that the following vector generates a
1
3 -modular version of the required code:[

(I, 1), (I, 1), (I, 1), (I, 1), (I, 1), (I, 1),

([
1 0
0 0

]
, 0

)
,

([
0 1
0 0

]
, 0

)
,

([
1 1
0 0

]
, 0

)]
Example 5 Consider the feasible parameter set (96, 45, 24, 18). Suppose that a
strongly regular graph Γ for such parameters exists, in which case it has eigenvalues
−3, 9, with multiplicities 75 and 20, respectively. Suppose that C is a two-weight
code over R = F32 ⊕ F3 satisfying Γ = Γ (C). Let k ∈ Z, and let g ∈ Rk have
(u, a) ∈ R in some coordinate, with u 6= 0. Then as |gR×| ≥ 31, if the vectors in
the projective class of g are columns in G, n ≥ 31. This contradicts n = m2 = 20.
It follows that every coordinate of every vector of RkR that is a column of G must
be of the form (0, a) and thus |C| = 3b, for some b ∈ N, giving a contradiction.

7 Codes, Arrays and Graphs

In the following section we show that modular two-weight codes can be constructed
by taking unions of submodules of RkR with pairwise trivial intersection. We thus
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illustrate connections between two-weight codes, orthogonal arrays and partial
congruence partitions.

These examples establish the existence of primitive (those codes C such that
Γ (C) is primitive) modular two-weight codes over any finite Frobenius ring R
and of any square order N > 4. No regular, projective two-weight codes of non-
prime-power order are known to exist and their existence has been excluded for
numerous non-prime-power square orders [5]. In fact, this construction is the only
known infinite family of primitive two-weight codes over rings whose orders are
not all prime powers.

We first show certain (not necessarily two-weight) codes can be used to con-
struct orthogonal arrays and strongly regular graphs. We will use the following
result.

Lemma 27 Let S1, . . . , St ⊆ Rk, t ≥ 2. Then for every x ∈ Rk, |{i : x ∈ S⊥i }| ∈
{0, 1, t} if and only if for all distinct i, j ∈ {1, . . . , t}, MSi

+ MSj
⊇ MSl

for all
l ∈ {1, . . . , t}.

Proof We have MSi
+MSj

⊇MSl
if and only if (MSi

+MSj
)⊥ ⊆M⊥Sl

which holds

if and only if M⊥Si
∩M⊥Sj

⊆ M⊥Sl
. Since S⊥i = M⊥Si

, any x ∈ Rk is contained in

exactly one, none or all S⊥i . ut

Let S1, . . . , St ⊆ Rk. For each i ∈ {1, ..., t} and c ∈ C(S1, ..., St), let Πi(c) ∈
C(Si) be the projection of c onto the coordinates indexed by the elements of
Si. Define a graph H(S1, ..., St) whose vertices are the codewords of C(S1, ..., St)
and where two vertices c, c′ are adjacent if and only if Πi(c) = Πi(c

′) for some
i ∈ {1, . . . t}.

Theorem 28 Let t ≥ 2 and let S1, . . . , St ⊂ Rk be a family of sets satisfying

(i) |MSi
| = v for all i.

(ii) MSi
∩MSj

= {0} for all i, j.
(iii) MSi

+MSj
⊇MS`

for all i, j, ` ∈ {1, . . . , t} with i 6= j.

Then H(S1, ..., St) is an OA(v, t)-type graph.

Proof By Lemmas 12 and 15, |C(Si)| = |MSi
| = v for each i and

|C(S1, ..., St)| = |C(MS1
, ...,MSt

)| = |
t∑
i=1

MSi
| = |MSi

+MSj
| = v2,

for any distinct i and j. We now construct an OA(v, t) from C(S1, ..., St). Let V
be an arbitrary v-set. For each i, let fi : C(Si) → V be a bijection. Then define
maps

F : C(S1, ..., St) → V t : c 7→ (f1(Π1(c)), f2(Π2(c)), . . . , ft(Πt(c))),

Fij : C(Si, Sj) → V 2 : c 7→ (fi(Πi(c)), fj(Πj(c))).

