Two-Weight Codes, Graphs and Orthogonal Arrays

Eimear Byrne · Alison Sneyd

Received: date / Accepted: date

Abstract We investigate properties of two-weight codes over finite Frobenius rings, giving constructions for the modular case. A δ -modular code [15] is characterized as having a generator matrix where each column g appears with multiplicity $\delta |gR^{\times}|$ for some $\delta \in \mathbb{Q}$. Generalizing [10] and [5], we show that the additive group of a two-weight code satisfying certain constraint equations (and in particular a modular code) has a strongly regular Cayley graph and derive existence conditions on its parameters. We provide a construction for an infinite family of modular two-weight codes arising from unions of submodules with pairwise trivial intersection. The corresponding strongly regular graphs are isomorphic to graphs from orthogonal arrays.

 $\label{eq:keywords} \begin{array}{l} \mbox{ring-linear code} \cdot \mbox{finite Frobenius ring} \cdot \mbox{orthogonal array} \cdot \mbox{strongly} \\ \mbox{regular graph} \cdot \mbox{homogeneous weight} \cdot \mbox{two-weight code} \cdot \mbox{modular code} \end{array}$

Mathematics Subject Classification (2000) 05E30 · 94B25 · 94B60 · 94B99 · 94B05

1 Introduction

Homogeneous weights have been widely studied in the context of linear codes over finite rings and modules [3,4,5,12,14,18,24]. They were first proposed for the integer residue rings in [18]. The concept was generalised in different ways in [12, 24]. We follow the definition given in [12], which requires such a weight on a ring R to be both invariant under the action of the unit group R^{\times} and to yield the same average value on every principal ideal. Finite Frobenius rings are central to ring-linear coding, allowing the generalisations of many classical results [12,27]. It was shown in [3] that regular, projective codes over finite Frobenius rings with two non-zero homogeneous weights yield strongly regular graphs. Honold asserted that

Research supported by Science Foundation Ireland Grant 08/RFP/MTH1181

Eimear Byrne · Alison Sneyd

School of Mathematical Sciences, University College Dublin, Ireland E-mail: alison.sneyd@ucd.ie

this result extended to the case of modular two-weight codes [15], which includes the class of regular, projective codes. In [5], generalising techniques of Delsarte [10], new relationships between the parameters of a projective, regular two-weight code and the eigenvalues of the corresponding strongly regular graph were established.

In this paper, we extend techniques used in [5,10] to describe the parameters of two-weight codes over finite Frobenius rings, whose corresponding Cayley graphs are strongly regular. As in [5], relationships between the eigenvalues of a two-weight code and its Cayley graph yield existence criteria for such objects.

We provide a construction of an infinite family of modular two-weight codes over a finite Frobenius ring R that arise from unions of submodules of R_R^k (see also [6]) and characterize all codes formed in this way. This establishes the existence of modular two-weight codes of any square order. This is the only known construction for an infinite family of two-weight codes over rings of non-prime-power order.

2 Preliminaries

2.1 Orthogonal Arrays and Strongly Regular Graphs

We recall some elementary properties of orthogonal arrays and strongly regular graphs.

Let $s, \kappa \geq 2$. An orthogonal array with parameters s and κ , denoted $OA(s, \kappa)$, is an $s^2 \times \kappa$ array with entries from an s-set S, such that in any two columns of the array, each ordered pair of symbols from $S \times S$ occurs exactly once. Orthogonal arrays have a variety of applications such as in the design of experiments (where each row represents a test to be performed) and for constructions of authentication codes for cryptography. They also have strong connections to error correcting codes. The reader is referred to [9,13,25] for further details on orthogonal arrays, their generalisations and their relations to other structures.

An $OA(s, \kappa)$ is equivalent to a set of $\kappa - 2$ mutually orthogonal latin squares (MOLS) of side s. Other than obtaining new constructions of infinite families of orthogonal arrays, a classical problem of the theory is to know the maximum value of κ for which an $OA(s, \kappa)$ exists (often denoted in MOLS terminology by N(s)). A well-known upper bound is given by $N(s) \leq s + 1$, which is tight if s is a prime power [9, Chapter III]. If s is not a power of a prime, little is known and there is no known value of s for which the maximum value of $\kappa = s + 1$ is attained. In fact, an OA(s, s + 1) exists if and only if a finite projective plane of order s exists. MacNeish [23] showed there there exists an $OA(s, p_1^{d_1} + 1)$ for $s = p_1^{d_1} \dots p_r^{d_r}$, where p_1, \dots, p_r are primes and $p_1^{d_1} < \dots < p_r^{d_r}$ so in particular we have the lower bound $p_1^{d_1} + 1 \leq N(s)$ for such s.

There is an extensive literature on strongly regular graphs. See for example, [8,9,11]. A K-regular graph Γ that is neither empty nor complete on N vertices is called *strongly regular* with parameters (N, K, λ, μ) if every pair of adjacent vertices have λ common neighbours and every non-adjacent pair have μ common neighbours. Equivalently, its adjacency matrix A satisfies the equation

$$AJ = JA = KJ$$
 and $A^{2} - (\lambda - \mu)A - (K - \mu)I = \mu J.$ (1)

An eigenvalue of A is then called an eigenvalue of Γ . Strongly regular graphs have three eigenvalues, say $\rho_1 \leq -1 < \rho_2 \leq K$. If Γ is disconnected, $\rho_1 = -1$ and $\rho_2 = K$. If Γ is connected, the three eigenvalues are distinct. In fact, any connected graph with three distinct eigenvalues is strongly regular. The eigenvalue $\rho_2 = 0$ if and only if the complement of Γ is disconnected. Γ is called *imprimitive* (or *trivial*) if either Γ or is complement is disconnected. If Γ is not imprimitive, Γ is called *primitive*. Provided Γ is primitive, unless the ρ_i occur with the same multiplicity, they are integers of opposite sign satisfying $K > \rho_2 > -1 > \rho_1$.

The following construction of strongly regular graphs will be used later. Let B be an $OA(s, \kappa)$. Then B determines a strongly regular graph $\Gamma(B)$ by taking its s^2 rows as vertices and joining two vertices if they have a common entry in a column of B. $\Gamma(B)$ has parameters

$$(s^2, \kappa(s-1), s-2 + (\kappa - 1)(\kappa - 2), \kappa(\kappa - 1)).$$

In the case that $\kappa = 2$, this graph is often called the s^2 graph or lattice graph associated to B. Given a strongly regular graph Γ , if there exists some $OA(s, \kappa)$ B such that Γ is isomorphic to $\Gamma(B)$, we will call Γ an $OA(s, \kappa)$ -type graph.

2.2 Homogeneous Weights and Frobenius Rings

We discuss some properties of finite Frobenius rings that will be used later. For a thorough discussion of ring theory, see [20]. A detailed treatment of (finite or infinite) Frobenius rings can be found in [19], while [14,27] discuss the finite case. Let R be a finite ring with identity. We denote the group of units of R by R^{\times} . Let $\chi : R \to \mathbb{C}^{\times}$ be a character of (R, +). Let $\hat{R} = Hom_{\mathbb{Z}}(R, \mathbb{C}^{\times})$ denote the group of characters of R. \hat{R} is an (R, R)-bimodule, given by $\chi^{r}(x) = \chi(rx)$ and ${}^{r}\chi(x) =$ $\chi(xr)$, for all x, r in R, and for all χ in \hat{R} .

A finite ring R is a *Frobenius ring* if it satisfies any of the following equivalent conditions (or their right counterparts) [14]:

- 1. $_{R}R \cong _{R}\widehat{R},$
- 2. $_R(R/\operatorname{Rad}(R)) \cong \operatorname{Soc}(_RR),$
- 3. The socle of $_{R}R$, $Soc(_{R}R)$, is a principal left ideal.

Examples of finite Frobenius rings include finite fields and the integer residue rings. If R is Frobenius so is $M_n(R)$, the ring of $n \times n$ matrices over R. The ring of 2×2 upper triangular matrices over a finite field is not Frobenius. For more examples, see [19].

A character χ of R is called a *left (resp. right) generating character* if the map $\phi: R \to \hat{R}, \phi(r) = {}^{r}\chi$ is an isomorphism of left R modules. Every Frobenius ring possesses a left (which is also a right) generating character [27].

We now introduce the homogeneous weight on finite rings.

