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Abstract We investigate properties of two-weight codes over finite Frobenius
rings, giving constructions for the modular case. A §-modular code [15] is charac-
terized as having a generator matrix where each column g appears with multiplic-
ity §|gR*| for some § € Q. Generalizing [10] and [5], we show that the additive
group of a two-weight code satisfying certain constraint equations (and in partic-
ular a modular code) has a strongly regular Cayley graph and derive existence
conditions on its parameters. We provide a construction for an infinite family of
modular two-weight codes arising from unions of submodules with pairwise trivial
intersection. The corresponding strongly regular graphs are isomorphic to graphs
from orthogonal arrays.
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1 Introduction

Homogeneous weights have been widely studied in the context of linear codes
over finite rings and modules [3,4,5,12,14,18,24]. They were first proposed for the
integer residue rings in [18]. The concept was generalised in different ways in [12,
24]. We follow the definition given in [12], which requires such a weight on a ring
R to be both invariant under the action of the unit group R* and to yield the
same average value on every principal ideal. Finite Frobenius rings are central to
ring-linear coding, allowing the generalisations of many classical results [12,27]. It
was shown in [3] that regular, projective codes over finite Frobenius rings with two
non-zero homogeneous weights yield strongly regular graphs. Honold asserted that
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this result extended to the case of modular two-weight codes [15], which includes
the class of regular, projective codes. In [5], generalising techniques of Delsarte [10],
new relationships between the parameters of a projective, regular two-weight code
and the eigenvalues of the corresponding strongly regular graph were established.

In this paper, we extend techniques used in [5,10] to describe the parameters of
two-weight codes over finite Frobenius rings, whose corresponding Cayley graphs
are strongly regular. As in [5], relationships between the eigenvalues of a two-weight
code and its Cayley graph yield existence criteria for such objects.

We provide a construction of an infinite family of modular two-weight codes
over a finite Frobenius ring R that arise from unions of submodules of R}, (see also
[6]) and characterize all codes formed in this way. This establishes the existence of
modular two-weight codes of any square order. This is the only known construction
for an infinite family of two-weight codes over rings of non-prime-power order.

2 Preliminaries
2.1 Orthogonal Arrays and Strongly Regular Graphs

We recall some elementary properties of orthogonal arrays and strongly regular
graphs.

Let s,k > 2. An orthogonal array with parameters s and k, denoted OA(s, k),
is an s% x k array with entries from an s-set S, such that in any two columns of the
array, each ordered pair of symbols from S x S occurs exactly once. Orthogonal
arrays have a variety of applications such as in the design of experiments (where
each row represents a test to be performed) and for constructions of authentication
codes for cryptography. They also have strong connections to error correcting
codes. The reader is referred to [9,13,25] for further details on orthogonal arrays,
their generalisations and their relations to other structures.

An OA(s, k) is equivalent to a set of x — 2 mutually orthogonal latin squares
(MOLS) of side s. Other than obtaining new constructions of infinite families of
orthogonal arrays, a classical problem of the theory is to know the maximum value
of k for which an OA(s, ) exists (often denoted in MOLS terminology by N(s)).
A well-known upper bound is given by N(s) < s+ 1, which is tight if s is a prime
power [9, Chapter III]. If s is not a power of a prime, little is known and there
is no known value of s for which the maximum value of Kk = s 4+ 1 is attained. In
fact, an OA(s, s+ 1) exists if and only if a finite projective plane of order s exists.
MacNeish [23] showed there there exists an OA(s, p{* +1) for s = p{* ... p~, where
p1,...,pr are primes and p‘fl <... < pf" so in particular we have the lower bound
p{ +1 < N(s) for such s.

There is an extensive literature on strongly regular graphs. See for example,
[8,9,11]. A K-regular graph I" that is neither empty nor complete on N vertices
is called strongly regular with parameters (N, K, A, u) if every pair of adjacent
vertices have A common neighbours and every non-adjacent pair have p common
neighbours. Equivalently, its adjacency matrix A satisfies the equation

AJ=JA=KJand A> — (A — p)A — (K — p)I = pJ. (1)

An eigenvalue of A is then called an eigenvalue of I'. Strongly regular graphs
have three eigenvalues, say p1 < —1 < p2 < K. If I' is disconnected, p1 = —1 and
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p2 = K. If I is connected, the three eigenvalues are distinct. In fact, any connected
graph with three distinct eigenvalues is strongly regular. The eigenvalue p2 = 0
if and only if the complement of I' is disconnected. I' is called imprimitive (or
trivial) if either I" or is complement is disconnected. If I" is not imprimitive, I’
is called primitive. Provided I' is primitive, unless the p; occur with the same
multiplicity, they are integers of opposite sign satisfying K > p2 > —1 > p;.

The following construction of strongly regular graphs will be used later. Let
B be an OA(s, k). Then B determines a strongly regular graph I'(B) by taking
its s> rows as vertices and joining two vertices if they have a common entry in a
column of B. I'(B) has parameters

(5%, k(s — 1), s — 2+ (k — 1)(k — 2), K(rk — 1)).

In the case that x = 2, this graph is often called the s graph or lattice graph
associated to B. Given a strongly regular graph I, if there exists some OA(s, k)
B such that I' is isomorphic to I'(B), we will call I" an OA(s, k)-type graph.

2.2 Homogeneous Weights and Frobenius Rings

We discuss some properties of finite Frobenius rings that will be used later. For
a thorough discussion of ring theory, see [20]. A detailed treatment of (finite or
infinite) Frobenius rings can be found in [19], while [14,27] discuss the finite case.
Let R be a finite ring with identity. We denote the group of units of R by R*. Let
X : R — C* be a character of (R,+). Let R = Homgz(R,C*) denote the group
of characters of R. R is an (R, R)-bimodule, given by x"(z) = x(rz) and "x(z) =
x(zr), for all z,r in R, and for all x in R.