Arrange {F (c) : c ∈ C} as the rows of an array, A. As |C(Si, Sj)| = |MSi
+MSj

| =
v2 for any distinct i and j, the map Fij is a bijection. Then every element of V ×V
occurs exactly once in the ith and jth columns of A, which we then conclude is an
OA(v, t).



Two-Weight Codes, Graphs and Orthogonal Arrays 15

Finally, we show H(S1, ..., St) is isomorphic to Γ (A). Let c, c′ ∈ C(S1, ..., St).
Now (c, c′) is an edge of H(S1, ..., St) if and only if there exists a unique i such
that Πi(c − c′) = 0, or equivalently, Πi(c) = Πi(c

′). This holds if and only if
fi(Πi(c)) = fi(Πi(c

′)) which is precisely the condition needed for F (c) and F (c′)
to be adjacent in Γ (A). ut

We now show that a modular two-weight code can be constructed from any
family of subsets of RkR satisfying Theorem 28. This generalises a well-known
construction for two-weight codes over Fq that takes unions of subspaces of Fqk
(cf. [7]).

Corollary 29 Let S1, . . . , St, t ≥ 2 be subsets of RkR satisfying the hypothesis of
Theorem 28 with t < v + 1. For each i ∈ {1, ..., t} write M̄i = MSi

\{0}. Let
Y = [(y1)y1∈M̄1

, ..., (yt)yt∈M̄t
]. Then

(i) C(Y ) = CY is a 1-modular two-weight code of order v2 with non-zero weights
w1 = (t− 1)v and w2 = tv,

(ii) Γ (CY ) is an OA(v, t)-type graph.

Proof We first show CY is a two-weight code. For each c ∈ CY , let πi(c) denote the
projection of c onto the coordinates corresponding to the v − 1 non-zero elements
of MSi

. Let c = xY ∈ CY for some x ∈ Rk. Then πi(c) = 0 if and only if x ∈M⊥Si

and so we compute

w(xY ) =
t∑
i=1

w(πi(xY )) = tv − |{i : x ∈ Si⊥}|v.

If follows by Lemma 27 that CY has non-zero weights w1 = (t− 1)v and w2 = tv
(since t < v + 1, C is not a constant weight code). Then CY is a 1-modular
two-weight code and by Corollary 20, Γ (CY ) is a strongly regular graph with
parameters

(v2, t(v − 1), v − 2 + (t− 1)(t− 2), t(t− 1)).

It is easy to see that Γ (CY ) is isomorphic to H(C(S1, ..., St)) since w(c− c′) = w1

if and only if there exists a unique i such that πi(c) = πi(c
′). ut

Remark 1 Not every modular two-weight code produced by Theorem 28 has Cay-
ley graph Γ (C) isomorphic to H(C). Let p be a prime and C the code over R = Zp2
generated by [

1 0 1 . . . 1
0 1 1 . . . (p− 1)

]
∈ R2×(p+1).

Then C satisfies the conditions of Theorem 28 and H(C) is an OA(p2, p+ 1)-type
graph. On the other hand, as observed in [3, Proposition 6.2], C is a regular,
projective two-weight code and Γ (C) has the parameters of the strongly regular
graph from an OA(p2, p).

Remark 2 Corollary 29 Part (i) can also be arrived at by combining [22, Proposi-
tion 3.4] and Theorem 17 of the preprint [16] as follows. Let Y and CY be as in
Corollary 29. Then ∪ti=1M̄i is a partial difference set by [22, Proposition 3.4], and
so CY is a two-weight code by [16, Theorem 17].
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Given S1, ..., St ⊂ Rk satisfying the hypothesis of Theorem 28, the set of
modules M = {MS1

, ...,MSt
} is an example of a partial congruence partition [1,

Definition 9.3], for the group (G,+) = (MSi
+MSj

,+), or equivalently a translation
net. If R is a finite field then M is a partial-spread.

Jungnickel characterized all partial congruence partitions in (Zkq ,+) [17, The-
orem 2.1]. The argument given therein and outlined briefly below extends imme-
diately for submodules of RkR and allows us to describe all such sets M.