Definition 1 ([12]) A map w: $R \to \mathbb{R}$ is called a (left) homogeneous weight if w(0) = 0 and the following hold:

- (i) If Rx = Ry, then w(x) = w(y) for all x, y in R.
- (ii) There exists a real number $\gamma \geq 0$ (independent of R) such that

$$\sum_{y \in Rx} w(y) = \gamma |Rx|, \text{ for all } x \in R \setminus \{0\}.$$

A left homogeneous weight exists on all finite rings and it is unique up to the choice of γ . Right homogeneous weights are defined similarly. If R is Frobenius, the right and left homogeneous weights coincide [24]. If $\gamma = 1$, we say the homogeneous weight is *normalized*.

Let q be a prime power. Over a finite field \mathbb{F}_q , the Hamming weight is homogeneous with $\gamma = \frac{q-1}{q}$. Over \mathbb{Z}_4 , the Lee weight is given by w(0) = 0, w(1) = w(3) = 1, w(2) = 2. It is homogeneous with $\gamma = 1$. If $R = \mathbb{F}_2 \oplus \mathbb{F}_2$, the normalized homogeneous weight is given by w(0,0) = w(1,1) = 0, w(1,0) = w(0,1) = 2. Observe the non-zero ring element (1,1) has weight zero. We will call a ring R proper if the only ring element of weight 0 in R is the zero element.

We now discuss two well-known characterisations of the homogeneous weight.

Let μ denote the Möbius function on the poset of principal left ideals of R partially ordered by set inclusion (cf. for example [21]). It is the integer-valued function implicitly defined by

$$\mu(Rx, Rx) = 1, \text{ for all } x \in R,$$

$$\mu(Ry, Rx) = 0, \text{ if } Ry \leq Rx, \text{ and}$$

$$\sum_{Ry \leq Rz \leq Rx} \mu(Rz, Rx) = 0, \text{ if } Ry < Rx.$$

Theorem 2 ([12]) Let R be a finite ring, $x \in R$ and $\gamma \ge 0$ be a real number. Then the homogeneous weight of x is given by:

$$w(x) = \gamma \left(1 - \frac{\mu(0, Rx)}{\mid R^{\times}x \mid}\right)$$

Theorem 3 ([14]) Let R be a finite Frobenius ring with generating character χ . Then for a real constant $\gamma > 0$ and $x \in R$, the homogeneous weight of x is given by:

$$w(x) = \gamma \left(1 - \frac{1}{\mid R^{\times} \mid} \sum_{u \in R^{\times}} \chi(ux) \right).$$
(2)

From now on, we assume R is Frobenius with generating character χ and we let w denote the homogeneous weight on R of average value γ .

2.3 Codes over Rings

A (left) linear code $C \leq {}_{R}R^{n}$ is a submodule of ${}_{R}R^{n}$. The elements of C are called codewords. For $c = (c_{1}, \ldots, c_{n}) \in C$, the homogeneous weight of c is given by $w(c) := \sum_{i=1}^{n} w(c_{i})$. A code C is called *proper* if the only codeword of weight 0 in C is the zero codeword.

A pair of vectors $y, z \in \mathbb{R}^k$ are called *(right) projectively distinct* if $y\mathbb{R} \neq z\mathbb{R}$ as right \mathbb{R} -modules, otherwise we say that y and z are in the same (right) projective class (which holds if and only if y = za for some $a \in \mathbb{R}^{\times}$).

For the remainder we fix the following notation. For any $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, we have $x \cdot y := \sum_{i=1}^n x_i y_i$. We let $C \leq {}_R \mathbb{R}^n$ denote a proper left linear code generated by the rows of a $k \times n$ matrix $G = [g_1, \ldots, g_n]$ over \mathbb{R} that has exactly r projectively distinct columns, indexed by a subset $\mathcal{I} \subset \{1, \ldots, n\}$ of size r. Furthermore, we assume the following:

- 1. $[i] := \{j \in \{1, ..., n\} : g_i R = g_j R\}, \text{ for each } i \in \mathcal{I};$
- 2. η_i columns of G are in the same projective class as g_i , for each $i \in \mathcal{I}$; 3. $\delta_i := \frac{\eta_i}{|g_i R^{\times}|}$, for each $i \in \mathcal{I}$;
- 4. for each $j \in [i]$, write $g_j = g_i \tau_{ij}$ for some $\tau_{ij} \in R^{\times}$, for each $i \in \mathcal{I}$; 5. $G^{\perp} := \{ x \in R^k : x \cdot g_i = 0 \ \forall \ i \in \{1, ..., n\} \};$

6.
$$M_G := \sum_{j=1} g_j R;$$

7. for each $j \in \{1, ..., n\}$, column g_j is non-zero.

For each $y \in \mathbb{R}^k$ we write $\operatorname{ann}_R(y) := \{s \in \mathbb{R} : ys = 0\} \leq \mathbb{R}_R$.

A code over a finite Frobenius ring R is called *projective* if $\eta_i = 1$ for all i and is called *regular* if $\{x \cdot g_j : x \in \mathbb{R}^k\} = \mathbb{R}$ for all $j \in \{1, \dots, n\}$.

Lemma 4 Let $y \in R^k$ and $\nu \in R^{\times}$. Then $R^{\times} \cap (1 + \operatorname{ann}_R(y))$ is a subgroup of R^{\times} and $|R^{\times} \cap (\nu + \operatorname{ann}_{R}(y))||yR^{\times}| = |R^{\times}|.$

Proof The subgroup property is easy to check. Now R^{\times} acts on R^k by right multiplication. The orbit of any element $y \in \mathbb{R}^k$ is given by $y\mathbb{R}^{\times}$ and its stabilizer is $R^{\times} \cap (1 + \operatorname{ann}_{R}(y))$, which has order $|R^{\times}|/|yR^{\times}|$, by the Orbit-Stabilizer Theorem. The result now follows since for any $\nu \in \mathbb{R}^{\times}$ the map : $\nu + a \mapsto 1 + a\nu^{-1}$ is a bijection from $R^{\times} \cap (\nu + \operatorname{ann}_R(y))$ onto $R^{\times} \cap (1 + \operatorname{ann}_R(y))$. П

Definition 5 ([15]) We say that C is a δ -modular code if $\delta_i = \delta$ for each $i \in \mathcal{I}$.

Example 1 A projective code over the finite field \mathbb{F}_q is $\frac{1}{q-1}$ -modular. A projective, regular code over a finite Frobenius ring R is $\frac{1}{|R^{\times}|}$ -modular. Over \mathbb{Z}_6 , the code generated by $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is modular and the code generated by $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ is not modular.

Lemma 6 Let C be δ -modular. If $\gamma = \delta^{-1}$, then $w(c) \in \mathbb{Z}$ for all $c \in C$.

Proof Let $c \in C$. Then $w(c) = \sum_{i \in \mathcal{I}} \eta_i w(c_i)$. By hypothesis and Theorem 2 we have

$$\eta_i w(c_i) = \frac{\eta_i}{\delta} \left(1 - \frac{\mu(0, c_i R)}{|c_i R^{\times}|} \right) = |g_i R^{\times}| \left(1 - \frac{\mu(0, c_i R)}{|c_i R^{\times}|} \right)$$

Let $x \in R^k$ such that c = xG. Then $c_i = x \cdot g_i, \operatorname{ann}_R(g_i) \subset \operatorname{ann}_R(x \cdot g_i)$ and $R^{\times} \cap (1 + \operatorname{ann}_R(g_i))$ is a subgroup of $R^{\times} \cap (1 + \operatorname{ann}_R(x \cdot g_i))$. The result now follows by Lemma 4.

Definition 7 The code C is called a two-weight code if for all $c \in C$, $w(c) \in$ $\{0, w_1, w_2\}$ for some $0 < w_1 < w_2$.

If C is a two-weight code, we define a graph $\Gamma(C)$ as follows: The codewords of C are the vertices of $\Gamma(C)$ and two codewords $c, c' \in C$ are adjacent in $\Gamma(C)$ if and only if $w(c-c') = w_1$. $\Gamma(C)$ is the Cayley graph generated by set of codewords of C of weight w_1 . Observe that changing the value γ of w does not affect $\Gamma(C)$. In certain cases, $\Gamma(C)$ is a strongly regular graph, in which case we will call C primitive if $\Gamma(C)$ is primitive.

