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Exploiting Multi-Core Architectures for
Reduced-Variance Estimation with Intractable

Likelihoods

Nial Friel∗, Antonietta Mira†, and Chris. J. Oates‡

Abstract. Many popular statistical models for complex phenomena are
intractable, in the sense that the likelihood function cannot easily be evaluated.
Bayesian estimation in this setting remains challenging, with a lack of computa-
tional methodology to fully exploit modern processing capabilities. In this paper
we introduce novel control variates for intractable likelihoods that can dramati-
cally reduce the Monte Carlo variance of Bayesian estimators. We prove that our
control variates are well-defined and provide a positive variance reduction. Fur-
thermore, we show how to optimise these control variates for variance reduction.
The methodology is highly parallel and offers a route to exploit multi-core pro-
cessing architectures that complements recent research in this direction. Indeed,
our work shows that it may not be necessary to parallelise the sampling process
itself in order to harness the potential of massively multi-core architectures. Simu-
lation results presented on the Ising model, exponential random graph models and
non-linear stochastic differential equation models support our theoretical findings.
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1 Introduction

Many models of interest are intractable, by which it is understood that the likelihood
function p(y|θ) that describes how data y arise from a model parametrised by θ ∈ Θ is
unavailable in closed form. The predominant sources of intractability that are encoun-
tered in statistical modelling can be classified as follows:

Type I The need to compute a normalising constant P(θ) =
∫
f(y′;θ)dy′

that depends on parameters θ such that p(y|θ) = f(y;θ)/P(θ).

Type II The need to marginalise over a set of latent variables x such that
p(y|θ) =

∫
p(y|x,θ)p(x|θ)dx.

Bayesian estimation in both of these settings can be extremely challenging as many
established computational techniques (e.g. Gibbs sampling and Metropolis–Hastings)
are incompatible with intractable likelihoods. This has motivated researchers to propose
several approximations to the likelihood function that are tractable (e.g. Marjoram et
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2 Reduced-Variance Estimation with Intractable Likelihoods

al., 2003; Møller et al., 2006; Murray et al., 2006; Rue et al., 2009). In the other direction,
several (exact) Markov chain Monte Carlo (MCMC) algorithms have been proposed that
facilitate inference in intractable models (e.g. Beskos et al., 2006; Andrieu and Roberts,
2009; Andrieu et al., 2010; Lyne et al., 2013). However, for MCMC methodology, it
remains the case that estimator variance can be heavily inflated relative to the tractable
case, due to the need to perform auxiliary calculations on extended state spaces in order
to address the intractability (Sherlock et al., 2014). Below we elaborate on the two types
of intractability and on the related references in the literature that have addressed them.

Type I Intractability arises from the need to compute a parameter-dependent nor-
malising constant (sometimes called a partition function). This paper focuses on the
sub-class of Type I intractable models known as Gibbs random fields (GRFs) where
data y arises from a model of the form

log p(y|θ) = θTs(y)− logP(θ) (1)

such that the partition function

P(θ) =

∫
exp(θTs(y))dy (2)

is intractable. In a Bayesian context, this leads to a “doubly intractable” distribution
and is the subject of current research in the statistical community. Below we survey
applications of, and methodology for, models exhibiting this form of intractability:

Example 1 (Spatial statistics). A GRF-type intractability arises in classical spatial
statistics where we seek to model the joint distribution of variables Yj that are subject
to local interactions. The autologistic distribution (Besag, 1996) is a well-studied model
for the analysis of binary spatial data defined on a lattice. This model has been applied
in diverse contexts including ecology (Augustin et al., 1996), the spatial analysis of plant
species (Huffer and Wu, 1998; He et al., 2009) and dentistry (Bandyopadhyay et al.,
2009). The canonical Ising model is a special case of the autologistic distribution and
is defined on a regular lattice of size n × n, where j is used to index each of the n × n
different lattice locations. Here the random variable Y ∈ {−1, 1}n×n has a probability
distribution defined in terms of a single sufficient statistic

s(y) =

n×n∑
j=1

∑
i∼j

yiyj ,

where the notation i ∼ j means that the lattice point i is a neighbour of lattice point j.
Interactions are modelled between neighbouring lattice points i ∼ j, being captured by
the energy term yiyj. The likelihood for this model takes the form of a GRF where the
partition function

P(θ) =
∑

y′∈{−1,1}n×n

exp(θs(y′)) (3)

involves the summation over 2n×n different possible state vectors y′. Typically, this
summation is infeasible and leads to Type I intractability for all but small values of the
lattice size n.
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Example 2 (Social network analysis). Exponential random graph (ERG) models are
widely used in social network analysis (see Robins et al., 2014, and the references
therein). The ERG model is defined on a random adjacency matrix Y = {Yij : i =
1, . . . , n; j = 1, . . . , n} of a graph with n nodes where Yij = 1 if nodes i and j are
connected by an edge, and Yij = 0 otherwise. An edge connecting a node to itself is
not permitted so Yii = 0. The edges in an ERG may be undirected, whereby Yij = Yji,
or directed, whereby a directed edge from node i to node j is not necessarily recip-
rocated. Write G(n) for the set of all permitted graphs on n vertices. The likelihood
of an observed graph y is modelled in terms of a collection of sufficient statistics
s(y) = (s1(y), . . . , sk(y)) and corresponding parameters θ = (θ1, . . . , θk). For exam-
ple, typical statistics include s1(y) =

∑
i<j yij and s2(y) =

∑
i<j<k yikyjk that encode,

respectively, the observed number of edges and two-stars, that is, the number of con-
figurations of pairs of edges that share a common node. It is also possible to consider
statistics that count the number of configuration of k edges that share a node in common,
for k > 2. The likelihood takes the form of a GRF where the partition function

P(θ) =
∑

y′∈G(n)
exp(θTs(y′)) (4)

involves the summation over |G(n)| = O(2n×n) possible different graphs and leads to
Type I intractability for all but small values of the number n of vertices.

The dependence of the partition function P(θ) on θ leads to difficulties in inferring
this parameter. An early attempt to circumvent this difficulty is the pseudo-likelihood
approach of Besag (1972), which in turn has been generalised to composite likelihood
approximations, see for example Davison et al. (2012). An alternative class of inferen-
tial approaches results from realising that, although one cannot evaluate the likelihood
function, it is possible to sample pseudo-data from the generative model, so-called “for-
ward simulation”. The Monte Carlo MLE approach of Geyer and Thompson (1992)
exploits forward simulation to allow maximum likelihood estimation. From a Bayesian
perspective, simulating from the likelihood has also played an influential role in several
approaches, for example, the auxiliary variable method of Møller et al. (2006), that was
subsequently extended by Murray et al. (2006) to the exchange algorithm. The exchange
algorithm avoids the need to directly evaluate the partition function by considering an
augmented target distribution p(θ,θ′,y′|y) that includes a second copy θ′ of the param-
eter vector and forward-simulated pseudo-data y′ drawn from the likelihood function
p(y′|θ′), defined in such a way that the Markov chain transition kernel for the parame-
ter vector θ of interest involves partition functions for the current and proposed values
of θ that cancel in the numerator and denominator of the Metropolis–Hastings ratio,
thus circumventing the Type I intractability issue (see Algorithm 1) at the expense of
increased Monte Carlo variance.