A finite ring R is a Frobenius ring if it satisfies any of the following equivalent
conditions (or their right counterparts) [14]:

1. RR™ RR,
2. r(R/Rad(R)) = Soc(rR),
3. The socle of rR, Soc(rR), is a principal left ideal.

Examples of finite Frobenius rings include finite fields and the integer residue
rings. If R is Frobenius so is My (R), the ring of n x n matrices over R. The ring
of 2 X 2 upper triangular matrices over a finite field is not Frobenius. For more
examples, see [19].

A character x of R is called a left (resp. right) generating character if the map
¢:R— 1:3, ¢(r) = "x is an isomorphism of left R modules. Every Frobenius ring
possesses a left (which is also a right) generating character [27].

We now introduce the homogeneous weight on finite rings.

Definition 1 ([12]) A map w: R — R is called a (left) homogeneous weight if
w(0) = 0 and the following hold:

(i) If Rx = Ry, then w(x) = w(y) for all x,y in R.
(i) There exists a real number v > 0 (independent of R) such that

Z w(y) = v|Rz|, for all z € R\{0}.

YyERx
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A left homogeneous weight exists on all finite rings and it is unique up to the
choice of v. Right homogeneous weights are defined similarly. If R is Frobenius, the
right and left homogeneous weights coincide [24]. If v = 1, we say the homogeneous
weight is normalized.

Let ¢ be a prime power. Over a finite field Fy, the Hamming weight is homoge-
neous with v = %. Over Zg, the Lee weight is given by w(0) = 0,w(1) = w(3) =
1, w(2) = 2. It is homogeneous with v = 1. If R = Fa @ Fa, the normalized homo-
geneous weight is given by w(0,0) = w(1,1) = 0, w(1,0) = w(0,1) = 2. Observe
the non-zero ring element (1,1) has weight zero. We will call a ring R proper if
the only ring element of weight 0 in R is the zero element.

We now discuss two well-known characterisations of the homogeneous weight.

Let p denote the Mdbius function on the poset of principal left ideals of R
partially ordered by set inclusion (cf. for example [21]). It is the integer-valued
function implicitly defined by

w(Rx,Rx) =1, forall x € R,
u(Ry, Rx) =0, if Ry £ Rz, and

> w(Rz Rx) =0, if Ry < Ra.

Ry<Rz<Rz

Theorem 2 ([12]) Let R be a finite ring, © € R and v > 0 be a real number.
Then the homogeneous weight of x is given by:

Theorem 3 ([14]) Let R be a finite Frobenius ring with generating character x.
Then for a real constant v > 0 and © € R, the homogeneous weight of = is given

by:
1
w(z) =7y <1 TR > x(um)> - (2)

u€RX

From now on, we assume R is Frobenius with generating character x and we
let w denote the homogeneous weight on R of average value .

2.3 Codes over Rings

A (left) linear code C < grR™ is a submodule of gR™. The elements of C are
called codewords. For ¢ = (c1,...,cn) € C, the homogeneous weight of ¢ is given
by w(c) :== > ; w(cs). A code C is called proper if the only codeword of weight
0 in C' is the zero codeword.

A pair of vectors y, z € R are called (right) projectively distinct if yR # zR as
right R-modules, otherwise we say that y and z are in the same (right) projective
class (which holds if and only if y = za for some a € R*).

For the remainder we fix the following notation. For any = = (z1,...,2n),
y=¥1,...,yn) € R", wehavez-y := > 7" | x;3;. Welet C' < pR" denote a proper
left linear code generated by the rows of a k x n matrix G = [g1, ..., gn] over R that
has exactly r projectively distinct columns, indexed by a subset Z C {1,...,n} of
size r. Furthermore, we assume the following:
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[i] ={je{1,..,n}: g R =g;R}, for each i € T;
7; columns of G are in the same projective class as g;, for each i € Z;
i .
0; = , for each ¢ € 7;
|gi R |

for each j € [i], write g; = g;7s; for some 7;; € R*, for each i € T;
Gt ={zeRF:z.-gg=0Vie{l,..,n}};

MG = Z ij;
j=1

7. for each j € {1,...,n}, column g; is non-zero.

S Gk W

For each y € R* we write anng(y) := {s € R: ys = 0} < Rg.

A code over a finite Frobenius ring R is called projective if n; = 1 for all ¢ and is
called regular if {x-g; : 2 € RF¥} = R for all j € {1,...,n}.

Lemma 4 Let y € R* and v € R*. Then R* N (1 + anng(y)) is a subgroup of
R* and |R* N (v + anng(y))||lyR*| = |R*|.

Proof The subgroup property is easy to check. Now R* acts on RF by right mul-
tiplication. The orbit of any element y € RF is given by yR* and its stabilizer is
R*N(1+anng(y)), which has order |R*|/|yR*|, by the Orbit-Stabilizer Theorem.
The result now follows since for any v € R* the map : v+ a — 1 +av~ ' is a
bijection from R* N (v 4 anng(y)) onto R* N (1 + anng(y)). O

Definition 5 ([15]) We say that C is a §-modular code if 0; = 0 for each i € T.

Example 1 A projective code over the finite field F; is %l—modular. A projective,
q
1

regular code over a finite Frobenius ring R is W—modular. Over Zg, the code

generated by [(1) (1) g} is modular and the code generated by [(1) g] is not modular.

Lemma 6 Let C be §-modular. If v = 61, then w(c) € Z for all c € C.