3 Two-Weight Rings

We call a finite Frobenius ring R a two-weight ring if for all $r \in R$, $w(r) \in \{0, w_1, w_2\}$ for some $0 < w_1 < w_2$ and there exist some $u, v \in R$ such that $w(u) = w_1$ and $w(v) = w_2$ (that is to say that R has exactly two non-zero homogeneous weights). For the remainder of this section, we assume all two-weight rings are proper and that the homogeneous weight is normalised. If R is a two-weight ring, then $\Gamma(R)$, the Cayley graph of the set of ring elements of weight w_1 in R is a strongly regular graph (cf. [3,5]). We now show that any two-weight ring is isomorphic to one of the following:

1. Let R be a local ring with residue field of order q. Then for all non-zero $x \in R$,

$$w(x) = \begin{cases} w_1 = 1, & \text{if } x \notin \text{Soc}(R), \\ w_2 = \frac{q}{q-1}, & \text{otherwise.} \end{cases}$$

The local R has a non-trivial socle if and only if R is not a finite field, in which case it is a two-weight ring. If R is a finite field it is not a two-weight ring and every non-zero element has weight $\frac{q}{q-1}$.

2. Let q > 2. Then $R = \mathbb{F}_q \oplus \mathbb{F}_q$ is a two-weight ring: for all non-zero $x \in R$,

$$w(x) = \begin{cases} w_1 = \frac{q(q-2)}{(q-1)^2}, & \text{if } x \in R^{\times}, \\ w_2 = \frac{q}{q-1}, & \text{otherwise.} \end{cases}$$

3. $M_2(\mathbb{F}_q)$ is a two-weight ring: for all non-zero $x \in \mathbb{R}^{1}$

$$w(x) = \begin{cases} w_1 = \frac{q(q^2 - q - 1)}{(q^2 - 1)(q - 1)}, & \text{if } x \in R^{\times}, \\ w_2 = \frac{q^2}{q^2 - 1}, & \text{otherwise.} \end{cases}$$

Let R be a two-weight ring with non-zero weights $w_1 < w_2$. It can easily be deduced from [3,5] that $w_1 \leq 1 < w_2$, with equality if and only if $\Gamma(R)$ is imprimitive. It follows that for any non-zero $x \in R$, $w(x) = w_2$ if and only if $\mu(0, Rx) < 0$ and $w(x) = w_1$ if and only if $\mu(0, Rx) \geq 0$.

Lemma 1 Let R be a two-weight ring. Then $\Gamma(R)$ is imprimitive if and only if R is a local ring.

Proof For a non-zero $x \in R$, $w(x) = w_1 = 1$ if and only if $\mu(0, Rx) = 0$. Since $\operatorname{Soc}(_RR)$ is principal, this holds if and only if $\operatorname{Soc}(_RR)$ is simple. Since R is Frobenius, we have $_R(R/\operatorname{Rad}(R)) \cong \operatorname{Soc}(_RR)$.

Recall that a semi-simple ring is one satisfying $\operatorname{Rad}(R) = \{0\}$ (cf. [20]).

Lemma 2 Let R be a two-weight ring. Then if $\Gamma(R)$ is primitive, R is semisimple.

Proof Since $\operatorname{Soc}(_RR)$ is principal, if $\operatorname{Soc}(R) \neq R$, there exists $a \notin \operatorname{Soc}(R)$ such that w(a) = 1. This contradicts the assumption $\Gamma(R)$ is primitive. Applying the identity $_R(R/\operatorname{Rad}(R)) \cong \operatorname{Soc}(_RR)$ gives $\operatorname{Rad}(R) = \{0\}$.

¹ It is well-known that $M_2(\mathbb{F}_q)$ determines a strongly regular graph by taking the ring elements as vertices and joining two vertices if their difference has rank 2 (cf. [9]); this is the same relation as induced by the homogeneous weight.

Observation 8 In [5, Corollary 15], it was shown that for a proper regular, projective, two-weight code C, with homogeneous weights $0 < w_1 < w_2$ that $(w_2 - w_1)|R^{\times}|$ is an integral divisor of |C|. Then in particular if R is a two-weight ring we see that $(w_2 - w_1)|R^{\times}|$ is an integral divisor of |R|.

Observation 9 It is well-known that all finite semi-simple rings are isomorphic to direct sums of matrix rings over finite fields.

We will use these observations in the proof of the following classification result.

Theorem 10 Let R be a two-weight ring with $\Gamma(R)$ primitive. Then R is isomorphic to either $\mathbb{F}_q \oplus \mathbb{F}_q$, q > 2, or to $M_2(\mathbb{F}_q)$.

Proof Since R is semi-simple, we may write $R \cong \bigoplus_{i=1}^{t} M_{n_i}(\mathbb{F}_{q_i})$ for some prime powers q_i and positive integers n_i . Observe all minimal (left) ideals Rx in R have the same order $m = \frac{w_2}{w_2-1}$, since any generator x of such an ideal satisfies $\mu(x) = -1$ and $w(x) = w_2 = \frac{|Rx|}{|Rx|-1}$. Now let $R_j = M_{n_j}(\mathbb{F}_{q_j})$. For $x_j \in R_j$, we let $\bar{x}_j \in R$ have x_j in the j^{th} coordinate and zeroes elsewhere. If $R_j x_j$ is minimal of order m_j , it follows that $R\bar{x}_j$ is also minimal of order $m_j = m$ (thus m_j is independent of j).

Suppose for the sake of contradiction that t > 2. Then for $j \in \{1, 2, 3\}$, let $x_j \in R_j$ such that $R_j x_j$ is minimal of order m. Then $x = \bar{x}_1 + \bar{x}_2 + \bar{x}_3 \in R$ satisfies $\mu(x) = -1$. Therefore $w(x) = 1 + \frac{1}{(m-1)^3} \neq w_2$, unless m = 2. If m = 2, R is not proper.

Let t = 2 and without loss of generality, suppose $n_1 > 1$. Then $m = q_1^{n_1}$. Let $A \in M_{n_1}(\mathbb{F}_{q_1})$ have $a_{11} = a_{22} = 1$ and all other coordinates equal to zero. Then $\bar{A} \in R$ satisfies $\mu(\bar{A}) = q_1, |R^{\times}\bar{A}| = q_1(q_1^{n_1} - 1)(q_1^{n_1-1} - 1)$ and $w(\bar{A}) = w_1 = 1 - \frac{1}{(q_1^{n_1} - 1)(q_1^{n_1-1} - 1)}$. Now for $j = \{1, 2\}$, let $x_j \in R_j$ such that $R_j x_j$ is minimal. Then $\mu(\bar{x}_1 + \bar{x}_2) = 1$ and $w(\bar{x}_1 + \bar{x}_2) = 1 - \frac{1}{m_1} \neq w_1$ as required

Then $\mu(\bar{x}_1 + \bar{x}_2) = 1$ and $w(\bar{x}_1 + \bar{x}_2) = 1 - \frac{1}{(q_1^{n_1} - 1)^2} \neq w_1$ as required. Finally, suppose t = 1 and $R = M_n(\mathbb{F}_q)$. Suppose for the sake of contradiction that $n \geq 3$. Since $m = q^n$, $w_2 = \frac{q^n}{q^n - 1}$, and using the same notation as above,

that $n \geq 3$. Since $m = q^n$, $w_2 = \frac{q^n}{q^{n-1}}$, and using the same notation as above, $w(A) = w_1 = 1 - \frac{1}{(q^n - 1)(q^{n-1} - 1)}$. As $|M_n(\mathbb{F}_q)^{\times}| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1)$, it follows by [5, Corollary 15] that

$$|R^{\times}|(w_2 - w_1) = q^{n(n-1)/2 + n-1} \prod_{i=1}^{n-2} (q^i - 1)$$

is an integral divisor of $|R| = q^{n^2}$. This only happens if n = 3 and q = 2, in which case, $R = M_3(\mathbb{F}_2)$ and $w_2 = \frac{8}{7}$. It can be checked that $\mu(0, RI) = -8$ and $w(I) = \frac{22}{21} \neq w_2$. The result follows.