An emerging research direction is the construction of approximate Monte Carlo
algorithms, providing convergence guarantees, in situations where it is expensive or
impossible to calculate the likelihood. This is particularly pressing in cases where the
exchange algorithm is applied, since forward simulating from Gibbs random fields is
challenging. Perfect sampling is often prohibitively expensive or impossible to carry
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Algorithm 1 Exchange algorithm for Type I intractability (Murray et al., 2006)

1: Initialise θ(0), θ(0)′, y(0)′.
2: for i = 1, . . . , I do
3: Obtain θ′ ∼ h(θ′|θ(i−1)).
4: Obtain y′ ∼ p(y′|θ′).

5: Exchange θ′ �→ θ(i), θ(i−1) �→ θ(i)′, y′ �→ y(i)′ with probability

α = min

{
1,

p(y|θ′)

p(y′|θ′)

p(y′|θ(i−1))

p(y|θ(i−1))

p(θ′)

p(θ)

h(θ(i−1)|θ′
)

h(θ′|θ(i−1))

}
, (5)

otherwise set θ(i−1) �→ θ(i), θ(i−1)′ �→ θ(i)′, y(i−1)′ �→ y(i)′.
6: end for

out, and in this case Everitt (2012) has provided convergence results for the case where
one uses the final draw from a Gibbs sampler targeting the likelihood as an approximate
realisation. In a similar vein, Alquier et al. (2014) and Pillai and Smith (2014) develop
convergence results for approximate MCMC algorithms resulting from approximating
the transition kernel due to the intractability of the likelihood function. It is worth noting
that several authors have used this type of approach to develop approximate algorithms
for large datasets by using subsets of the data to approximate the likelihood, (Welling
and Teh, 2011; Anh et al., 2012; Korattikara et al., 2014).

Type II Intractability arises from the need to marginalise over latent variables x such
that the marginal likelihood

p(y|θ) =
∫

p(y|x,θ)p(x|θ)dx (6)

is unavailable in closed form. Such problems arise frequently in applied statistics and
examples include inference for the parameters of spatio-temporal models (Rue et al.,
2009; Lyne et al., 2013), regression models with random effects (Fahrmeir and Lang,
2001), time-series models (West and Harrison, 1997), and selection between competing
models based on Bayes factors (e.g. Caimo and Friel, 2013; Armond et al., 2014). Below
we provide examples of, and survey methodology for, models exhibiting this form of
intractability:

Example 3 (Hidden Markov model). Applications of hidden Markov models abound
in many areas, including finance, economics and biology. See Cappé et al. (2005) for a
detailed analysis of this general area. In a hidden Markov model, the parameters θ that
specify a Markov chain

xn+1 ∼ p(xn+1|xn,θ) (7)

may be of interest, whilst the latent sample path {xn}Nn=0 of the Markov chain that gives
rise to observations yn ∼ p(yn|xn) may not be of interest and must be marginalised.
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Even in discrete cases where xn ∈ X for a finite state space X , the number of possible
samples paths {xn}Nn=0 grows exponentially in N and this renders the marginalisation

p({yn}Nn=0|θ) =
∑

x0,...,xN∈X
p({yn}Nn=0|{xn}Nn=0,θ)p({xn}Nn=0|θ) (8)

corresponding to (6) computationally intractable.

Example 4 (Stochastic differential equations). Stochastic differential equations (SDEs)
are widely used in several fields including biology (Wilkinson, 2011) and finance (Lam-
berton and Lapeyre, 2007). See Øksendal (2003) for an excellent introduction to SDEs,
including a focus on several application areas. A general stochastic diffusion is defined
as

dX(t) = α(X(t);θ)dt+ β1/2(X(t);θ)dW (t), X(0) = X0, (9)

where X(t) is a stochastic process taking values in R
d, α : Rd × Θ → R

d is a drift
function, β : R

d × Θ → R
d × R

d is a diffusion function, W (t) is a d-dimensional
Wiener process, θ ∈ Θ are unknown model parameters, and X0 ∈ R

d is an initial
state (assumed known here). For general SDEs, an analytic form for the distribution of
sample paths is unavailable. An excellent review of approximate likelihood methods for
SDEs is provided in Fuchs (2013). To facilitate inference here, a popular approach is to
introduce a fine discretisation t1, . . . , tT of time with mesh size δt. Write Xi = X(ti).
The Euler–Maruyama approximation to the SDE likelihood is then given by

p(X|θ) ∝
T∏

i=2

ψ(Xi|Xi−1 +αiδt,βiδt) (10)

where ψ(·|μ,Σ) is the probability density function for a Gaussian random variable with
mean μ and covariance Σ and where we have used the shorthand αi = α(Xi−1;θ) and
βi = β(Xi−1;θ). We partition X = [Xo Xu] such that y = Xo are observed (for
simplicity here without noise) and x = Xu are unobserved. This is essentially a hidden
Markov model with a continuous latent state and therefore exhibits Type II intractability,
since to draw inferences on θ it is required to marginalise the unobserved variables Xu.

A popular contemporary approach to inference under Type II intractability is the
pseudo-marginal MCMC of Andrieu and Roberts (2009) that replaces the marginal like-
lihood p(y|θ) in the Metropolis–Hastings acceptance ratio with an unbiased estimate
that can either be obtained by forward-simulation from p(x|θ), or using importance
sampling techniques. The pseudo-marginal MCMC typically leads to reduced efficiency
relative to the (unavailable) marginal algorithm, but improved efficiency relative to a
Markov chain constructed on the extended space (θ,x) (Sherlock et al., 2014). When
combined with particle MCMC (Andrieu et al., 2010), the pseudo-marginal algorithm
represents a popular technique to deal with general forms of Type II intractability.
Within specific model classes it may be possible to design specialised approaches to
estimation; for example, Kou et al. (2012) and Beskos et al. (2013) both present sophis-
ticated schemes for parameter inference in discretely observed stochastic differential
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equation models. Other attempts to address Type II intractability include the popular
approximation scheme of Rue et al. (2009) and the references therein. Such schemes
trade exactness of computation for substantial reduction in computational effort, but
many questions surround the extent of approximation error (e.g. Lindgren et al., 2011).

In summary, applications involving statistical models with both types of intractabil-
ity are widespread in the literature. Moreover, as detailed above, statistical methodology
to overcome both types of intractability is at the frontier of research in computational
statistics. Indeed, one might anticipate that even wider applicability will result as these
methods disseminate in the scientific community, whereby hitherto intractable statisti-
cal models will be amenable to statistical inference.

Outline of the paper The present contribution addresses the problem of estimating
posterior expectations via MCMC when data arise from an intractable likelihood:

Problem. Estimate the posterior expectation μ = Eθ|y[g(θ)] for some known function
g : Θ → R, where data y arise from an intractable likelihood of either Type I or II.