Proof Let ¢ € C. Then w(c) = }_, .7 niw(ci). By hypothesis and Theorem 2 we

have
ni 1(0,ciR) x 1(0,¢iR)
iw(ci) = — | 1— =g 1- .
mute) = % (1 5O ) — g (1 10

Let € R® such that ¢ = G. Then ¢; = z - g;,anng(g;) C anng(z - g;) and
R* N (1 + anng(g;)) is a subgroup of R* N (1 + anng(x - g;)). The result now
follows by Lemma 4. 0

Definition 7 The code C is called a two-weight code if for all ¢ € C, w(c) €
{0, w1, w2} for some 0 < wi < wa.

If C is a two-weight code, we define a graph I'(C) as follows: The codewords
of C are the vertices of I'(C') and two codewords ¢, ¢’ € C are adjacent in I'(C) if
and only if w(c—c') = wy. I'(C) is the Cayley graph generated by set of codewords
of C of weight wi. Observe that changing the value v of w does not affect I'(C).
In certain cases, I'(C) is a strongly regular graph, in which case we will call C
primitive if I'(C') is primitive.
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3 Two-Weight Rings

We call a finite Frobenius ring R a two-weight ring if for all r € R, w(r) €
{0, w1, w2} for some 0 < w1 < ws and there exist some u,v € R such that w(u) =
w1 and w(v) = wa (that is to say that R has exactly two non-zero homogeneous
weights). For the remainder of this section, we assume all two-weight rings are
proper and that the homogeneous weight is normalised. If R is a two-weight ring,
then I'(R), the Cayley graph of the set of ring elements of weight wi in R is
a strongly regular graph (cf. [3,5]). We now show that any two-weight ring is
isomorphic to one of the following;:

1. Let R be a local ring with residue field of order ¢q. Then for all non-zero =z € R,

wiz) = {wl =1, ifz ¢ Soc(R),

wo = ﬁ, otherwise.

The local R has a non-trivial socle if and only if R is not a finite field, in which
case it is a two-weight ring. If R is a finite field it is not a two-weight ring and
every non-zero element has weight q%l.

2. Let ¢ > 2. Then R =F, @ F, is a two-weight ring: for all non-zero = € R,
w(z) = {““ ~ ot o e 1,

wg = —<= otherwise.

3. M2(F,) is a two-weight ring: for all non-zero x € R,"

— a(@®—g=1) x
w(z) = {wl =@ D0 TTERT,

wo = ﬁ, otherwise.

Let R be a two-weight ring with non-zero weights w1 < wa2. It can easily
be deduced from [3,5] that w1 < 1 < wg, with equality if and only if I'(R) is
imprimitive. It follows that for any non-zero z € R, w(x) = ws if and only if
1(0, Rx) < 0 and w(x) = w1 if and only if x(0, Rx) > 0.

Lemma 1 Let R be a two-weight ring. Then I'(R) is imprimitive if and only if R
is a local Ting.

Proof For a non-zero z € R, w(z) = w1 = 1 if and only if x(0, Rz) = 0. Since
Soc(rR) is principal, this holds if and only if Soc(rR) is simple. Since R is Frobe-
nius, we have r(R/Rad(R)) = Soc(rR). O

Recall that a semi-simple ring is one satisfying Rad(R) = {0} (cf. [20]).

Lemma 2 Let R be a two-weight ring. Then if I'(R) is primitive, R is semi-
simple.

Proof Since Soc(rR) is principal, if Soc(R) # R, there exists a ¢ Soc(R) such
that w(a) = 1. This contradicts the assumption I'(R) is primitive. Applying the
identity r(R/Rad(R)) = Soc(rR) gives Rad(R) = {0}. O

1 1t is well-known that M3 (Fy) determines a strongly regular graph by taking the ring
elements as vertices and joining two vertices if their difference has rank 2 (cf. [9]); this is the
same relation as induced by the homogeneous weight.
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Observation 8 In [5, Corollary 15], it was shown that for a proper regular,
projective, two-weight code C, with homogeneous weights 0 < w1 < wa that
(w2 —w1)|R*| is an integral divisor of |C|. Then in particular if R is a two-weight
ring we see that (w2 — w1)|R*| is an integral divisor of |R).

Observation 9 It is well-known that all finite semi-simple rings are isomorphic
to direct sums of matriz rings over finite fields.

We will use these observations in the proof of the following classification result.

Theorem 10 Let R be a two-weight ring with I'(R) primitive. Then R is isomor-
phic to either Fqg ®Fq, g > 2, or to Ma(Fy).

Proof Since R is semi-simple, we may write R = ®!_; M,, (F,,) for some prime
powers ¢; and positive integers n;. Observe all minimal (left) ideals Rz in R

have the same order m = wwz 1, since any generator x of such an ideal satisfies

w(x) = —1 and w(z) = w2 = ‘R | . Now let R; = My,;(Fy,). For z; € R;, we
let Z; € R have x; in the j*" coordlnate and zeroes elsewhere. If Rjx; is minimal
of order mj, it follows that RZ; is also minimal of order m; = m (thus m; is
independent of j).

Suppose for the sake of contradiction that ¢ > 2. Then for j € {1,2,3}, let
x; € Rj such that R;z; is minimal of order m. Then x = Z1 + 22+ Z3 € R satisfies
u(z) = —1. Therefore w(xz) =1+ ﬁ # wa, unless m = 2. If m = 2, R is not
proper.

Let t = 2 and without loss of generality, suppose n1 > 1. Then m = ¢7"*. Let
A € My, (Fq,) have a11 = a2z = 1 and all other coordinates equal to zero. Then
A€ER satlsﬁes wA) = qi, |IR*A| = qi(¢* = 1)(¢* ™" — 1) and w(A) = wy =

W Now for j = {1,2}, let z; € Rj such that R;z; is minimal.
Then p(Z1 + Z2) =1 and w(Z1 + T2) =1 — (q?l%l)z # w1 as required.