4 The Order of Linear Codes

We establish results on the order of linear codes over finite Frobenius rings that will be needed later. First, we again fix some notation. **Definition 11** Let S be a non-empty subset of \mathbb{R}^k .

$$S^{\perp} := \{ x \in R^{k} : x \cdot s = 0 \text{ for all } s \in S \} < {}_{R}R^{k}, \\ C(S) := \{ (x \cdot s)_{s \in S \setminus \{0\}} : x \in R^{k} \} < {}_{R}R^{|S \setminus \{0\}|}, \\ M_{S} := \sum_{s \in S} sR < R^{k}_{R}.$$

Let $S_1, ..., S_t$ be non-empty subsets of \mathbb{R}^k . We denote by $C(S_1, ..., S_t)$ the left *R*-linear code of length $\sum_{i=1}^t |S_i \setminus \{0\}|$ defined by

$$C(S_1, ..., S_t) := \{ ((x \cdot s_1)_{s_1 \in S_1 \setminus \{0\}}, ..., (x \cdot s_t)_{s_t \in S_t \setminus \{0\}}) : x \in \mathbb{R}^k \}$$

Given a $k \times n$ matrix $Y = [y_1, ..., y_n]$ over R with each y_i non-zero, we write C(Y) in place of $C(\{y_1\}, ..., \{y_n\})$. Then with respect to this notation, we have C = C(G).

Lemma 12 Let $S_1, ..., S_t$ be non-empty subsets of \mathbb{R}^k . Then the codes $C(S_1, ..., S_t)$ and $C(\sum_{i=1}^t M_{S_i})$ are isomorphic as left \mathbb{R} -modules. In particular, $|C(S_1, ..., S_t)| = |C(\sum_{i=1}^t M_{S_i})|$.

Proof Clearly, we have the left R-module isomorphisms

$$C(S_1, ..., S_t) \cong R^k / \bigcap_{i=1}^t S_i^{\perp} \text{ and } C\left(\sum_{i=1}^t M_{S_i}\right) \cong R^k / \left(\sum_{i=1}^t M_{S_i}\right)^{\perp}.$$

The result now follows from the fact that $\left(\sum_{i=1}^{t} M_{S_i}\right)^{\perp} = \bigcap_{i=1}^{t} M_{S_i}^{\perp}$ and that for each $i, S_i^{\perp} = M_{S_i}^{\perp}$.

Since R is Frobenius, for any left or right ideal I of R, the average value of the homogeneous weight of its elements is also constant, that is, $\sum_{x \in I} w(x) = \gamma |I|$ [12,14]. This gives the following two results.

Lemma 13 (See also [26, Lemma 15]) Let $M < R_R^k$. Then every non-zero codeword $c \in C(M)$ satisfies $w(c) = \gamma |M|$.

Lemma 14 ([12]) For each $i \in \{1, ..., n\}$, $\sum_{c \in C} w(c_i) = \gamma |C|$.

Lemma 15 Let $M \le R_R^k$. Then |C(M)| = |M|.

Proof We count the total weight of the codewords of C(M) in two ways. Applying Lemmas 13 and 14 gives $(|C(M)| - 1)\gamma|M| = (|M| - 1)\gamma|C(M)|$.

Corollary 16 $|C| = |M_G|$.

Proof $C = C(G) \cong C(M_G)$ by Lemma 12. From Lemma 15 we then get $|C| = |C(M_G)| = |M_G|$.

5 Two-Weight Codes and Graphs

We determine relations between the parameters of a two-weight code and its corresponding Cayley graph. We will use the concept of the distance matrix of a code [5,10].

Definition 17 The distance matrix of C is the $|C| \times |C|$ matrix D with rows and columns indexed by the elements of C and whose (u, v)-th entry is $D_{uv} = w(u-v)$ for $u, v \in C$. For each $i \in \mathcal{I}$, the i^{th} coordinate distance matrix of C is the $|C| \times |C|$ matrix D_i defined by $(D_i)_{uv} = w(u_i - v_i)$.

Definition 18 ([5,10]) We denote by \mathcal{X} the complex $|C| \times |R^{\times}|n$ matrix whose components satisfy $(\mathcal{X})_{c,(\lambda,i)} := \chi(c_i\lambda)$ for each $c \in C$, $i \in \{1,...,n\}$ and $\lambda \in \mathbb{R}^{\times}$. For each $i \in \mathcal{I}$ we let \mathcal{X}_i be the $|C| \times |R^{\times}|\eta_i$ submatrix of \mathcal{X} whose columns are those indexed by (j, λ) for $j \in [i]$ and $\lambda \in \mathbb{R}^{\times}$.

Given a complex matrix X, we write X^* to denote the conjugate transpose matrix of X. We let J denote the $|C| \times |C|$ all-ones matrix.

Theorem 19

(i)
$$DJ = \gamma n |C| J$$
 and
(ii) $D^2 = \gamma |C| \left(\gamma \left(n^2 + \gamma \sum_{i \in \mathcal{I}} \delta_i \eta_i \right) J - \sum_{i \in \mathcal{I}} \delta_i \eta_i D_i \right).$

Proof The proof of (i) follows immediately from Lemma 14 since

$$(DJ)_{uv} = \sum_{x \in C} w(u - x) = \sum_{x \in C} w(x) = \sum_{i=1}^{n} \sum_{x \in C} w(x_i) = \gamma n |C|,$$

for any $u, v \in C$.

For fixed $i, j \in \{1, ..., n\}$ and $\lambda, \tau \in \mathbb{R}^{\times}$, define

$$\Lambda: \mathbb{R}^n \longrightarrow \mathbb{R}: c = (c_1, ..., c_n) \mapsto c_j \tau - c_i \lambda.$$

Then Λ is the zero map on C if and only if $g_j \tau - g_i \lambda = 0$, in which case $j \in [i]$ and $g_j = g_i \tau_{ij}$, which holds if and only if $\tau_{ij} \tau - \lambda \in \operatorname{ann}_R(g_i)$. It follows that

$$\begin{aligned} (\mathcal{X}^*\mathcal{X})_{(i,\lambda),(j,\tau)} &= \sum_{c \in C} \chi \left(c_j \tau - c_i \lambda \right) \\ &= \begin{cases} |\ker \Lambda \cap C| \text{ if } \Lambda(C) = \{0\}, \\ 0 & \text{otherwise.} \end{cases} \\ &= \begin{cases} |C| \text{ if } j \in [i] \text{ and } \lambda \in \tau_{ij} \tau + \operatorname{ann}_R(g_i), \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Then from Lemma 4,

$$((\mathcal{X}^*\mathcal{X})\mathcal{X}^*)_{(i,\lambda),c} = |C| \sum_{\substack{j \in [i] \\ +\operatorname{ann}_R(y_i)}} \overline{\chi}(x \cdot g_i \lambda) = |C| |R^{\times}| \frac{\eta_i}{|g_i R^{\times}|} \overline{\chi}(x \cdot g_i \lambda).$$

It is straightforward to show that $\mathcal{X}^*J = 0$, $\mathcal{X}_i\mathcal{X}_i^* = |R^{\times}|\eta_i(J - \gamma^{-1}D_i)$ and $\mathcal{X}\mathcal{X}^* = |R^{\times}|(nJ - \gamma^{-1}D)$. It follows that

$$\mathcal{X}^*(\mathcal{X}\mathcal{X}^*) = |R^{\times}|\mathcal{X}^*\left(J - \gamma^{-1}D\right) = -|R^{\times}|\gamma^{-1}\mathcal{X}^*D$$

and so for each $i \in \mathcal{I}$, $|C||R^{\times}|\frac{\eta_i}{|g_iR^{\times}|}\mathcal{X}_i^* + |R^{\times}|\gamma^{-1}\mathcal{X}_i^*D = 0$. Then

$$0 = |C||R^{\times}|\sum_{i\in\mathcal{I}}\delta_i\mathcal{X}_i\mathcal{X}_i^* + |R^{\times}|\gamma^{-1}\mathcal{X}\mathcal{X}^*D,$$

= $|C||R^{\times}|\sum_{i\in\mathcal{I}}\delta_i\eta_i(J-\gamma^{-1}D_i) + |R^{\times}|\gamma^{-1}(nJ-\gamma^{-1}D)D.$

The result now follows from (i).

The proof of the following corollary uses arguments similar to those in [5, 10].