Our focus is on the use of control variates for the reduction of Monte Carlo variance
(Glasserman, 2004). The basic idea behind control variate schemes in Bayesian compu-
tation is that a modified function g̃(θ) = g(θ)+φ1h1(θ)+ · · ·+φmhm(θ) is constructed
such that g̃(θ) has the same posterior expectation but a reduced posterior variance com-
pared to g(θ). This can occur when (i) each of the hi(θ) have zero posterior expectation,
(ii) the collection [h1(θ), . . . , hm(θ)] has strong posterior canonical correlation with the
target g(θ), and (iii) the coefficients φ1, . . . , φm are chosen appropriately. Recently Mira
et al. (2013) proposed to use the score vector u(θ|y) := ∇θ log p(θ|y) as the basis for
a set of control variates, since this can be guaranteed to have zero expectation under
mild boundary conditions (described below). There it was shown that these score-based
control variates can significantly reduce Monte Carlo variance, sometimes dramatically.
Indeed, the methodology was named “zero variance” (ZV) by Mira et al. (2013), fol-
lowing Assaraf and Caffarel (1999), since in several special cases the score has perfect
canonical correlation with the target, generating an estimate that has zero sampling
variance. Further support for the use of the score as a control variate was provided in
Papamarkou et al. (2014); Oates et al. (2015), who demonstrated that the approach fits
naturally within Hamiltonian-type and Langevin-type MCMC schemes that themselves
make use of the score, requiring essentially no additional computational effort. It would
therefore be extremely desirable to design control variates for intractable likelihoods,
where sampling variance is acutely problematic. However, for Bayesian inference with
intractable likelihoods, the score is unavailable as it requires the derivative of unknown
quantities. Our work is motivated by overcoming this impasse.

The main contribution of this paper is to introduce a stochastic approximation
to ZV control variates, called “reduced-variance” (RV) control variates, that can be
computed for intractable likelihoods of both Type I and II. Specifically, we study the
effect of replacing the true score function u(θ|y) for the intractable models in the
ZV methodology with an unbiased estimate û(θ|y) that can be obtained via repeated
forward-simulation. Importantly, these forward-simulations can be performed in parallel,
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offering the opportunity to exploit modern multi-core processing architectures (Suchard
et al., 2010; Lee et al., 2010) in a straightforward manner that directly complements (and
is compatible with) related research efforts for parallelisation of MCMC methodology
(Alquier et al., 2014; Angelino et al., 2014; Bardenet et al., 2014; Calderhead, 2014;
Korattikara et al., 2014; Maclaurin and Adams, 2014).

From a theoretical perspective, we prove that RV control variates are well-defined
and provide a positive variance reduction. Furthermore, we propose default tuning
parameters that are proven to maximise variance reduction and prove that the opti-
mal estimator for serial computation requires essentially the same computational effort
as the state-of-the-art estimate obtained under either the exchange algorithm or the
pseudo-marginal algorithm. These results are orthogonal to recent work by Doucet
et al. (2012) and Sherlock et al. (2014) that deals with implementation of MCMC
samplers themselves. Empirical results presented on the Ising model, exponential ran-
dom graphs and nonlinear stochastic differential equations support our theoretical find-
ings.

2 Methods

2.1 Control variates and intractable likelihoods

Our presentation of control variate methodology below focuses on the problem of eval-
uating posterior expectations, but the methodology itself applies more broadly. In this
restricted setting, control variates can be employed when the aim is to estimate, with
high precision, the posterior expectation μ = Eθ|y[g(θ)] of a (real-valued) function g(θ)
of an unknown parameter θ. In this paper, we focus on a real-valued random parameter
θ ∈ Θ ⊆ R

d. The generic control variate principle relies on constructing an auxiliary
function g̃(θ) = g(θ) + h(θ) where Eθ|y[h(θ)] = 0 and so Eθ|y[g̃(θ)] = Eθ|y[g(θ)]. In
many cases it is possible to choose h(θ) such that the variance Vθ|y[g̃(θ)] < Vθ|y[g(θ)],
leading to a Monte Carlo estimator with strictly smaller variance:

μ̂ :=
1

n

n∑
i=1

g̃(θ(i)), (11)

where θ(1), . . . ,θ(n) are independent samples from p(θ|y). Intuitively, greater variance
reduction can occur when h(θ) is negatively correlated with g(θ) in the posterior, since
much of the randomness “cancels out” in the auxiliary function g̃(θ).

In classical literature, the function h(θ) is often formed as a sum φ1h1(θ) + · · · +
φmhm(θ) where the hi(θ) each have zero posterior expectation (under the target) and
are known as control variates, whilst φi are coefficients that must be specified (Glasser-
man, 2004). Alternative constructions also exist (e.g. ratio control variates; Evans and
Swartz, 2000) but here we focus only on control variates with an additive structure. For
estimation based on Markov chains, Andradóttir et al. (1993) proposed control variates
for discrete state spaces. Later Mira et al. (2003) extended the approach of Assaraf
and Caffarel (1999) observing that the optimal choice of h(θ) is intimately associated
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with the solution of the Poisson equation h(θ) = Eθ|y[g(θ)] − g(θ) and proposing to
solve this equation numerically. Further work to construct control variates for Markov
chains includes Hammer and Tjelmeland (2008) for Metropolis–Hastings samplers and
Dellaportas and Kontoyiannis (2012) for Gibbs samplers.

In this paper, we consider the particularly elegant class of control variates that are
expressed as functions of the score vector u(θ|y) of the log-posterior density. Mira et
al. (2013) proposed the ZV control variates

h(θ|y) = Δθ[P (θ)] +∇θ[P (θ)] · u(θ|y) (12)

where ∇θ = [∂/∂θ1 , . . . , ∂/∂θd ]
T is the gradient operator, Δθ = (∂2/∂2

θ1
+ · · ·+ ∂2/∂2

θd
)

is the Laplacian operator, and the “trial function” P (θ) belongs to the family P of
polynomials in θ. In this paper, we adopt the convention that both θ and u(θ|y)
are d × 1 vectors. Mira et al. (2013) showed, in particular, that any posterior density
p(θ|y) approximating a Gaussian forms a suitable candidate for implementing the ZV
scheme. The ZV approach has recently been extended to encompass non-parametric
trial functions P (θ). Oates et al. (2014) proves that the associated estimators posses
superior convergence rates relative to estimation that does not use control variates.
A consequence of this latter approach is that large variance reductions can be achieved
outside of the Gaussian setting. For a comprehensive review of the ZV methodology see
Papamarkou et al. (2015). Unfortunately, ZV methods are not directly compatible with
intractable likelihoods:

Type I A naive application of ZV methods to GRFs with Type I intractability would
require the score function that is obtained by differentiating

log p(θ|y) = θTs(y)− logP(θ) + log p(θ) + C, (13)

where C is a constant in θ, to obtain

u(θ|y) = s(y)−∇θ logP(θ) +∇θ log p(θ). (14)

It is clear that (14) will not have a closed form when the partition function P(θ) is
intractable. In the sections below, we demonstrate how forward-simulation can be used
to approximate ∇θ logP(θ) and then leverage this fact to reduce Monte Carlo variance.

Type II Similarly, a naive application of ZV within Type II intractable likelihood
problems would require the evaluation of the score function

u(θ|y) = ∇θ log

∫
p(y,x|θ)p(x|θ)dx+∇θ log p(θ). (15)

It is clear that (15) will not have a closed form when the integral over the latent variable
x is intractable. In the sections below, we demonstrate how forward-simulation can be
used to approximate ∇θ log

∫
p(y,x|θ)p(x|θ)dx, before again leveraging this fact to

reduce Monte Carlo variance.
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2.2 Unbiased estimation of the score

Our approach relies on the ability to construct an unbiased estimator for the score
function in both Type I and Type II intractable models.