Let M = {M1, ...,Mt} for some Mi < RkR such that for some M < RkR, M =
Mi ⊕Mj for each pair of distinct i, j ∈ {1, ..., t}. Then the Mi are all isomorphic
as right R-modules. Let a ∈ Mi for some i ≥ 3. Then a = x + y for uniquely
determined x ∈ M1, y ∈ M2. In particular, there is a bijection σ : M1 −→ M2

such that Mi = {x + σ(x) : x ∈ M1} and in fact σ must be a right R-module
isomorphism.

We hence give an explicit construction of two-weight codes arising from Corol-
lary 29, which is essentially unique.

Construction 30 Let M1,M2 < RkR be isomorphic as right R-modules and have
order v. Let HomR(M1,M2) denote the additive group of right R-module homo-
morphisms from M1 onto M2. Let Σ be an m-subset of the isomorphisms of
HomR(M1,M2) such that σ − τ is an isomorphism for any distinct σ, τ ∈ Σ.
Then

M = {M1,M2, {x+ σ(x) : x ∈M1} : σ ∈ Σ}

forms a set of submodules of RkR satisfying the conditions of Corollary 29. Let Y
be the k × n matrix whose columns comprise the non-zero elements in the union
of the submodules of M and let C = C(Y ). Then

– C has order v2, length n = (m+2)(v−1) and exactly two non-zero normalized
homogeneous weights w1 = (m+ 1)v, w2 = (m+ 2)v;

– Γ (C) is an OA(v,m+ 2)-type graph.

Construction 30 gives all possible matrices Y and two-weight codes C(Y ),
formed as in the statement of Corollary 29. Note that orthogonal arrays with the
above parameters were known to exist (see for example [23]), independently of
these constructions.

Example 6 Let k = 2`, let R be commutative and let A ∼= R`. Let Σ be an m-
subset of the invertible matrices of M`(R) such that the difference between any
pair of elements of Σ represents an element of AutR(A). Then the k × n matrix
Y whose columns comprise the elements of

{(x, 0), (0, x), (x, Lx) : x ∈ A\{0}, L ∈ Σ} ⊂ Rk

generates a code C(Y ) of order |A|2, length n = (m + 2)(|A| − 1) having two
non-zero normalized weights w1 = (m + 1)|A|, w2 = (m + 2)|A|. It is easy to see
that m is less than the size of any minimal left ideal of M`(R).

Example 7 Let ` = 2, let R = Zpq for primes p < q, and let M = R2. For
i ∈ {1, ..., p − 1}, define σi : R2 → R2, σi(x) = ix. Then Σ = {σ1, . . . , σp−1} ⊂
Aut(R2),m = |Σ| = p−1 and σi−σj ∈ Aut(R2) for distinct i and j. Σ determines
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a two-weight code C of order p4q4 and length (p + 1)(p2q2 − 1) with w1 = p3q2

and w2 = (p+ 1)p2q2. Γ (C) is an OA(p2q2, p+ 1)-type graph. C is generated by[(
0
x

)
x∈M\{0}

(
x
0

)
x∈M\{0}

(
x
x

)
x∈M\{0}

. . .

(
x

(p− 1)x

)
x∈M\{0}

]
.

Construction 31 Let a ∈ R\{0}. Choose U ⊆ R× of order m such that for every
distinct ui, uj ∈ U , ui − uj is a unit. Let

M = {(1, 0)aR, (0, 1)aR, (1, u1)aR, . . . , (1, um)aR}.

M forms a set of submodules of R2
R as special case of Construction 30 with ` = 1

and A1 = A2 = aR. Let Y be the 2 × n matrix whose columns comprise the
non-zero elements in the union of these submodules and let C = C(Y ). Then

– C has order |aR|2, length n = (m + 2)(|aR| − 1) and non-zero normalized
weights w1 = (m+ 1)|aR|, w2 = (m+ 2)|aR|;

– Γ (C) is an OA(|aR|,m+ 2)-type graph;
– m < min{|I| : I / RR}.

Example 8 Let a = 1 and U = {1}. The corresponding two-weight code C has
length 3|R| − 3, order |R|2 and non-zero weights w1 = 2|R|, w2 = 3|R|. Γ (C) is
an OA(|R|, 3)-type graph. G has the structure[(

0
r

)
r∈R\{0}

(
r
0

)
r∈R\{0}

(
r
r

)
r∈R\{0}

]
.