Corollary 20 Let C be a proper two-weight code with non-zero weights $w_1 < w_2$. Then $\Gamma(C)$ is strongly regular if and only if there exist some $\alpha, \beta \in \mathbb{R}$ such that $\sum_{i \in \mathcal{I}} \delta_i \eta_i D_i = \alpha D + \beta (J - I)$, in which case the eigenvalues K, ρ_1, ρ_2 of $\Gamma(C)$ satisfy

- (i) $(w_2 w_1)K = w_2(|C| 1) \gamma n|C|,$ (ii) $(w_2 w_1)\rho_1 = -w_2 + \frac{1}{2}\left(\gamma|C|\alpha \sqrt{\gamma^2|C|^2\alpha^2 + 4\gamma|C|\beta}\right),$ (iii) $(w_2 w_1)\rho_2 = -w_2 + \frac{1}{2}\left(\gamma|C|\alpha + \sqrt{\gamma^2|C|^2\alpha^2 + 4\gamma|C|\beta}\right),$
- (iv) $|R^{\times}|^2 |C|^2 \alpha^2$ and $|R^{\times}| |C|^{\beta}$ are integers and $\sqrt{|R^{\times}|^2 |C|^2 \alpha^2 + 4|R^{\times}||C|^{\beta}}$ is an integer divisible by $\rho_2 - \rho_1$.

Proof The adjacency matrix A of $\Gamma(C)$ satisfies $(w_2 - w_1)A = w_2(J - I) - D$. Then from Equation (1), $\Gamma(G)$ is strongly regular if and only if D^2 is an \mathbb{R} -linear combination of D, J and I. Suppose there exist $\alpha, \beta \in \mathbb{R}$ such that $\sum_{i \in \mathcal{I}} \delta_i \eta_i D_i =$ $\alpha D + \beta (J-I)$. Then any restricted eigenvalue ρ of A satisfies $(w_2 - w_1)\rho = -w_2 - \theta$, where θ is a restricted eigenvalue of D. From Theorem 19, such θ are roots of the polynomial $x^2 + \gamma |C| \alpha + \gamma |C| \beta \in \mathbb{R}[x]$ which gives (ii) and (iii). Part (iv) follows since the homogeneous weight is integer-valued for $\gamma = |R^{\times}|$ and so, using (ii) and (iii), we get $(w_2 - w_1)(\rho_2 - \rho_1) = \sqrt{|R^{\times}|^2 |C|^2 \alpha^2 + 4|R^{\times}||C|\beta} \in \mathbb{Z}$. The rest can be deduced from (ii). П

Example 2 Let $R = \mathbb{Z}_6$ and let C be the code generated by [2 3 2 2 2 3 3]. C is a two-weight code of order 6 with normalized weights $w_1 = 6, w_2 = 12$. Then $\mathcal{I} = \{1, 2\}, \ \delta_1 = 2, \delta_2 = 3, \ \eta_1 = 4 \ \text{and} \ \eta_2 = 3.$ Then $\Gamma(C)$ is strongly regular if and only if there exist $\alpha, \beta \in \mathbb{Q}$ such that $8w(c_1) + 9w(c_2) = \alpha w(c) + \beta$ for all non-zero $c \in C$. It is easy to check that no such α and β exist.

Example 3 Let $R = \mathbb{Z}_4$ and $M_1 = \mathbb{Z}_4(0,1), M_2 = \mathbb{Z}_4(1,0) \leq \mathbb{Z}_4^2$. Then C = $C(M_1, M_2, \mathbb{Z}_4^2)$ is a non-modular two-weight code with normalized weights $w_1 =$ 20, $w_2 = 24$. As $\alpha = 3$, $\beta = -24$ satisfy $\sum_{i \in I} \delta_i \eta_i w(c_i) = \alpha w(c) + \beta$ for all non-zero $c \in C$, $\Gamma(C)$ is strongly regular (in fact $\Gamma(C)$ is an OA(4, 2)-type strongly regular graph).

These existence criteria are greatly simplified for the case $\beta = 0$, in which case the eigenvalues of D are 0 and $\gamma |C| \alpha$.

Corollary 21 Let C be a proper two-weight code with non-zero weights $w_1 < w_2$ and suppose that $\sum_{i \in \mathcal{I}} \delta_i \eta_i D_i = \alpha D$ for some $\alpha \in \mathbb{R}$. Let $\Gamma(C)$ have restricted eigenvalues $\rho_1 < \rho_2$. Then

(i) $\rho_2 - \rho_1$ is an integral divisor of $|R^{\times}||C|\alpha$;

(ii)
$$w_1 = \frac{\gamma |C|(\rho_1 + 1)\alpha}{(\rho_1 - \rho_2)}$$
 and $w_2 = \frac{\gamma |C|(\rho_1 \alpha)}{(\rho_1 - \rho_2)};$
(iii) the multiplicities m_1 and m_2 of ρ_1 and ρ_2 , respectively, satisfy

$$m_1 = |C| - 1 - \frac{n}{\alpha}$$
 and $m_2 = \frac{n}{\alpha}$.

In particular, if C satisfies the hypothesis of Corollary 21, then $\alpha \in \mathbb{Q}$.

Corollary 22 Let C satisfy the hypothesis of Corollary 21. Then $\Gamma(C)$ is imprimitive if and only if $w_2 = \gamma \alpha |C|$.

Proof Using Part (ii) of Corollary 21 we see that $w_2 = \gamma \alpha |C|$ if and only if $\rho_2 = 0$, in which case the complement of $\Gamma(C)$ is disconnected. If $\Gamma(C)$ itself is disconnected then we have $\rho_1 = -1$, which, again from Part (ii), yields $w_1 = 0$, giving a contradiction. П

6 Modular Two-Weight Codes

The code C is modular if for each $i \in \mathcal{I}$, $\delta_i = \delta = \alpha$ and $\beta = 0$. We have the following result.

Corollary 23 Let C be a δ -modular code. Then 1

$$D^{2} + \gamma |C|\delta D = n\gamma^{2} |C| (\gamma \delta + n) J.$$

In particular, if C is a proper two-weight code, then $\Gamma(C)$ is strongly regular.

Proof This follows immediately from Theorem 19, since $\delta_i = \delta$ for each i and $\sum_{i\in\mathcal{I}}\eta_i=n.$ П

We remark that it was already known that a proper modular two-weight code has a strongly regular Cayley graph: Honold asserted this in [15]. A proof may be read in [16, Theorem 12], which appeared on arXiv.org during the review of this paper. An important component of our approach is that Corollaries 21 and 23 yield explicit relations between the weights of a proper modular two-weight code C and the eigenvalues of $\Gamma(C)$ in the form of Corollary 26. This provides useful existence criteria for modular two-weight codes and their corresponding strongly regular Cayley graphs.

We now consider existence questions for modular two-weight codes. We first show that we may assume $\delta = 1$ without loss of generality.

Lemma 24 Let C be a δ -modular two-weight code with non-zero weights $0 < w_1 < \delta$ w_2 . Then there exists a 1-modular two-weight code $C' \leq {}_R R^{n'}$ of order |C'| = |C|and length $n' = n\delta^{-1}$ with non-zero weights $w'_1 = w_1\delta^{-1}$ and $w'_2 = w_2\delta^{-1}$ such that $\Gamma(C)$ is isomorphic to $\Gamma(C')$.

Proof Let G' be the $k \times \sum_{i \in \mathcal{I}} |g_i R^{\times}|$ matrix formed by replacing, for each $i \in \mathcal{I}$ the η_i columns that are unit multiples of g_i with some (not necessarily distinct) $|g_i R^{\times}|$ unit multiples of g_i . Then C' = C(G') has length $n' = \sum_{i \in \mathcal{I}} |g_i R^{\times}| = \sum_{i \in \mathcal{I}} \frac{\eta_i}{\delta} =$ $\frac{n}{\delta}$ and is 1-modular. The order of C' is $|C'| = |M_{G'}| = |M_G|$ by Lemma 16 and so there is a one-to-one correspondence between the words of C and C'. Explicitly, given any $c = xG \in C$, let c' = xG' be the corresponding codeword in C'. Clearly for any $i \in \mathcal{I}$, $w(c'_i) = w(c_i)$, so that

$$w(c') = \sum_{i \in \mathcal{I}} |g_i R^{\times}| w(c'_i) = \sum_{i \in \mathcal{I}} |g_i R^{\times}| w(c_i) = \sum_{i \in \mathcal{I}} \frac{\eta_i}{\delta} w(c_i) = \delta^{-1} w(c).$$

Then C' is a 1-modular two-weight code with $\Gamma(C')$ isomorphic to $\Gamma(C)$.

We now show that if C is a 1-modular two-weight code, there exists a 1-modular two-weight code C' such that $\Gamma(C')$ is isomorphic to $\Gamma(C)^c$, the complement of $\Gamma(C).$

Lemma 25 Suppose C is a primitive, proper 1-modular two-weight code with nonzero normalized weights $0 < w_1 < w_2$. Then $C' = C(M_G \setminus \bigcup_{i=1}^n g_i R^{\times})$ is a proper, 1-modular two-weight code of order |C| with non-zero normalized weights $w'_1 < w'_2$ where $w'_1 = |C| - w_2$ and $w'_2 = |C| - w_1$. Moreover, $\Gamma(C)^c$ is isomorphic to $\Gamma(C')$.