Type I An unbiased estimator for u(θ|y) that can be computed for Type I models of
GRF form is constructed by noting that

∇θ logP(θ) =
1

P(θ)
∇θP(θ) (16)

=
1

P(θ)
∇θ

∫
exp(θTs(y))dy (17)

=
1

P(θ)

∫
s(y) exp(θTs(y))dy (18)

= EY |θ[s(Y )], (19)

where we have assumed regularity conditions that permit the interchange of derivative
and integral operators (including that the domain of Y does not depend on θ). Specif-
ically, combining (14) and (19) we estimate the score function by exploiting multiple
forward-simulations

û(θ|y) := s(y)−
[
1

K

K∑
k=1

s(Yk)

]
+∇θ log p(θ) (20)

where the Y1, . . . ,YK are independent simulations from the GRF with density p(y|θ).
Forward-simulation for GRF has previously been leveraged to facilitate estimation (e.g.
Potamianos and Goutsias, 1997) and can be achieved using, for example, perfect sam-
pling (Propp and Wilson, 1996; Mira et al., 2001). We make two important observations:
Firstly, one realisation Y1 must be drawn in any case to perform the exchange algorithm,
so that this requires no additional computation. Secondly, these K simulations can be
performed in parallel, enabling the exploitation of multi-core processing architectures.

Type II For intractable models of Type II an alternative approach to construct an un-
biased estimate for the score is required. Specifically, we notice that the score u(θ,x) :=
∇θ log p(θ,x|y) of the extended posterior is typically available in closed form and this
can be leveraged as follows:

u(θ|y) = ∇θ log p(θ|y) =
∇θp(θ|y)
p(θ|y) (21)

=
1

p(θ|y)∇θ

∫
p(θ,x|y)dx (22)

=

∫
[∇θp(θ,x|y)]
p(θ,x|y)

p(θ,x|y)
p(θ|y) dx (23)

=

∫
[∇θ log p(θ,x|y)]p(x|θ,y)dx = EX|θ,y[u(θ,X)] (24)
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where again we have assumed regularity conditions that allow us to interchange the
integral and the derivative operators. We therefore have a simulation-based estimator

û(θ|y) := 1

K

K∑
k=1

u(θ,Xk) (25)

where the X1, . . . ,XK are independent simulations from the posterior conditional
p(x|θ,y). ((24) is sometimes called “Fisher’s identity”; Nemeth et al., 2014). We note
that it is straightforward to implement pseudo-marginal MCMC in such a way that
samples Xi are obtained as a by-product, so that estimation of the score requires no
additional computation.

2.3 Reduced-variance control variates

This paper advocates constructing control variates using an unbiased estimator for the
score as follows:

ĥ(θ|y) := Δθ[P (θ)] +∇θ[P (θ)] · û(θ|y), (26)

where again P ∈ P is a polynomial trial function. The coefficients φ of this polynomial
P (θ) must be specified, and we will also write P (θ|φ) to emphasise this point. These
will be referred to as “reduced-variance” control variates from the fact that (26) is
a stochastic approximation to the ZV control variates in (12) and can therefore be
expected to have similar properties. Pseudocode is provided in Algorithm 2.

For this idea to work, it must be the case that the RV control variates ĥ(θ|y) have
zero expectation. This is guaranteed under mild assumptions stated below:

Lemma 1. Assume that Θ is possibly unbounded, Br are bounded sets increasing to Θ
and limr→∞

∮
∂Br

p(θ|y)∇P (θ) · n(θ)dθ = 0, where n(θ) is the outward pointing unit

normal field of the boundary ∂Br. Then, for Type I models, Eθ,Y1,...,YK |y[ĥ(θ|y)] = 0,

whilst, for Type II models, Eθ,X1,...,XK |y[ĥ(θ|y)] = 0, so that in both cases ĥ(θ|y) is a
well-defined control variate.

Proof. From unbiasedness of û(θ|y) we have, for Type I models,

Eθ,Y1,...,YK |y[ĥ(θ|y)] = Eθ|y
[
EY1,...,YK |θ [ΔθP (θ) +∇θP (θ) · û(θ|y)]

]
(31)

= Eθ|y [ΔθP (θ) +∇θP (θ) · u(θ|y)] , (32)

with the analogous result holding for Type II models. The remainder follows from Mira
et al. (2013): Using the definition of the score u(θ|y), we have

=

∫
Θ

[ΔθP (θ)]p(θ|y) + [∇θP (θ)] · [∇θp(θ|y)]dθ. (33)

Then applying the divergence theorem (see, e.g. Kendall and Bourne, 1992) we obtain
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Algorithm 2 Reduced-variance estimation for intractable likelihoods

1: Obtain θ(i) ∼ θ|y, i = 1, . . . , I � using MCMC
2: for i = 1, . . . , I do
3: if Type I then
4: Obtain y(i,k) ∼ Y |θ(i), k = 1, . . . ,K � simulate from the model
5: Construct an approximation to the score at θ(i):

û(i) = s(y)−
[
1

K

K∑
k=1

s(y(i,k))

]
+∇θ log p(θ

(i)) (27)

6: else if Type II then
7: Obtain x(i,k) ∼ x|θ(i),y, k = 1, . . . ,K � simulate from the posterior
8: Construct an approximation to the score at θ(i):

û(i) =
1

K

K∑
k=1

u(θ,x(i,k)) (28)

9: end if
10: end for
11: Estimate optimal polynomial coefficients φ∗ by φ̂ � see Section 2.4
12: for i = 1, . . . , I do
13: Construct the reduced-variance control variates

ĥ(i) = Δθ[P (θ(i)|φ̂)] +∇θ[P (θ(i)|φ̂)] · û(i). (29)

14: end for
15: Estimate the expectation μ using

μ̂ :=
1

I

I∑
i=1

g(θ(i)) + ĥ(i). (30)

=

∫
Θ

∇θ · [[∇θP (θ)]p(θ|y)]dθ (34)

=

∮
∂Θ

[[∇θP (θ)]p(θ|y)] · n(θ)dθ. (35)

The assumption of the Lemma forces this integral to equal zero, as required.

To illustrate the mildness of these conditions, observe that in the case of a scalar
parameter θ ∈ R and a degree-one polynomial P , the boundary condition is satisfied
whenever limθ→±∞ p(θ|y) = 0. More generally, it follows from the work of Oates et al.
(2015) that, for unbounded state spaces Θ ⊆ R

d, a sufficient condition for unbiasedness
is that the tails of p(θ|y) vanish faster than ‖θ‖d+k−2 where k is the degree of the
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polynomial P . (Here ‖ · ‖ can be taken to be any norm on R
d, due to the equivalence of

norms in finite dimensions.)

2.4 Optimising the tuning parameters

Our proposed estimator has two tuning parameters: (i) the polynomial coefficients φ,
and (ii) the numberK of forward-simulations from Y |θ, in the case of Type I intractabil-
ity, or from X|θ,y in the case of Type II intractability. In this section, we derive optimal
choices for both of these tuning parameters. Here optimality is defined as maximising
the variance reduction factor, that in the case of Type I models is defined as

R :=
VK [g(θ)]

VK [g(θ) + ĥ(θ|y)]
(36)

where the subscript K indicates that randomness arises from the augmented poste-
rior p(θ,Y1, . . . ,YK |y). The case of Type II models simply replaces Y1, . . . ,YK with
X1, . . . ,XK . Below we proceed by firstly deriving the optimal coefficients φ∗ for fixed
number K of simulations and subsequently deriving the optimal value of K assuming
the use of optimal coefficients.