Finally, suppose t = 1 and R = M, (F,). Suppose for the sake of contradiction

that n > 3. Since m = ¢", wa = q,‘f—fl, and using the same notation as above,

As [Mn(Fy)*| = ¢" "2 T](¢" = 1), it follows
=1

w(A) = w1 = 1-— 7(1171_1)(}171—1_1)-

by [5, Corollary 15] that
n—2 )
[R¥|(wa = w1) = ¢" "D T (g 1)
i=1

is an integral divisor of |R| = q"Q. This only happens if n = 3 and ¢ = 2, in
which case, R = M3(F2) and wz = £. It can be checked that (0, RI) = —8 and
w(I) = 22 # wa. The result follows. O

4 The Order of Linear Codes

We establish results on the order of linear codes over finite Frobenius rings that
will be needed later. First, we again fix some notation.
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Definition 11 Let S be a non-empty subset of RF.

St = {meRk:x-s:OforallseS}<RRk,
C(S) i= {(z - 8)scs\ (0} : © € B*} < gRISMOH,
Ms =Y sR < Rf.

seS

Let Si,...,S¢ be non-empty subsets of R¥. We denote by C(S1, ..., St) the left R-
linear code of length S°t_, |S;:\{0}| defined by

C(Slv ey St) = {((‘T : 81)51651\{0}’ SR St)stest\{o}) ‘TE Rk}

Given a k X n matrix Y = [y1,...,yn] over R with each y; non-zero, we write
C(Y) in place of C({y1}, ..., {yn}). Then with respect to this notation, we have
C =C(G).

Lemma 12 Let Si, ..., S be non-empty subsets of R*. Then the codes C(S1, ..., St
and C(Zzzl Ms,) are isomorphic as left R-modules. In particular, |C(S1, ..., St)

= |C(Xi=1 Ms))|-

|
Proof Clearly, we have the left R-module isomorphisms
t t t 1
C(S1,..,81) 2 R*/ () Si* and C <Z Msi> =~ RF/ (Z MS,.,) .
i=1 i=1

i=1

t L ¢
The result now follows from the fact that (Z M5i> = ﬂ MSiJ‘ and that for
i=1 i=1
each 1, Sf‘:Mé‘i. a

Since R is Frobenius, for any left or right ideal I of R, the average value of the
homogeneous weight of its elements is also constant, that is, > _; w(z) = y|I|
[12,14]. This gives the following two results.

Lemma 13 (See also [26, Lemma 15]) Let M < RY. Then every non-zero code-
word ¢ € C(M) satisfies w(c) = v|M]|.

Lemma 14 ([12]) For each i € {1,...,n}, > o w(ci) =v|C|.
Lemma 15 Let M < RY. Then |C(M)| = |M|.

Proof We count the total weight of the codewords of C (M) in two ways. Applying
Lemmas 13 and 14 gives (|C(M)| — 1)y|M| = (M| — 1)y|C(M)|. O

Corollary 16 |C|= |Mg|.

Proof C = C(G) = C(M¢) by Lemma 12. From Lemma 15 we then get |C| =
C(M)| = M. 0
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5 Two-Weight Codes and Graphs

We determine relations between the parameters of a two-weight code and its cor-
responding Cayley graph. We will use the concept of the distance matrix of a code
[5,10].

Definition 17 The distance matriz of C is the |C| x |C| matriz D with rows and
columns indezed by the elements of C and whose (u,v)-th entry is Dy, = w(u—v)
foru,v € C. For eachi € T, the i'" coordinate distance matriz of C is the |C|x |C|
matriz D; defined by (D;)uv = w(u; — v;).

Definition 18 ([5,10]) We denote by X the complezx |C| x |R*|n matriz whose
components satisfy (X)c,(x,i) := x(ci\) for each c € C, i € {1,...,n} and X € R*.
For each i € T we let X; be the |C| x |R*|n; submatriz of X whose columns are
those indexed by (j, \) for j € [i] and A € R*.

Given a complex matrix X, we write X* to denote the conjugate transpose
matrix of X. We let J denote the |C| x |C| all-ones matrix.

Theorem 19

(i) DJ =~n|C|J and

(ii) D? = 'y|C| ('y <n2 +’yZ§mi) J — Z(SimDi).
i€l i€l

Proof The proof of (i) follows immediately from Lemma 14 since

(D)uw =Y wlu—z) =Y wx)= > wlx)=n|C],

zeC zeC i=1zeC

for any u,v € C.
For fixed 4,5 € {1,...,n} and \,7 € R*, define

A:R" — R:c=(c1,..,Cn) F> CT — CiA.

Then A is the zero map on C if and only if g;7 — g;A = 0, in which case j € [i]
and g; = ¢;7ij, which holds if and only if 7;;7 — A € anngr(g;). It follows that

(X" X) (0,6, = Z X (657 — eiX)
ceC

[ lkerANC]|if A(C) = {0},

- 0 otherwise.

_[|C)if j € 1] and A € 757 + anng(gs),
~ 1 0 otherwise.

Then from Lemma 4,

(XX =101 30 30 Xw-gi) = [CIR|;poX(@ gid).
jEli] AeryT 9i
+anng(vi)
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It is straightforward to show that X*J = 0, X;X = |R*|n:(J — v 'D;) and
XX* = |R*|(nd — ’y’lD). It follows that

XF(XX*) = |R¥| X" (J - 7_1D> = —|R* |y 'x* D,

and so for each i € Z, |C||R”| X +|R*|y"' XD = 0. Then

i
lgi X
0=|C||R*|Y 6:XiX] + |R* |y~ XX*D,

i€T

= [C||[R*Y dimi(J — 5~ 'Dy) +|R* |y ' (nJ —+ ' D)D.