Proof As C is 1-modular, C' is 1-modular. Now if xG = 0 then $x \in M_G^{\perp}$ and xG' = 0. By Lemma 13, for any $x \in \mathbb{R}^k$ such that $xG \neq 0$, w(xG') + w(xG) = w(xG') + w(xG) $|M_G| = |C|$. As Γ is primitive, Corollary 22 implies $w_2 < |C|$ and $|C| - w_2 > 0$. Then C' is a two-weight code with the weights claimed. Further, if w(xG') = 0, xG = 0 (else we would have w(xG) = |C|) and so xG' = 0. It follows that C' is proper and |C| = |C'|. Finally, as $w(xG) = w_1$ if and only if $w(xG') = w'_2$, $\Gamma(C)^c$ is isomorphic to $\Gamma(C')$.

Corollary 26 Let Γ be a strongly regular graph with parameters (N, K, λ, μ) and restricted eigenvalues $\rho_1 < \rho_2$ of multiplicities m_1, m_2 respectively. Then Γ is the Cayley graph of a δ -modular two-weight code over R if and only if Γ is isomorphic to $\Gamma(C)$, where C is a 1-modular two-weight code with non-zero weights w_1, w_2 such that the following hold.

(i) |C| = N and $\rho_1 - \rho_2$ is an integer dividing N. (ii)

$$w_1 = \frac{(\rho_1 + 1)N}{\rho_1 - \rho_2}$$
 and $w_2 = \frac{\rho_1 N}{\rho_1 - \rho_2}$.

- (iii) The length of C is given by $n = m_2$.
- (iv) $C' = C(M_G \setminus \bigcup_{i=1}^n g_i R^{\times})$ has length $n' = m_1$, two non-zero weights $w'_1 =$ $N - w_2, w'_2 = N - w_1$ and $\Gamma(C')$ is a strongly regular graph with parameters $(N, N - K - 1, N - 2K + \mu - 2, N - 2K + \lambda).$

This result can be used to analyse a feasible parameter set (N, K, λ, μ) [2] of a strongly regular graph that might arise from a modular two-weight code C, or conversely to check the existence of a modular two-weight code. Moreover, if a strongly regular graph is the Cayley graph of a modular two-weight code, so is its complement, thus it suffices to check parameters up to complements only. For

example, the first constraint " $\rho_1 - \rho_2$ divides N" shows that at most 732 of the 2140 feasible parameters sets (counted up to complements) for graphs on at most 1300 vertices listed in [2] could be the parameters of a strongly regular graph $\Gamma(C)$ for a modular two-weight code C. Among these there are 1514 putative parameter sets, for which graph existence is not known, and only 433 of these could come from a modular two-weight code.

A search was carried out in [5] for the sub-class of regular projective twoweight codes. There are significant differences between this and the more general case of modular codes. In the first instance, the complement of a strongly regular graph $\Gamma(C)$ coming from a two-weight code C does not necessarily arise from a regular-projective two-weight code, so any search cannot exclude complementary parameters. Secondly, in the projective, regular case, N = |C| is an upper bound on |R|. It is therefore often possible to produce an exhaustive list of candidate coefficient rings over which search can be conducted. A further complication in both cases is that canonical descriptions of generator matrices for rings that are not direct products of chain rings are not known in general, making a complete search a very difficult task. We remark that in the regular projective case, out of the 2956 (up to complements 1514) putative parameter sets for which the existence of a graph is not yet known, there remain only 82 open cases. All regular projective two-weight codes found by the search had order the square of a prime power.

Example 4 The parameter set (64, 36, 20, 20) corresponds to a graph with eigenvalues -4,4 and respective multiplicities 27, 36. Any 1-modular two-weight code determining a graph with these parameters has order 64, length 27 and normalized weights $w_1 = 24, w_2 = 32$. Over $R = M_2(\mathbb{F}_2) \oplus \mathbb{F}_4$, we suppose C is generated by a single codeword c and the identity element (I, 1) of R is a coordinate of c. Then 18 entries of c are units in R and they contribute weight 20 to c. By examining the weights of the ring elements, we see the remaining nine coordinates of c must have total weight 12 and therefore be ring elements of the form (A, 0), where A has rank 1 in $M_2(\mathbb{F}_2)$. It can be checked that the following vector generates a $\frac{1}{3}$ -modular version of the required code:

$$\left[(I,1), (I,1), (I,1), (I,1), (I,1), (I,1), \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, 0 \right), \left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, 0 \right) \right]$$

Example 5 Consider the feasible parameter set (96, 45, 24, 18). Suppose that a strongly regular graph Γ for such parameters exists, in which case it has eigenvalues -3, 9, with multiplicities 75 and 20, respectively. Suppose that C is a two-weight code over $R = \mathbb{F}_{32} \oplus \mathbb{F}_3$ satisfying $\Gamma = \Gamma(C)$. Let $k \in \mathbb{Z}$, and let $g \in R^k$ have $(u, a) \in R$ in some coordinate, with $u \neq 0$. Then as $|gR^{\times}| \geq 31$, if the vectors in the projective class of g are columns in $G, n \geq 31$. This contradicts $n = m_2 = 20$. It follows that every coordinate of every vector of R_R^k that is a column of G must be of the form (0, a) and thus $|C| = 3^b$, for some $b \in \mathbb{N}$, giving a contradiction.

7 Codes, Arrays and Graphs

In the following section we show that modular two-weight codes can be constructed by taking unions of submodules of R_R^k with pairwise trivial intersection. We thus illustrate connections between two-weight codes, orthogonal arrays and partial congruence partitions.

These examples establish the existence of primitive (those codes C such that $\Gamma(C)$ is primitive) modular two-weight codes over any finite Frobenius ring R and of any square order N > 4. No regular, projective two-weight codes of non-prime-power order are known to exist and their existence has been excluded for numerous non-prime-power square orders [5]. In fact, this construction is the only known infinite family of primitive two-weight codes over rings whose orders are not all prime powers.

We first show certain (not necessarily two-weight) codes can be used to construct orthogonal arrays and strongly regular graphs. We will use the following result.

Lemma 27 Let $S_1, \ldots, S_t \subseteq R^k, t \geq 2$. Then for every $x \in R^k, |\{i : x \in S_i^{\perp}\}| \in \{0, 1, t\}$ if and only if for all distinct $i, j \in \{1, \ldots, t\}, M_{S_i} + M_{S_j} \supseteq M_{S_l}$ for all $l \in \{1, \ldots, t\}$.

Proof We have $M_{S_i} + M_{S_j} \supseteq M_{S_l}$ if and only if $(M_{S_i} + M_{S_j})^{\perp} \subseteq M_{S_l}^{\perp}$ which holds if and only if $M_{S_i}^{\perp} \cap M_{S_j}^{\perp} \subseteq M_{S_l}^{\perp}$. Since $S_i^{\perp} = M_{S_i}^{\perp}$, any $x \in \mathbb{R}^k$ is contained in exactly one, none or all S_i^{\perp} .

Let $S_1, \ldots, S_t \subseteq \mathbb{R}^k$. For each $i \in \{1, \ldots, t\}$ and $c \in C(S_1, \ldots, S_t)$, let $\Pi_i(c) \in C(S_i)$ be the projection of c onto the coordinates indexed by the elements of S_i . Define a graph $H(S_1, \ldots, S_t)$ whose vertices are the codewords of $C(S_1, \ldots, S_t)$ and where two vertices c, c' are adjacent if and only if $\Pi_i(c) = \Pi_i(c')$ for some $i \in \{1, \ldots, t\}$.

Theorem 28 Let $t \ge 2$ and let $S_1, \ldots, S_t \subset \mathbb{R}^k$ be a family of sets satisfying

- (i) $|M_{S_i}| = v$ for all *i*. (ii) $M_G \cap M_G = \{0\}$ for
- (ii) $M_{S_i} \cap M_{S_j} = \{0\}$ for all i, j. (iii) $M_{S_i} + M_{S_j} \supseteq M_{S_\ell}$ for all $i, j, \ell \in \{1, ..., t\}$ with $i \neq j$.

Then $H(S_1, ..., S_t)$ is an OA(v, t)-type graph.