Polynomial coefficients φ

First we consider the optimal choice of polynomial coefficients φ; this follows fairly
straightforwardly from classical results. For general degree polynomials P (θ|φ) with

coefficients φ, we can write ĥ(θ|y) = φTm(θ, û), where in the case of degree-one
polynomials m(θ, û) = û and for higher polynomials the map m is more complicated:
Suppose that we employ a polynomial

P (θ) =

d∑
i=1

aiθi +

d∑
i,j=1

bi,jθiθj +

d∑
i,j,k=1

ci,j,kθiθjθk + · · · (37)

with coefficients φ = {ai, bi,j , ci,j,k, . . . }. For convenience, we assume symmetries
bτ(i,j) = bi,j , cτ(i,j,k) = ci,j,k, etc., for all permutations τ . Then from (26)

ĥ(θ|y) =

⎡
⎣2 d∑

i=1

bi,i + 6

d∑
i,j=1

ci,i,jθj + · · ·

⎤
⎦

+
d∑

i=1

⎡
⎣ai + 2

d∑
j=1

bi,jθj + 3
d∑

j,k=1

ci,j,kθjθk + · · ·

⎤
⎦ ûi(θ|y). (38)

This can in turn be re-written as ĥ(θ|y) = φTm(θ, û) where the components {ai, bi,j ,
ci,j,k, . . . } of φ and m(θ, û) are identified in the inner product as

ai ↔ ûi, (39)

bi,i ↔ 2 + 2θiûi, (40)
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bi,j ↔ 2θj ûi + 2θiûj (i < j), (41)

ci,i,i ↔ 6θi + 3θ2i ûi, (42)

ci,i,j ↔ 12θj + 12θiθj ûi + 6θ2i ûk (i < j), (43)

ci,j,k ↔ 6θjθkûi + 6θiθkûj + 6θiθj ûk (i < j < k) . . . (44)

An optimal choice of coefficients for general degree polynomials is given by the following:

Lemma 2. For Type I models, the variance reduction factor R is maximised over all
possible coefficients φ by the choice

φ∗(y) := −V
−1
K [m(θ, û)]EK [g(θ)m(θ, û)] (45)

and, at the optimal value φ = φ∗, we have

R−1 = 1− ρ(K)2 (46)

where ρ(K) = CorrK [g(θ), ĥ(θ|y)]. An analogous result holds for Type II models, re-
placing Y1, . . . ,YK with X1, . . . ,XK .

Proof. This is a standard result in control variate theory for a linear combination of
(well-defined) control variates (e.g. p. 664, Rubinstein and Marcus, 1985).

Following the recommendations of Mira et al. (2013); Papamarkou et al. (2014);
Oates et al. (2015), we mainly restrict attention to polynomials of degree at most two.
Indeed, degree-two polynomials are sufficient for exactness in the special cases discussed
in Papamarkou et al. (2014). Similarly, following Mira et al. (2013), we estimate φ∗

by plugging in the empirical variance and covariance matrices into (45) to obtain an

estimate φ̂. This introduces estimator bias since the same samples are “used twice”;
however, Glasserman (2004) argues that this bias vanishes more quickly than the Monte
Carlo error and hence the error due to this plug-in procedure is typically ignored. (Any
bias could alternatively be removed via a sample-splitting step, but this does not seem
necessary for the examples that we consider below.)

Number of forward-simulations K

Now we derive an optimal numberK of forward-simulations to generate at each state θ(i)

visited in the MCMC sample path, assuming the use of optimal coefficients as derived
above. Assuming that parallel computations incur no additional cost, this optimum
will depend on the number K0 of cores that are available for parallel processing in the
computing architecture and we consider the general case below. We present the following
Lemma for Type I models, but the analogous result holds for Type II models by simply
replacing Y1, . . . ,YK with X1, . . . ,XK .

Lemma 3. Assume that (i) the condition of Lemma 1 is satisfied, (ii) perfect transitions

of the Markov chain (i.e. perfect mixing) is achieved, (iii) EK [(g(θ) + ĥ(θ|y))2] < ∞,
and (iv) φ = φ∗. Then

√
I(μ̂− μ)

d−→ N
(
0, (1− ρ(K)2)Vθ|y[g(θ)]

)
. (47)



14 Reduced-Variance Estimation with Intractable Likelihoods

Proof. From (i) we have that EK [g(θ) + ĥ(θ|y)] = μ. From (ii), (iii) and the central
limit theorem, we have that

√
I(μ̂− μ)

d−→ N(0,VK [g(θ) + ĥ(θ|y)]). (48)

Then from (iv) and (36) we have that

VK [g(θ) + ĥ(θ|y)] = (1− ρ(K)2)Vθ|y[g(θ)], (49)

as required.

Write I for the number of MCMC iterations. Then, under the hypotheses of Lemma 3,
the key quantity that we aim to minimise is the cost-normalised variance ratio

r(K, I) :=
1− ρ(K)2

I
, (50)

where the optimisation is constrained by fixed computational cost c = IK/K0� on
a K0-core architecture. In other words, for fixed computational cost c, should we fo-
cus on obtaining more MCMC samples (large I) or better estimating the RV control
variates (large K)? (Note that we assume the calculation of the score vector incurs
negligible computational cost – this is certainly true whenever the score is itself a pre-
requisite for MCMC sampling.) This resource-allocation problem can be solved analyt-
ically:

Lemma 4. The optimum variance for fixed computational cost (i.e. c = IK/K0�) is
always achieved by setting K = K0, the available number of cores.

Proof. See Appendix A.

Our findings may be concisely summarised as follows: For serial computation, choose
K = 1 and I as large as possible. This typically requires no additional computation rel-
ative to standard estimation since one forward-simulation Y is generated as part of
the exchange algorithm and at least one forward-simulation X is used as the basis
for the pseudo-marginal algorithm. For parallel computation, choose K = K0 equal
to the number of available cores (but no more) and then let I be as large as possi-
ble.

Finally, we note that RV control variates extend easily to the case where multiple
expectations μj = Eθ|y[gj(θ)] are of interest. Indeed, the same MCMC output can be

used to construct control variates h(j)(θ|y) specific to problem j simply by re-estimating
the optimal coefficients

φ∗,(j)(y) = −V
−1
K [m(θ, û)]EK [gj(θ)m(θ, û)] (51)

based on the target function gj and proceeding as above. In this way multiple expecta-
tions can be estimated without requiring any additional sampling or simulation.
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3 Applications

Here we provide empirical results for an analytically tractable example, along with a
version of the Ising model (Type I intractability), an exponential random graph model
(Type I), and a nonlinear stochastic differential equation model (Type II).

3.1 Example 1. Tractable exponential

As a simple and analytically tractable example, consider inference for the posterior mean
μ = Eθ|y[θ], so that g(θ) = θ, where data y arise from the exponential distribution
p(y|θ) = θ exp(−θy) and inference is performed using an improper prior p(θ) ∝ 1.
The exponential likelihood can be formally viewed as a GRF with sufficient statistic
s(y) = −y and partition function P(θ) = 1

θ ; however, the model is sufficiently simple
that all quantities of interest are available in closed form. Indeed, it can easily be verified
that p(θ|y) = y2θ exp(−θy), so that the posterior is directly seen to satisfy the boundary
condition of Lemma 1 for any polynomial. The true posterior expected value is μ = 2

y

and similarly the score function can be computed exactly as u(θ|y) = −y + 1
θ .