1€l

The result now follows from (i). O

The proof of the following corollary uses arguments similar to those in [5,10].

Corollary 20 Let C be a proper two-weight code with non-zero weights w1 < wa.
Then I'(C) is strongly regular if and only if there exist some «, 8 € R such that
Y iez 0iniDi = aD + B(J — I), in which case the eigenvalues K, p1,p2 of I'(C)
satisfy

() (w2 = w)K = wa(|C] 1) = ymC],

(i) (w2 —wi)pr = —ws + 5 (7ICla = VA?[CPa® + 1[CI5),
1

(ii)) (w2 —wi)p2 = w2 + 5 (7|Cla+ VA?ICPa? + 1[CIB),

)

(iv) |R*]*|C?a® and |R*||C|B are integers and \/|RX[2|C[2a2 + 4|RX[|C|B is an
integer divisible by p2 — p1.

Proof The adjacency matrix A of I'(C) satisfies (w2 — w1)A = wa(J — I) — D.
Then from Equation (1), I'(G) is strongly regular if and only if D? is an R-linear
combination of D, J and I. Suppose there exist a, 3 € R such that 3, d;n;Di =
aD+B(J—1I). Then any restricted eigenvalue p of A satisfies (w2 —w1)p = —w2—0,
where 6 is a restricted eigenvalue of D. From Theorem 19, such 8 are roots of the
polynomial 2% + v|C|a + v|C|8 € R[x] which gives (ii) and (iii). Part (iv) follows
since the homogeneous weight is integer-valued for v = |R*| and so, using (ii) and
(iil), we get (w2 —w1)(p2 — p1) = /|R¥[2|C[2a2 + 4|R*[|C|B € Z. The rest can
be deduced from (ii). O

Ezample 2 Let R = Ze and let C be the code generated by 2322 2 3 3]. C
is a two-weight code of order 6 with normalized weights w1 = 6, w2 = 12. Then
Z=1A{1,2}, 61 =2,60 =3, m =4 and n2 = 3. Then I'(C) is strongly regular if
and only if there exist a, € Q such that 8w(c1) + 9w(c2) = aw(c) + B for all
non-zero ¢ € C. It is easy to check that no such « and [ exist.

Ezample 3 Let R = Z4 and My = Z4(0,1), M2 = Z4(1,0) < Z4%. Then C =
C (M1, M2,74%) is a non-modular two-weight code with normalized weights w1 =
20, w2 = 24. As a = 3, B = —24 satisfy >, dimiw(ci) = aw(c) + B for all non-
zero ¢ € C, I'(C) is strongly regular (in fact I'(C) is an OA(4, 2)-type strongly
regular graph).
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These existence criteria are greatly simplified for the case 8 = 0, in which case
the eigenvalues of D are 0 and 7|C|a.

Corollary 21 Let C be a proper two-weight code with non-zero weights w1 < wa
and suppose that Y., 0;miDi = aD for some a € R. Let I'(C) have restricted
eigenvalues p1 < p2. Then

(i) p2 — p1 is an integral divisor of |R*||C|a;
1
_2Clpr+ Va0, — 2IClpre

(p1— p2) (pr— p2)’
(iii) the multiplicities m1 and ma of p1 and p2, respectively, satisfy

(ii) w1

m1:|C|flfﬁandm2:E.
« e

In particular, if C' satisfies the hypothesis of Corollary 21, then o € Q.

Corollary 22 Let C satisfy the hypothesis of Corollary 21. Then I'(C) is imprim-
itive if and only if wa = va|C).

Proof Using Part (ii) of Corollary 21 we see that wa = ya|C| if and only if p2 = 0,
in which case the complement of I'(C') is disconnected. If I'(C') itself is discon-
nected then we have p1 = —1, which, again from Part (ii), yields w1 = 0, giving a
contradiction. O

6 Modular Two-Weight Codes

The code C' is modular if for each ¢ € Z, §; = § = o and 8 = 0. We have the
following result.

Corollary 23 Let C be a §-modular code. Then
D?+4|C|6D = ny*|C| (v6 +n) J.
In particular, if C' is a proper two-weight code, then I'(C') is strongly reqular.

Proof This follows immediately from Theorem 19, since §; = ¢ for each i and
diez i =N O

We remark that it was already known that a proper modular two-weight code
has a strongly regular Cayley graph: Honold asserted this in [15]. A proof may
be read in [16, Theorem 12], which appeared on arXiv.org during the review of
this paper. An important component of our approach is that Corollaries 21 and 23
yield explicit relations between the weights of a proper modular two-weight code
C' and the eigenvalues of I'(C) in the form of Corollary 26. This provides useful
existence criteria for modular two-weight codes and their corresponding strongly
regular Cayley graphs.

We now consider existence questions for modular two-weight codes. We first
show that we may assume § = 1 without loss of generality.

Lemma 24 Let C be a §-modular two-weight code with non-zero weights 0 < wy <
wa. Then there exists a 1-modular two-weight code C' < rR" of order |C'| = |C|
and length n' = nd~' with non-zero weights w} = w16~ and wh = w26~ such
that I'(C) is isomorphic to I'(C").
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Proof Let G’ be the kx > icz lgi R™ | matrix formed by replacing, for each i € Z the
n; columns that are unit multiples of g; with some (not necessarily distinct) |g; R*|
unit multiples of g;. Then ¢’ = C(G") has length n' =3, . [giR*| =Y, .7 % =
% and is 1-modular. The order of C" is |C'| = |[M¢| = |M¢| by Lemma 16 and so
there is a one-to-one correspondence between the words of C' and C’. Explicitly,
given any ¢ = G € C, let ¢/ = G’ be the corresponding codeword in C’. Clearly
for any i € Z, w(c;) = w(c;), so that

w(e') = Y lgiR* fw(ch) = D iR  fw(e) = Y- Fw(e) = 5 w(o).

i€L i€L i€L

Then C’ is a 1-modular two-weight code with I'(C”) isomorphic to I'(C).
O

We now show that if C'is a 1-modular two-weight code, there exists a 1-modular
two-weight code C’ such that I'(C") is isomorphic to I'(C)°, the complement of
).