Proof By Lemmas 12 and 15, $|C(S_i)| = |M_{S_i}| = v$ for each *i* and

$$|C(S_1, ..., S_t)| = |C(M_{S_1}, ..., M_{S_t})| = |\sum_{i=1}^t M_{S_i}| = |M_{S_i} + M_{S_j}| = v^2,$$

for any distinct i and j. We now construct an OA(v, t) from $C(S_1, ..., S_t)$. Let V be an arbitrary v-set. For each i, let $f_i : C(S_i) \to V$ be a bijection. Then define maps

$$F: C(S_1, ..., S_t) \to V^t: c \mapsto (f_1(\Pi_1(c)), f_2(\Pi_2(c)), ..., f_t(\Pi_t(c))),$$

$$F_{ij}: C(S_i, S_j) \to V^2: c \mapsto (f_i(\Pi_i(c)), f_j(\Pi_j(c))).$$

Arrange $\{F(c) : c \in C\}$ as the rows of an array, A. As $|C(S_i, S_j)| = |M_{S_i} + M_{S_j}| = v^2$ for any distinct *i* and *j*, the map F_{ij} is a bijection. Then every element of $V \times V$ occurs exactly once in the i^{th} and j^{th} columns of A, which we then conclude is an OA(v, t).

Finally, we show $H(S_1, ..., S_t)$ is isomorphic to $\Gamma(A)$. Let $c, c' \in C(S_1, ..., S_t)$. Now (c, c') is an edge of $H(S_1, ..., S_t)$ if and only if there exists a unique *i* such that $\Pi_i(c - c') = 0$, or equivalently, $\Pi_i(c) = \Pi_i(c')$. This holds if and only if $f_i(\Pi_i(c)) = f_i(\Pi_i(c'))$ which is precisely the condition needed for F(c) and F(c') to be adjacent in $\Gamma(A)$.

We now show that a modular two-weight code can be constructed from any family of subsets of R_R^k satisfying Theorem 28. This generalises a well-known construction for two-weight codes over \mathbb{F}_q that takes unions of subspaces of \mathbb{F}_q^k (cf. [7]).

Corollary 29 Let $S_1, \ldots, S_t, t \ge 2$ be subsets of R_R^k satisfying the hypothesis of Theorem 28 with t < v + 1. For each $i \in \{1, ..., t\}$ write $\overline{M}_i = M_{S_i} \setminus \{0\}$. Let $Y = [(y_1)_{y_1 \in \overline{M}_1}, ..., (y_t)_{y_t \in \overline{M}_t}]$. Then

- (i) $C(Y) = C_Y$ is a 1-modular two-weight code of order v^2 with non-zero weights $w_1 = (t-1)v$ and $w_2 = tv$,
- (ii) $\Gamma(C_Y)$ is an OA(v, t)-type graph.

Proof We first show C_Y is a two-weight code. For each $c \in C_Y$, let $\pi_i(c)$ denote the projection of c onto the coordinates corresponding to the v-1 non-zero elements of M_{S_i} . Let $c = xY \in C_Y$ for some $x \in \mathbb{R}^k$. Then $\pi_i(c) = 0$ if and only if $x \in M_{S_i}^{\perp}$ and so we compute

$$w(xY) = \sum_{i=1}^{t} w(\pi_i(xY)) = tv - |\{i : x \in S_i^{\perp}\}|v$$

If follows by Lemma 27 that C_Y has non-zero weights $w_1 = (t-1)v$ and $w_2 = tv$ (since t < v + 1, C is not a constant weight code). Then C_Y is a 1-modular two-weight code and by Corollary 20, $\Gamma(C_Y)$ is a strongly regular graph with parameters

$$(v^{2}, t(v-1), v-2 + (t-1)(t-2), t(t-1)).$$

It is easy to see that $\Gamma(C_Y)$ is isomorphic to $H(C(S_1, ..., S_t))$ since $w(c-c') = w_1$ if and only if there exists a unique *i* such that $\pi_i(c) = \pi_i(c')$.

Remark 1 Not every modular two-weight code produced by Theorem 28 has Cayley graph $\Gamma(C)$ isomorphic to H(C). Let p be a prime and C the code over $R = \mathbb{Z}_{p^2}$ generated by

$$\begin{bmatrix} 1 & 0 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & (p-1) \end{bmatrix} \in R^{2 \times (p+1)}.$$

Then C satisfies the conditions of Theorem 28 and H(C) is an $OA(p^2, p+1)$ -type graph. On the other hand, as observed in [3, Proposition 6.2], C is a regular, projective two-weight code and $\Gamma(C)$ has the parameters of the strongly regular graph from an $OA(p^2, p)$.

Remark 2 Corollary 29 Part (i) can also be arrived at by combining [22, Proposition 3.4] and Theorem 17 of the preprint [16] as follows. Let Y and C_Y be as in Corollary 29. Then $\bigcup_{i=1}^{t} \overline{M}_i$ is a partial difference set by [22, Proposition 3.4], and so C_Y is a two-weight code by [16, Theorem 17].

Given $S_1, ..., S_t \subset \mathbb{R}^k$ satisfying the hypothesis of Theorem 28, the set of modules $\mathcal{M} = \{M_{S_1}, ..., M_{S_t}\}$ is an example of a *partial congruence partition* [1, Definition 9.3], for the group $(G, +) = (M_{S_i} + M_{S_j}, +)$, or equivalently a *translation net*. If R is a finite field then \mathcal{M} is a *partial-spread*.

Jungnickel characterized all partial congruence partitions in $(\mathbb{Z}_q^k, +)$ [17, Theorem 2.1]. The argument given therein and outlined briefly below extends immediately for submodules of R_R^k and allows us to describe all such sets \mathcal{M} .

Let $\mathcal{M} = \{M_1, ..., M_t\}$ for some $M_i < R_R^k$ such that for some $M < R_R^k$, $M = M_i \oplus M_j$ for each pair of distinct $i, j \in \{1, ..., t\}$. Then the M_i are all isomorphic as right *R*-modules. Let $a \in M_i$ for some $i \geq 3$. Then a = x + y for uniquely determined $x \in M_1, y \in M_2$. In particular, there is a bijection $\sigma : M_1 \longrightarrow M_2$ such that $M_i = \{x + \sigma(x) : x \in M_1\}$ and in fact σ must be a right *R*-module isomorphism.

We hence give an explicit construction of two-weight codes arising from Corollary 29, which is essentially unique.

Construction 30 Let $M_1, M_2 < R_R^k$ be isomorphic as right R-modules and have order v. Let $\operatorname{Hom}_R(M_1, M_2)$ denote the additive group of right R-module homomorphisms from M_1 onto M_2 . Let Σ be an m-subset of the isomorphisms of $\operatorname{Hom}_R(M_1, M_2)$ such that $\sigma - \tau$ is an isomorphism for any distinct $\sigma, \tau \in \Sigma$. Then

$$\mathcal{M} = \{M_1, M_2, \{x + \sigma(x) : x \in M_1\} : \sigma \in \Sigma\}$$

forms a set of submodules of R_R^k satisfying the conditions of Corollary 29. Let Y be the $k \times n$ matrix whose columns comprise the non-zero elements in the union of the submodules of \mathcal{M} and let C = C(Y). Then

- C has order v^2 , length n = (m+2)(v-1) and exactly two non-zero normalized homogeneous weights $w_1 = (m+1)v$, $w_2 = (m+2)v$;
- $\Gamma(C)$ is an OA(v, m+2)-type graph.

Construction 30 gives all possible matrices Y and two-weight codes C(Y), formed as in the statement of Corollary 29. Note that orthogonal arrays with the above parameters were known to exist (see for example [23]), independently of these constructions.

Example 6 Let $k = 2\ell$, let R be commutative and let $A \cong R^{\ell}$. Let Σ be an *m*-subset of the invertible matrices of $M_{\ell}(R)$ such that the difference between any pair of elements of Σ represents an element of $\operatorname{Aut}_{R}(A)$. Then the $k \times n$ matrix Y whose columns comprise the elements of

$$\{(x,0),(0,x),(x,Lx):x\in A\backslash\{0\},L\in\Sigma\}\subset R^{k}$$

generates a code C(Y) of order $|A|^2$, length n = (m+2)(|A|-1) having two non-zero normalized weights $w_1 = (m+1)|A|$, $w_2 = (m+2)|A|$. It is easy to see that m is less than the size of any minimal left ideal of $M_{\ell}(R)$.