All of the estimators that we consider are (essentially) unbiased (as noted before, the

negligible bias resulting from estimation of φ̂ can trivially be removed by data-splitting);
in this section, we therefore restrict attention to examining the estimator variances.
The maximum variance reduction that we achieve with access to the exact score can be
obtained from ρ(∞) = Corrθ|y(θ,φ

∗(y)Tm(θ, u)). For degree-one polynomials P (θ) =

aθ the ZV method corresponds to m(θ, u) = u = −y + 1
θ and, since θ is not strongly

linearly correlated with 1
θ , the maximum variance reduction that can be achieved by

degree-one polynomials is not substantial. However, the use of degree-two polynomials
P (θ) = aθ+bθ2 leads to m(θ, u) = [u, 2+2θu] = [−y+ 1

θ , 4−2yθ] and taking φ = [0, 1
2y ]

leads to a control variate φTm(θ, u) = 2
y − θ. Thus the ZV estimator g(θ) +φTm(θ, u)

is equal to 2
y , which is independent of θ, i.e. exact zero variance is achieved.

In general, the score u(θ|y) will be unavailable for GRF but may be estimated by
û(θ|y) as described above, with the estimate becoming exact as K → ∞. We investigate
through simulation the effect of employing finite values of K. Intuitively, the proposed
approach will be more effective when the target function g(θ) of interest is strongly cor-
related (under the posterior) with a linear combination φTm(θ, û). Figure S11 demon-
strates that when K is large, the RV control variates (for degree-two polynomials) are
closely correlated with the ZV control variates (left column) and, hence, with the target
function g(θ) (right column). We would therefore expect to see a large reduction in
Monte Carlo variance using RV estimation in this regime.

The main conclusions to be drawn from this tractable example are summarised in
Figure 1 where we display estimates for the estimator standard deviation std[μ̂], com-
puted as the standard error of the mean over all I Monte Carlo samples. In total the esti-
mation procedure was repeated 100 times, and we report the mean value of std[μ̂] along
with the standard error of this mean computed over the 100 realisations. We considered

1All supplementary tables and figures can be found in Friel et al. (2015).
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Figure 1: Tractable exponential example. Comparing the standard deviations of Monte
Carlo estimators, including the default estimator (“Std”; the regular MCMC estimator
with no variance reduction), the reduced-variance estimator with K = 1, 2, 10, 20 and
100, and the ZV estimator. [The ZV estimate has some non-zero standard deviation
here because, in practice, the optimal coefficients φ(y)∗ must be estimated using Monte
Carlo.] The final panel (bottom right) displays estimator standard deviation normalised
by computational cost.

varying the number of Monte Carlo samples I = 100, 500, 1000, 5000, 10000, the num-

ber of forward-simulations K = 1, 2, 10, 20, 100 and the degree of the polynomial trial

function deg(P ) = 1, 2, 3. Results demonstrate that estimator variance reduces as either

I or K is increased, as expected. A comparison between the plots (full data provided

in Table S1) shows that degree-two polynomials considerably out-perform the degree-

one polynomials, whereas the degree-three polynomials tend to slightly under-perform

the degree-two polynomials. (The theoretical best ZV control variates are degree-two
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polynomials and therefore degree-three polynomials require that additional coefficients
associated to higher order control variates – that we know, theoretically, should be equal
to zero – are estimated from data, thus adding extra noise.)

To assess computational efficiency, we also report the quantity
√
IKstd[μ̂] that has

units “standard deviation per unit serial computational cost” and can be used to eval-
uate the computational efficiency of competing strategies (bottom right panel of Fig-
ure 1 and Table S1). Here we see that K = 1 minimises

√
IKstd[μ̂] and is consis-

tent with the theoretical result that K = 1 is optimal for serial computation. Fig-
ure S2 plots the canonical correlation coefficient between m(θ, û) and g(θ) for values
of K = 1, 2, . . . , 10. Here we notice that over 80% of the correlation is captured by just
one forward-simulation from the likelihood (K = 1), further supporting our theoretical
result that K = 1 is optimal for serial computation. Indeed, a theoretical prediction
ρ(K) = (K/(K +C))1/2 resulting from Lemma 5 in Appendix A, shown as a solid line
in Figure S2, closely matches these simulation results.

3.2 Example 2. Ising model

In the experiments below, we consider an Ising model of size n = 16, about the limit
for exact solution, as defined in Section 1, Example 1, above. Assuming that the lattice
points have been indexed from top to bottom in each column and that columns are
ordered from left to right, then an interior point yi in a first order neighbourhood model
has neighbours {yi−n, yi−1, yi+1, yi+n}. Each point along the edges of the lattice has
either two or three neighbours. We focus on estimating the posterior mean μ = Eθ|y[θ]
under a prior θ ∼ N(0, 52). Since the tails of the prior vanish exponentially and the
likelihood is bounded, the posterior automatically satisfies the boundary conditions of
Lemma 1. Here data y were simulated exactly from the likelihood using θ = 0.4, via
the recursive scheme of Friel and Rue (2007). This recursive algorithm also allows exact
calculation of the partition function. In turn this allows a very precise estimate of the
posterior mean; for the data that we consider below this posterior mean is μ = 0.43455,
calculated numerically over a very fine grid of θ values.

Figure 2 displays the MCMC trace plots, obtained using the exchange algorithm,
for g(θ) = θ (blue) and the RV version g(θ) + φ̂Tm(θ, û). Trace plots are presented
for increasing values of K ∈ {1, 20, 100, 500} and using degree-one (red) and degree-
two (green) polynomials.2 For K = 1 we observe little difference between controlled
(i.e. using RV control variates) and uncontrolled trajectories, suggesting that RV con-
trol variates do not justify the additional coding effort in the case of serial computation.
However, it is evident that asK increases, the Monte Carlo variance of the controlled tra-
jectory decreases; indeed when K = 500 the variance is dramatically reduced compared
to the (uncontrolled) MCMC samples of θ. These findings are summarised in Table 1.
Additionally, we find that degree-two polynomials offer a substantial improvement over
degree-one polynomials in terms of variance reduction, but that this is mainly realised

2For convenience, forward-simulation was performed on a single core using a Gibbs sampler with
1, 000 burn-in iterations. A sample of size K were collected from this chain at a lag of 500 iterations in
order to ensure that dependence between samples was negligible. This accurately mimics the setting of
independent samples that corresponds to performing multiple forward-simulations in parallel.



18 Reduced-Variance Estimation with Intractable Likelihoods

Figure 2: Ising model. As the number of forward-simulations, K, increases, the precision
of the controlled estimate of the posterior mean for θ increases. The degree-two poly-
nomial yields greater precision compared to the degree-one polynomial, particularly for
larger values of K.
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K = 1 K = 20 K = 100 K = 500
μ̂ 0.4340 0.4345 0.4322 0.4340
μ̂1 0.4351 0.4345 0.4347 0.4346
μ̂2 0.4351 0.4344 0.4346 0.4346
R = V[μ̂]/V[μ̂1] 1.349 18.86 74.55 187.5
R = V[μ̂]/V[μ̂2] 1.350 19.97 89.37 328.7

Table 1: Ising model. As the number of forward-simulations, K, used to estimate the
score function increases, the reduction in variance becomes more substantial. Here μ̂ is
the standard Monte Carlo estimate, μ̂1 is the reduced-variance estimate using degree-
one polynomials and μ̂2 is the reduced-variance estimate using degree-two polynomials.
Brute-force calculation produces a value μ = 0.43455 for this example. [Variances were
estimated with respect to empirical means.]

for larger values of K. These results present a powerful approach to exploit multi-core
processing to deliver a real-time acceleration in the convergence of MCMC estimators.