Lemma 25 Suppose C' is a primitive, proper 1-modular two-weight code with non-
zero normalized weights 0 < w1 < wa. Then C' = C (MG \ U?ZlgiRX) is a proper,
1-modular two-weight code of order |C| with non-zero normalized weights w} < wh
where w| = |C|—w2 and wy = |C| —w1. Moreover, I'(C)° is isomorphic to I'(C").

Proof As C is 1-modular, C’ is 1-modular. Now if G = 0 then z € Mg’ and
G’ = 0. By Lemma 13, for any = € R* such that G # 0, w(zG’) + w(zG) =
|Mg| = |C|. As I' is primitive, Corollary 22 implies w2 < |C| and |C| — w2 > 0.
Then C’ is a two-weight code with the weights claimed. Further, if w(zG’) = 0,
xG = 0 (else we would have w(zG) = |C|) and so G’ = 0. It follows that C’ is
proper and |C| = |C’]. Finally, as w(zG) = wi if and only if w(zG’) = wy, I'(C)°
is isomorphic to I'(C"). O

Corollary 26 Let I' be a strongly regular graph with parameters (N, K, A, 1) and
restricted eigenvalues p1 < p2 of multiplicities m1, ma respectively. Then I is the
Cayley graph of a d-modular two-weight code over R if and only if I' is isomorphic
to I'(C), where C' is a 1-modular two-weight code with non-zero weights w1, wa
such that the following hold.

(i) |C| = N and p1 — p2 is an integer dividing N.
(ii)
wy = PLEDN iy = PN
P1 — P2 P1 — P2
(iii) The length of C is given by n = ma.
(iv) C' = C(Mg\ Uy g:R*) has length n’ = ma, two non-zero weights wi =
N —wa, wh = N —wi1 and I'(C") is a strongly regular graph with parameters
(N,N—K —1,N —2K + i —2,N — 2K + \).

This result can be used to analyse a feasible parameter set (N, K, \, 1) [2] of a
strongly regular graph that might arise from a modular two-weight code C, or
conversely to check the existence of a modular two-weight code. Moreover, if a
strongly regular graph is the Cayley graph of a modular two-weight code, so is
its complement, thus it suffices to check parameters up to complements only. For
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example, the first constraint “p1 — p2 divides N” shows that at most 732 of the
2140 feasible parameters sets (counted up to complements) for graphs on at most
1300 vertices listed in [2] could be the parameters of a strongly regular graph I'(C')
for a modular two-weight code C. Among these there are 1514 putative parameter
sets, for which graph existence is not known, and only 433 of these could come
from a a modular two-weight code.

A search was carried out in [5] for the sub-class of regular projective two-
weight codes. There are significant differences between this and the more general
case of modular codes. In the first instance, the complement of a strongly regular
graph I'(C') coming from a two-weight code C' does not necessarily arise from a
regular-projective two-weight code, so any search cannot exclude complementary
parameters. Secondly, in the projective, regular case, N = |C] is an upper bound
on |R|. It is therefore often possible to produce an exhaustive list of candidate
coefficient rings over which search can be conducted. A further complication in
both cases is that canonical descriptions of generator matrices for rings that are
not direct products of chain rings are not known in general, making a complete
search a very difficult task. We remark that in the regular projective case, out of
the 2956 (up to complements 1514) putative parameter sets for which the existence
of a graph is not yet known, there remain only 82 open cases. All regular projective
two-weight codes found by the search had order the square of a prime power.

Ezample 4 The parameter set (64, 36,20,20) corresponds to a graph with eigen-
values -4,4 and respective multiplicities 27, 36. Any l-modular two-weight code
determining a graph with these parameters has order 64, length 27 and normal-
ized weights w1 = 24, w2 = 32. Over R = M3(F2) @ F4, we suppose C is generated
by a single codeword ¢ and the identity element (I,1) of R is a coordinate of c.
Then 18 entries of ¢ are units in R and they contribute weight 20 to c. By exam-
ining the weights of the ring elements, we see the remaining nine coordinates of ¢
must have total weight 12 and therefore be ring elements of the form (A, 0), where
A has rank 1 in M2(IF2). It can be checked that the following vector generates a
1_modular version of the required code:

3
(1,1), (I,1), (I,1), (I, 1, (I, 1), (I, 1), (Ll) 8} ,0> , ({8 H ,o) , ({(1) H ,o)}

Ezample 5 Consider the feasible parameter set (96,45,24,18). Suppose that a
strongly regular graph I" for such parameters exists, in which case it has eigenvalues
—3,9, with multiplicities 75 and 20, respectively. Suppose that C' is a two-weight
code over R = F32 @ F3 satisfying I' = I'(C). Let k € Z, and let g € R* have
(u,a) € R in some coordinate, with u # 0. Then as |gR*| > 31, if the vectors in
the projective class of g are columns in G, n > 31. This contradicts n = ma = 20.
It follows that every coordinate of every vector of R% that is a column of G must
be of the form (0,a) and thus |C| = 3%, for some b € N, giving a contradiction.

7 Codes, Arrays and Graphs

In the following section we show that modular two-weight codes can be constructed
by taking unions of submodules of R’f:{ with pairwise trivial intersection. We thus
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illustrate connections between two-weight codes, orthogonal arrays and partial
congruence partitions.