Example 9 Let R = Zpq for primes p < q. Then R has the non-trivial proper
ideals pR and qR. Let U = {1, ..., p− 1}. Then U ⊂ R×,m = |U | = p− 1 and the
difference between any pair of elements of U is a unit in R. Then U yields 3 two-
weight codes and orthogonal arrays with parameters as indicated in the following
table.

n w1 w2 OA(|aR|, p+ 1)

pR (p+ 1)(q − 1) pq (p+ 1)q OA(q, p+ 1)
qR (p+ 1)(p− 1) p2 (p+ 1)p OA(p, p+ 1)
R (p+ 1)(pq − 1) p2q (p+ 1)pq OA(pq, p+ 1)

Example 10 Let S be a finite Frobenius ring, R = M2(S), U1 =

[
1 1
1 0

]
, U2 =[

0 1
1 1

]
. Let U = {I, U1, U2} and let a = I. Then a and U determine a two-weight

code C of order |S|8 and length 5(|S|4 − 1) with w1 = 4|S|4, w2 = 5|S|4. Γ (C) is
an OA(|S|4, 5)-type graph. The structure of a generator matrix for C is given by[(

0
A

)
A∈R\{0}

(
A
0

)
A∈R\{0}

(
A
A

)
A∈R\{0}

(
A
U1A

)
A∈R\{0}

(
A
U2A

)
A∈R\{0}

]
.

Acknowledgement: The authors would like to thank the anonymous review-
ers for their comments and suggestions, which has led to a great improvement in
the presentation of this paper.



18 Eimear Byrne, Alison Sneyd

References

1. Beth, T., Jungnickel, D., Lenz, H. (eds.): Design Theory, second edn. Discrete Mathematics
and its Applications (Boca Raton). Cambridge University Press (1999)

2. Brouwer, A.E.: Tables of parameters of strongly regular graphs.
http://www.win.tue.nl/∼aeb/graphs/srg/srgtab.html

3. Byrne, E., Greferath, M., Honold, T.: Ring geometries, two-weight codes, and strongly
regular graphs. Des. Codes Cryptogr. 48(1), 1–16 (2008)

4. Byrne, E., Greferath, M., Kohnert, A., Skachek, V.: New bounds for codes over finite
Frobenius rings. Des. Codes Cryptogr. 57(2), 169–179 (2010)

5. Byrne, E., Kiermaier, M., Sneyd, A.: Properties of codes with two homogeneous weights.
Finite Fields Appl. 18(4), 711–727 (2012)

6. Byrne, E., Sneyd, A.: Constructions of two-weight codes over finite rings. Proceedings
of the 19th International Symposium on Mathematical Theory of Networks and Systems
(MTNS 2010) (2010)

7. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. London Math.
Soc. 18(2), 97–122 (1986)

8. Cameron, P.J., van Lint, J.H.: Graphs, codes and designs, London Mathematical Society
Lecture Note Series, vol. 43. Cambridge University Press, Cambridge (1980)

9. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs, second edn. Dis-
crete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Ra-
ton, FL (2007)

10. Delsarte, P.: Weights of linear codes and strongly regular normed spaces. Discrete Math.
3, 47–64 (1972)

11. Godsil, C., Royle, G.: Algebraic graph theory, Graduate Texts in Mathematics, vol. 207.
Springer-Verlag, New York (2001)

12. Greferath, M., Schmidt, S.E.: Finite-ring combinatorics and MacWilliams’ equivalence
theorem. J. Combin. Theory Ser. A 92(1), 17–28 (2000)

13. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal arrays. Springer Series in Statistics.
Springer-Verlag, New York (1999)

14. Honold, T.: Characterization of finite Frobenius rings. Arch. Math. (Basel) 76(6), 406–415
(2001)

15. Honold, T.: Further results on homogeneous two-weight codes. Proceedings of Optimal
Codes and Related Topics, Bulgaria (2007)

16. Honold, T.: The geometry of homogeneous two-weight codes. arXiv:1401.7414 (2014)
17. Jungnickel, D.: Partial spreads over Zq . Linear Algebra Appl. 114/115, 95–102 (1989)
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