3.3 Example 3. Exponential random graph models

In the experiment below, we consider the Gamaneg network (Read, 1954), displayed in
Figure 3, that consists of n = 16 sub-tribes of the Eastern central highlands of New
Guinea. In this graph, an edge represents an antagonistic relationship between two sub-
tribes. Here we consider an ERG model as defined in Section 1, Example 2, with k = 2,
i.e. two sufficient statistics, where s1(y) counts the total number of observed edges and
the two-star statistic s2(y) is also as defined in Section 1 above. Here the parameters

Figure 3: Gamaneg graph. The vertices represent 16 sub-tribes of the Eastern central
highlands of New Guinea and edges represent an antagonistic relationship between two
sub-tribes.
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Figure 4: Exponential random graph model. The top row displays the trace plot for θ1
and θ2 in uncontrolled (blue) and controlled versions for a degree-one (red) polynomial,
while the bottom row is similar but for a degree-two (green) polynomial.

θ1, θ2 control the propensity of edges and two-star configurations, respectively, in the
network. Positive values of θ1 and θ2 tend to lead to, respectively, over-representation
of edges and two-star configurations in networks realised from the likelihood. The prior
distributions for θ1 and θ2 were both set to be independent N(0, 52), from which it
follows that the boundary condition of Lemma 1 is satisfied. This is a benchmark dataset
that has previously been used to assess Monte Carlo methodology (Friel, 2013), making
it well-suited to our purposes.

Again we focus on the challenge of estimating the posterior mean μ = Eθ|y[θ],
in this case performing independent estimation with g(θ) = θj for j = 1, 2. Recently
Caimo and Friel (2011), Caimo and Friel (2014) developed Bayesian methodology for
this model, based on the exchange algorithm, that can be directly utilised for the RV
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framework developed in this paper. The exchange algorithm was run for I = 11,000
iterations, where at each iteration K = 500 forward-simulations were used to estimate
the score.3 Figure 4 illustrates that a variance reduction of about 20 times is possible
using a degree-two polynomial for each of the two components of the parameter vector.
From the uncontrolled trajectories it is difficult to comment on the relative posterior
means μ1 and μ2 of θ1 and θ2, respectively, but from the controlled trajectories it is
visually clear that we have μ1 < μ2 < 0. This suggests that posterior predictions of
network structure typically contain more two-stars than edges.

We note that Caimo and Mira (2014) recently proposed the use of delayed rejection
to reduce autocorrelation in the exchange algorithm for ERG models, demonstrating an
approximate two-fold variance reduction; the delayed rejection exchange algorithm is
fully compatible with our methodology and, if combined, should yield a further reduction
in variance.

3.4 Example 4. Nonlinear stochastic differential equations

For our final example we consider performing Bayesian inference for a system of non-
linear stochastic differential equations (SDEs) as defined in Section 1, Example 4, (9).
This problem is well-known to pose challenges for Bayesian computation, and recent
work in this direction includes (Beskos et al., 2006; Golightly and Wilkinson, 2008). We
estimate the score using

∇θ log p(θ|y) ≈
1

K

K∑
k=1

∇θ log p(θ,x
(k)|y) (52)

where x(k) are independent samples from p(x|θ,y). Such samples can be generated
using MCMC techniques, and in this paper we make use of a Metropolis–Hastings
sampler with “diffusion bridge” proposals (Fuchs, 2013). Note that since p(θ,x|y) ∝
p(y,x|θ)p(θ) = p(x|θ)p(θ), we have that

∇θ log p(θ,x|y) = ∇θ log p(θ) +∇θ log p(x|θ). (53)

Direct calculation shows that, assuming β is invertible,

∇θj log p(X|θ)

=

T∑
i=2

−1
2 tr(β

−1
i ∇θjβi) + (∇θjαi)

Tβ−1
i (Xi −Xi−1 −αiδt)

+ 1
2δt (Xi −Xi−1 −αiδt)

Tβ−1
i (∇θjβi)β

−1
i (Xi −Xi−1 −αiδt)

(54)

Consider the specific example of the Susceptible-Infected-Recovered (SIR) model
from epidemiology. Letting X1, X2 denote respectively the proportions of susceptible

3For convenience, the forward-simulation step was achieved using a Gibbs sampler where a burn-in
phase of 1,000 iterations. We drew K samples from this chain at a lag of 1,000 iterations. This accurately
mimics the setting of independent samples that corresponds to performing multiple forward-simulations
in parallel.
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Figure 5: SIR model. The top row displays the trace plots for θ1 and θ2 in uncontrolled
(blue) and controlled (red) versions for a degree-one polynomial. The bottom row is
similar, but for degree-two polynomials.

and infected individuals in a population, modelled as continuous random variables, the
SIR model has a stochastic representation given by

α(X;θ) =

[
−θ1X1X2

θ1X1X2 − θ2X2

]
, β(X;θ) =

1

N

[
θ1X1X2 −θ1X1X2

−θ1X1X2 θ1X1X2 + θ2X2

]
(55)

where N is a fixed population size and the rate parameters θ ∈ [0,∞)2 are unknown.
We assess our methodology by attempting to estimate the posterior mean of θ, taking
g(θ) = θj for j = 1, 2 in turn. Here each θj was assigned an independent Gamma
prior with shape and scale hyperparameters both equal to 2. This prior vanishes at the
origin and has exponentially decaying tails, so that the boundary condition of Lemma 1
is satisfied by all polynomials. Data were generated using the initial condition X0 =
[0.99, 0.01], population size N = 1, 000 and parameters θ = [0.5, 0.25]. Observations
were made at 20 evenly spaced intervals in the period from t = 0 to t = 35. Five
latent data points were introduced between each observed data point, so that the latent
process has dimension 2× (20−1)×5 = 190. At each Monte Carlo iteration we sampled
K = 100 realisations of the latent data process Xu.

Figure 5 demonstrates that a variance reduction of about 12–14 times is possible us-
ing degree-one polynomials and 13–15 times using degree-two polynomials. Again, these
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results highlight the potential to exploit multi-core processing for variance reduction in
Monte Carlo methodology.

4 Conclusions

In this paper, we have shown how repeated forward-simulation enables reduced-variance
estimation in models that have intractable likelihoods. The examples that we have con-
sidered illustrate the value of the proposed methodology in spatial statistics, social
network analysis and inference for latent data models such as SDEs. The RV methodol-
ogy provides a straightforward means to leverage multi-core architectures for Bayesian
estimation that compliments recent work for MCMC in this direction by Alquier et al.
(2014); Angelino et al. (2014); Bardenet et al. (2014); Calderhead (2014); Korattikara
et al. (2014); Maclaurin and Adams (2014). Our theoretical analysis revealed that the
number K of forward-simulations should be taken equal to the number of cores in order
to provide the optimal variance reduction per unit (serial) computation. Furthermore, it
was shown that the proposed RV estimator converges to the (intractable) ZV estimator
of Mira et al. (2013) as the number K of cores becomes infinite. Our theoretical findings
are supported by empirical results on standard benchmark datasets that demonstrate a
substantial variance reduction can be realised in practice. In particular, results for the
Ising model demonstrate that a 200–300 times variance reduction can be achieved by
exploiting a K = 500 core architecture. More generally, our work shows that it may not
be necessary to parallelise the sampling process itself; the potential of massively multi-
core architectures can be harnessed in post-processing MCMC samples using control
variates.