These examples establish the existence of primitive (those codes C' such that
I'(C) is primitive) modular two-weight codes over any finite Frobenius ring R
and of any square order N > 4. No regular, projective two-weight codes of non-
prime-power order are known to exist and their existence has been excluded for
numerous non-prime-power square orders [5]. In fact, this construction is the only
known infinite family of primitive two-weight codes over rings whose orders are
not all prime powers.

We first show certain (not necessarily two-weight) codes can be used to con-
struct orthogonal arrays and strongly regular graphs. We will use the following
result.

Lemma 27 Let Si,...,S; C R* t > 2. Then for every x € R* |{i: z € S;}| €
{0,1,t} if and only if for all distinct i,j € {1,...,t}, Ms, + Ms, 2 Ms, for all
ledl,... t}.

Proof We have Ms, +Ms, 2 Mg, if and only if (Ms, +Msj)J‘ - Mé‘l which holds
if and only if MSJQ N MSJ,‘J C M§‘l Since Si- = MSJ;,, any z € R” is contained in
exactly one, none or all S;-. O

Let Si,...,S; € R¥. For each i € {1,...,t} and ¢ € C(S1,...,S), let II;(c) €
C(S;) be the projection of ¢ onto the coordinates indexed by the elements of
Si. Define a graph H(S1, ..., St) whose vertices are the codewords of C(S1, ..., St)
and where two vertices ¢, ¢’ are adjacent if and only if I1;(c) = II;(¢') for some
te{l,...t}.

Theorem 28 Let t > 2 and let S1,...,S: C R® be a family of sets satisfying

(i) |Ms,| = v for alli.
(it) Ms, " Ms, = {0} for alli,j.
(i) Ms, + Ms, 2 Ms, for alli,j,£ € {1,...,t} withi# j.

Then H(S1,...,St) is an OA(v,t)-type graph.

Proof By Lemmas 12 and 15, |C(S;)| = |Mg,| = v for each i and

¢
|C(Sl7 "'7St)| = ‘C(M517"’7M31,)| = |ZM51| = |MSz: +M5_7‘| = 1)27
i=1
for any distinct ¢ and j. We now construct an OA(v,t) from C(Si, ..., S¢). Let V

be an arbitrary v-set. For each i, let f; : C(S;) — V be a bijection. Then define
maps

F:C(51,...,5:) — Viiers (fili(¢)), f2(I12(c)), . . ., fe(I1x(c))),
Fij : C(Si,85) — Viiew (fiIl;(c)), f(11;(c)))-

Arrange {F'(c) : ¢ € C} as the rows of an array, A. As |C(S:, Sj)| = |[Ms, + Mg, | =
v? for any distinct i and j, the map Fj; is a bijection. Then every element of V x V'
occurs exactly once in the i*"* and j*" columns of A, which we then conclude is an

OA(v,t).
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Finally, we show H(S1, ..., St) is isomorphic to I'(A). Let ¢,c’ € C(Sh, ..., St).
Now (c,c’) is an edge of H(S1,...,S¢) if and only if there exists a unique i such
that I7;(c — ¢') = 0, or equivalently, II;(c) = II;(¢'). This holds if and only if
fi(Il;(c)) = fi(I1;(c")) which is precisely the condition needed for F(c) and F(c’)
to be adjacent in I'(A). O

We now show that a modular two-weight code can be constructed from any
family of subsets of R% satisfying Theorem 28. This generalises a well-known
construction for two-weight codes over F, that takes unions of subspaces of F,"

(ct. [7)).

Corollary 29 Let Si,...,S:,t > 2 be subsets of RY satisfying the hypothesis of
Theorem 28 with t < v 4+ 1. For each i € {1,...,t} write M; = Mg,\{0}. Let

Y = [(yl)ylel\zla ey (yt)yteMt]. Then

(i) C(Y) = Cy is a 1-modular two-weight code of order v* with non-zero weights
w1 = (t — 1)v and we = tv,
(i) I'(Cy) is an OA(v,t)-type graph.

Proof We first show Cy is a two-weight code. For each ¢ € Cy, let 7;(c) denote the
projection of ¢ onto the coordinates corresponding to the v — 1 non-zero elements
of Ms,. Let ¢ = 2Y € Cy for some z € R*. Then m;(c) = 0 if and only if z € Mé‘t
and so we compute

w(@Y) =Y w(m(Y)) =tv—|{i:z € " }v.

i=1

If follows by Lemma 27 that Cy has non-zero weights w1 = (¢t — 1)v and w2 = tv
(since t < v+ 1, C is not a constant weight code). Then Cy is a l-modular
two-weight code and by Corollary 20, I'(Cy) is a strongly regular graph with
parameters

(02, t(v — 1), 0 — 24 (t — 1)(t — 2), t(t — 1)).

It is easy to see that I'(Cly) is isomorphic to H(C(S1, ..., St)) since w(c—c’) = w1
if and only if there exists a unique i such that m;(c) = m;(c’).

Remark 1 Not every modular two-weight code produced by Theorem 28 has Cay-
ley graph I'(C) isomorphic to H(C). Let p be a prime and C the code over R = Z,
generated by

101... 1 2% (p+1)
011...(p—1)| €F :

Then C satisfies the conditions of Theorem 28 and H(C) is an OA(p?,p + 1)-type
graph. On the other hand, as observed in [3, Proposition 6.2], C' is a regular,
projective two-weight code and I'(C) has the parameters of the strongly regular
graph from an OA(p?, p).

Remark 2 Corollary 29 Part (i) can also be arrived at by combining [22, Proposi-
tion 3.4] and Theorem 17 of the preprint [16] as follows. Let Y and Cy be as in
Corollary 29. Then Uf_, M; is a partial difference set by [22, Proposition 3.4], and
so Cy is a two-weight code by [16, Theorem 17].
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Given S1,...,58; C RF satisfying the hypothesis of Theorem 28, the set of
modules M = {Mg,, ..., Mg,} is an example of a partial congruence partition [1,
Definition 9.3], for the group (G, +) = (Ms,+Ms,, +), or equivalently a translation
net. If R is a finite field then M is a partial-spread.