Example 7 Let $\ell = 2$, let $R = \mathbb{Z}_{pq}$ for primes p < q, and let $M = R^2$. For $i \in \{1, ..., p-1\}$, define $\sigma_i : R^2 \to R^2, \sigma_i(x) = ix$. Then $\Sigma = \{\sigma_1, \ldots, \sigma_{p-1}\} \subset \operatorname{Aut}(R^2), m = |\Sigma| = p-1$ and $\sigma_i - \sigma_j \in \operatorname{Aut}(R^2)$ for distinct i and j. Σ determines

a two-weight code C of order p^4q^4 and length $(p+1)(p^2q^2-1)$ with $w_1 = p^3q^2$ and $w_2 = (p+1)p^2q^2$. $\Gamma(C)$ is an $OA(p^2q^2, p+1)$ -type graph. C is generated by

$$\left[\begin{pmatrix} 0 \\ x \end{pmatrix}_{x \in M \setminus \{0\}} \middle| \begin{pmatrix} x \\ 0 \end{pmatrix}_{x \in M \setminus \{0\}} \middle| \begin{pmatrix} x \\ x \end{pmatrix}_{x \in M \setminus \{0\}} \middle| \cdots \middle| \begin{pmatrix} x \\ (p-1)x \end{pmatrix}_{x \in M \setminus \{0\}} \right]$$

Construction 31 Let $a \in R \setminus \{0\}$. Choose $U \subseteq R^{\times}$ of order m such that for every distinct $u_i, u_j \in U, u_i - u_j$ is a unit. Let

$$\mathcal{M} = \{(1,0)aR, (0,1)aR, (1,u_1)aR, \dots, (1,u_m)aR\}.$$

 \mathcal{M} forms a set of submodules of R_R^2 as special case of Construction 30 with $\ell = 1$ and $A_1 = A_2 = aR$. Let Y be the $2 \times n$ matrix whose columns comprise the non-zero elements in the union of these submodules and let C = C(Y). Then

- C has order $|aR|^2$, length n = (m+2)(|aR|-1) and non-zero normalized weights $w_1 = (m+1)|aR|$, $w_2 = (m+2)|aR|$;
- $\Gamma(C)$ is an OA(|aR|, m+2)-type graph;
- $-m < \min\{|I| : I \triangleleft R_R\}.$

Example 8 Let a = 1 and $U = \{1\}$. The corresponding two-weight code C has length 3|R| - 3, order $|R|^2$ and non-zero weights $w_1 = 2|R|$, $w_2 = 3|R|$. $\Gamma(C)$ is an OA(|R|, 3)-type graph. G has the structure

$$\left[\begin{pmatrix} 0 \\ r \end{pmatrix}_{r \in R \setminus \{0\}} \middle| \begin{pmatrix} r \\ 0 \end{pmatrix}_{r \in R \setminus \{0\}} \middle| \begin{pmatrix} r \\ r \end{pmatrix}_{r \in R \setminus \{0\}} \right]$$

Example 9 Let $R = \mathbb{Z}_{pq}$ for primes p < q. Then R has the non-trivial proper ideals pR and qR. Let $U = \{1, ..., p-1\}$. Then $U \subset R^{\times}, m = |U| = p - 1$ and the difference between any pair of elements of U is a unit in R. Then U yields 3 two-weight codes and orthogonal arrays with parameters as indicated in the following table.

	n	w_1	w_2	OA(aR , p+1)
pR	(p+1)(q-1)	pq	(p+1)q	OA(q, p+1)
qR	(p+1)(p-1)	p^2	(p+1)p	OA(p, p+1)
R	(p+1)(pq-1)	p^2q	(p+1)pq	OA(pq, p+1)

Example 10 Let S be a finite Frobenius ring, $R = M_2(S), U_1 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, U_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Let $U = \{I, U_1, U_2\}$ and let a = I. Then a and U determine a two-weight code C of order $|S|^8$ and length $5(|S|^4 - 1)$ with $w_1 = 4|S|^4, w_2 = 5|S|^4$. $\Gamma(C)$ is an $OA(|S|^4, 5)$ -type graph. The structure of a generator matrix for C is given by

$$\left[\begin{pmatrix} 0 \\ A \end{pmatrix}_{A \in R \setminus \{0\}} \middle| \begin{pmatrix} A \\ 0 \end{pmatrix}_{A \in R \setminus \{0\}} \middle| \begin{pmatrix} A \\ A \end{pmatrix}_{A \in R \setminus \{0\}} \middle| \begin{pmatrix} A \\ U_1 A \end{pmatrix}_{A \in R \setminus \{0\}} \middle| \begin{pmatrix} A \\ U_2 A \end{pmatrix}_{A \in R \setminus \{0\}} \right].$$

Acknowledgement: The authors would like to thank the anonymous reviewers for their comments and suggestions, which has led to a great improvement in the presentation of this paper.

References

- 1. Beth, T., Jungnickel, D., Lenz, H. (eds.): Design Theory, second edn. Discrete Mathematics and its Applications (Boca Raton). Cambridge University Press (1999)
- 2. Brouwer, A.E.: Tables of parameters of strongly regular graphs. http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html
- Byrne, E., Greferath, M., Honold, T.: Ring geometries, two-weight codes, and strongly regular graphs. Des. Codes Cryptogr. 48(1), 1–16 (2008)
 Byrne, E., Greferath, M., Kohnert, A., Skachek, V.: New bounds for codes over finite
- Byrne, E., Greferath, M., Kohnert, A., Skachek, V.: New bounds for codes over finite Frobenius rings. Des. Codes Cryptogr. 57(2), 169–179 (2010)
- 5. Byrne, E., Kiermaier, M., Sneyd, A.: Properties of codes with two homogeneous weights. Finite Fields Appl. 18(4), 711–727 (2012)
- Byrne, E., Sneyd, A.: Constructions of two-weight codes over finite rings. Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010) (2010)
- 7. Calderbank, R., Kantor, W.M.: The geometry of two-weight codes. Bull. London Math. Soc. 18(2), 97–122 (1986)
- Cameron, P.J., van Lint, J.H.: Graphs, codes and designs, London Mathematical Society Lecture Note Series, vol. 43. Cambridge University Press, Cambridge (1980)
- Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs, second edn. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL (2007)
- Delsarte, P.: Weights of linear codes and strongly regular normed spaces. Discrete Math. 3, 47–64 (1972)
- 11. Godsil, C., Royle, G.: Algebraic graph theory, *Graduate Texts in Mathematics*, vol. 207. Springer-Verlag, New York (2001)
- Greferath, M., Schmidt, S.E.: Finite-ring combinatorics and MacWilliams' equivalence theorem. J. Combin. Theory Ser. A 92(1), 17–28 (2000)
- Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal arrays. Springer Series in Statistics. Springer-Verlag, New York (1999)
- Honold, T.: Characterization of finite Frobenius rings. Arch. Math. (Basel) 76(6), 406–415 (2001)
- 15. Honold, T.: Further results on homogeneous two-weight codes. Proceedings of Optimal Codes and Related Topics, Bulgaria (2007)
- 16. Honold, T.: The geometry of homogeneous two-weight codes. arXiv:1401.7414 (2014)
- 17. Jungnickel, D.: Partial spreads over Z_q . Linear Algebra Appl. 114/115, 95–102 (1989)
- 18. Konstantinesku, I., Khaĭze, V.: A metric for codes over residue class rings of integers. Problemy Peredachi Informatsii 33(3), 22–28 (1997)
- Lam, T.Y.: Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189. Springer-Verlag, New York (1999)
- Lam, T.Y.: A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131, second edn. Springer-Verlag, New York (2001)
- van Lint, J.H., Wilson, R.M.: A course in combinatorics, second edn. Cambridge University Press, Cambridge (2001)
- 22. Ma, S.: Partial difference sets. Discrete Mathematics 52(1), 75–89 (1984)
- MacNeish, H.F.: Euler squares. Ann. of Math. (2) 23(3), 221–227 (1922)
 Nechaev, A.A., Honold, T.: Fully weighted modules and representations of codes. Problemy Peredachi Informatsii 35(3), 18–39 (1999)
- Stinson, D.R.: Cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL (1995)
- 26. Wood, J.: Relative one-weight codes. Designs, Codes and Cryptography 76 (2012)
- Wood, J.A.: Duality for modules over finite rings and applications to coding theory. Amer. J. Math. 121(3), 555–575 (1999)