To conclude, we suggest interesting directions for further research:

• The approach that we pursued was a post-processing procedure that does not
require modification to the MCMC sampling mechanism itself. However, an inter-
esting possibility would be to also use the output of forward-sampling to construct
gradient-based proposal mechanisms for the underlying MCMC sampler, follow-
ing recent work in this direction by Alquier et al. (2014); Nemeth et al. (2014).
This would retain the inherently parallel nature of the simulation procedure whilst
yielding useful approximate Monte Carlo schemes that converge to an “idealised”
(i.e. marginal) sampler as the number of forward-simulations, K, increases. In par-
ticular, our procedure can be implemented within the various schemes developed in
Alquier et al. (2014); Nemeth et al. (2014) without any additional computational
cost. Stochastic approximation of the score function was also recently considered
by Atchadé et al. (2014) in the context of designing proximal gradient algorithms.
Our work therefore combines to illustrate the wide range of statistical models for
which such an approach could prove practically useful. Alternative approaches to
handling Type I intractability, such as Approximate Bayesian Computation (Mar-
joram et al., 2003) typically also require a forward-simulation step and thus could
also be embedded within our framework.

• In terms of statistical efficiency it would be interesting to extend the reduced-
variance methodology to the non-parametric setting recently considered by Oates
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et al. (2014) that provides a mechanism to learn a suitable trial function P (θ)
that need not be polynomial, leading (in some cases) to improved convergence
rates. A second interesting possibility would be to allow the number of forward-
simulations, K to depend upon the current state θ; in this way fewer simulations
could be performed when it is expected that the score estimate û(θ|y) is likely
to have a low variance. A third direction would be to move beyond independent
estimation of the score u(θ|y) for each value of θ; here non-parametric regression
techniques could play a role and this should yield further reductions in estimator
variance, which again has a close analogy with Oates et al. (2014).

• Finally, a referee suggested the intriguing possibility to exploit control variates for
reduced-variance density estimation. Specifically, we would take gθ∗(θ) = Kh(θ

∗−
θ) for a bandwidth-h kernel smoother estimate for the posterior density at a point
θ∗ ∈ Θ, such that Eθ|y[gθ∗(θ)] → p(θ∗|y) as h → 0. This is a direction that we
are keen to explore further.

Of course, in the era of big data, as statisticians are increasingly interested in
analysing larger datasets an immediate challenge is the issue of dealing with intractable
likelihoods, due to the volume of data. Moreover, one would anticipate that statisti-
cal methodology will focus on the development of inferential algorithms that exploit
modern multi-core computer architectures. Both of these will inevitably lead to further
development and extensions of the methodology described in this paper.

Appendix A

Below we prove Lemma 4 from the Main Text. First, we require a technical result:

Lemma 5. Write ρ(∞) = Corrθ|y[g(θ), h(θ|y)]. There exists C ∈ (0,∞) such that

ρ(K)2 =

(
1

ρ(∞)2
+

C

K

)−1

. (56)

Proof. For Type I models we write ĥ(θ,Y ) = h(θ) + ε(θ,Y ) where Y = (Y1, . . . ,YK)
and suppress dependence on the data y in this notation. It follows that the discrepancy
between the reduced-variance and ZV control variates is given by

ε(θ,Y ) = ∇θP (θ) ·
[
1

K

K∑
k=1

s(Yk)− EY ′|θ[s(Y
′)]

]
. (57)

Taking an analogous approach to Type II models, we obtain

ε(θ,X) = ∇θP (θ) ·
[
1

K

K∑
k=1

u(θ,Xk)− EX′|θ,y[u(θ,X
′)]

]
. (58)

Note that EY |θ[ε(θ,Y )] = 0 and hence

EY ,θ|y[ε(θ,Y )] = EY |θ,yEθ|y[ε(θ,Y )] = Eθ|yEY |θ[ε(θ,Y )] = 0, (59)
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with an analogous result holding for Type II models. Using these results, we have that,
for Type I models,

VY ,θ|y[ε(θ,Y )] = EY ,θ|y[ε(θ,Y )2] (60)

= Eθ|yEY |θ[ε(θ,Y )2] = Eθ|yVY |θ[ε(θ,Y )] (61)

= Eθ|y[K
−1

VY |θ[∇θP (θ) · s(Y )]] = C1K
−1 (62)

where C1 = Eθ|yVY |θ[∇θP (θ) · s(Y )]. Also observe that, for any function g(θ),

CovY ,θ|y[g(θ), ε(θ,Y )] = EY ,θ|y[g(θ)ε(θ,Y )]− EY ,θ|y[g(θ)]EY ,θ|y[ε(θ,Y )] (63)

= Eθ|yEY |θ[g(θ)ε(θ,Y )] = 0. (64)

Putting these results together, we obtain

ρ(K) =
CovY ,θ|y[g(θ), ĥ(θ,Y )]√

VY ,θ|y[g(θ)]
√

VY ,θ|y[ĥ(θ,Y )]
=

Covθ|y[g(θ), h(θ)]√
Vθ|y[g(θ)]

√
Vθ|y[h(θ)] + C1K−1

(65)

from which it follows that

1

ρ(K)2
=

Vθ|y[g(θ)](Vθ|Y [h(θ)] + C1K
−1)

Covθ|y[g(θ), h(θ)]2
=

1

ρ(∞)2
+

C

K
(66)

where C = C1/Covθ|y[g(θ), h(θ)]
2. The analogous derivation for Type II models com-

pletes the proof.

A simple corollary of Lemma 5 is that the reduced-variance estimator converges to
the (unavailable) ZV estimator as K → ∞. Moreover, we can derive an optimal choice
for K subject to fixed computational cost:

Proof of Lemma 4. Starting from (50), we substitute I = c/K/K0� and use the iden-
tity in Lemma 5 to obtain

r(K) =
1

c

⌈
K

K0

⌉(
1− Kρ(∞)2

K + Cρ(∞)2

)
. (67)

Figure S3 displays typical cost-normalised variance ratios r(K), for both non-Gaussian
(i.e. ρ(∞) < 1; left) and Gaussian (i.e. ρ(∞) = 1; right) cases. In each case, the minimum
is attained at K = K0. In general, we see from first principles that (i) r > 0, (ii) r(k)
is increasing for k = K0, 2K0, 3K0, . . . , and (iii) r(k) is decreasing on the interval
((n − 1)K0, nK0] and bounded below by r((n − 1)K0), for any n ∈ N. Thus we have
argminK=1,2,3,... r(K) = K0, as required.

Supplementary Material

Supplementary Figures and Tables (DOI: 10.1214/15-BA948SUPP; .pdf).

http://dx.doi.org/10.1214/15-BA948SUPP
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