Jungnickel characterized all partial congruence partitions in (Z’;, +) [17, The-
orem 2.1]. The argument given therein and outlined briefly below extends imme-
diately for submodules of RY and allows us to describe all such sets M.

Let M = {M, ..., M;} for some M; < R, such that for some M < RY,, M =
M; & M; for each pair of distinct 4,5 € {1,...,¢}. Then the M; are all isomorphic
as right R-modules. Let a € M; for some i > 3. Then a = x + y for uniquely
determined z € Mi,y € Mas. In particular, there is a bijection o : M1 — Mo
such that M; = {z + o(z) : € M1} and in fact o must be a right R-module
isomorphism.

We hence give an explicit construction of two-weight codes arising from Corol-
lary 29, which is essentially unique.

Construction 30 Let M1, Ma < R’f% be isomorphic as right R-modules and have
order v. Let Homp(M1, M2) denote the additive group of right R-module homo-
morphisms from Mi onto Ma. Let X be an m-subset of the isomorphisms of
Hompg (M1, M2) such that o — T is an isomorphism for any distinct o,7 € X.
Then

M={Mi,My,{x+o(x):x € M1}:0€ X}

forms a set of submodules of RY satisfying the conditions of Corollary 29. Let Y
be the k x n matriz whose columns comprise the non-zero elements in the union
of the submodules of M and let C = C(Y'). Then

— C has order v*, length n = (m+2)(v—1) and exactly two non-zero normalized
homogeneous weights w1 = (m + 1)v, wa = (m + 2)v;
— I'(C) is an OA(v,m + 2)-type graph.

Construction 30 gives all possible matrices Y and two-weight codes C(Y),
formed as in the statement of Corollary 29. Note that orthogonal arrays with the
above parameters were known to exist (see for example [23]), independently of
these constructions.

Ezample 6 Let k = 20, let R be commutative and let A = R’. Let ¥ be an m-
subset of the invertible matrices of M;(R) such that the difference between any
pair of elements of X represents an element of Autg(A). Then the k x n matrix
Y whose columns comprise the elements of

{(x,0), (0, ), (z, Lz) : z € A\{0},L € X} C R"

generates a code C(Y) of order |A]?, length n = (m + 2)(J]A| — 1) having two
non-zero normalized weights w1 = (m + 1)|A|, w2 = (m + 2)|A|. It is easy to see
that m is less than the size of any minimal left ideal of M,(R).

Ezample 7 Let £ = 2, let R = Zpq for primes p < ¢, and let M = R?. For
i €{l,...,p— 1}, define o; : R* — R? oi(x) = iz. Then ¥ = {01,...,0p-1} C
Aut(R?),m = |X| = p—1and 0; —0; € Aut(R?) for distinct i and j. ¥ determines
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a two-weight code C' of order p*q* and length (p + 1)(p?¢® — 1) with w1 = p3¢?
and wa = (p + 1)p*¢%. I'(C) is an OA(p*q?,p + 1)-type graph. C is generated by

()i (0). i (5 (600 eange]
T ) sernior| N9/ wern o3| \ T/ zernfoy (p— 1)z weM\{0} ]

Construction 31 Let a € R\{0}. Choose U C R* of order m such that for every
distinct ui,u; € U, u; —u; is a unit. Let

M ={(1,0)aR,(0,1)aR, (1,u1)aR,...,(1,um)aR}.

M forms a set of submodules of R% as special case of Construction 30 with £ =1
and A1 = A2 = aR. Let Y be the 2 X n matriz whose columns comprise the
non-zero elements in the union of these submodules and let C = C(Y). Then

— C has order |aR|?, length n = (m + 2)(JaR| — 1) and non-zero normalized
weights w1 = (m + 1)|aR|, w2 = (m + 2)|aR|;

— I'(C) is an OA(|aR|, m + 2)-type graph;

— m < min{|I| : I <Rg}.

Ezample 8 Let a = 1 and U = {1}. The corresponding two-weight code C has
length 3|R| — 3, order |R|? and non-zero weights w1 = 2|R|, we = 3|R|. I'(C) is
an OA(|R|, 3)-type graph. G has the structure
() o]
") rervioy )

(1) al(6)
") rer\{0} 0 reR\{0}

Example 9 Let R = Zpq for primes p < g. Then R has the non-trivial proper
ideals pR and ¢R. Let U = {1,...,p—1}. Then U C R*,m = |U| = p — 1 and the
difference between any pair of elements of U is a unit in R. Then U yields 3 two-
weight codes and orthogonal arrays with parameters as indicated in the following
table.

n w1 | wa OA(|laR|,p+1)
pR| (p+1)(¢—1) | pg | (p+1)g | OA(g,p+1)
aR | (p+1)(p—1) | p*> | (p+Dp | OA(p,p+1)
R | (p+D(pg—1) | p°’q | (p+ )pg | OA(pg,p+1)

Ezample 10 Let S be a finite Frobenius ring, R = M2(S), U1 = {1 1}, Us =

{(1) ﬂ Let U = {I,U1,Uz} and let @ = I. Then a and U determine a two-weight

code C of order |S|® and length 5(|S|* — 1) with w1 = 4|S[*, w2 = 5|S|*. I'(C) is
an OA(|S|*, 5)-type graph. The structure of a generator matrix for C' is given by

() om0 s () s () s (01 )
A) semioy |\ acmoy |\ A acm oy | \U1A) acry 10y \V24) scri oy |
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