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Abstract—The distribution network operator is usually responsi-
ble for increasing the efficiency and reliability of network operation.
The target of active loss minimization is in line with efficiency
improvement. However, this approach may not be the best way to
decrease the losses payments in an unbundled market environment.
This paper investigates the differences between loss minimization
and loss payment minimization strategies. It proposes an effec-
tive approach for decreasing the losses payment considering the
uncertainties of electricity prices in a day ahead energy market
using energy storage systems and demand response. In order to
quantify the benefits of the proposed method, the evaluation of
the proposed technique is carried out by applying it on a 33-bus
distribution network.

Index Terms—Active losses, demand response, energy storage
system, robust optimization, uncertainty.

NOMENCLATURE

For quick reference, the main notation used throughout the
paper is stated in this section.

A. Sets and Indices
i Index for network buses.
ℓ Index for network feeders.
t Index for operation intervals.
ΩL Set of lines in distribution network
ΩESS Set of nodes containing ESS
ΩDR Set of nodes participating in demand response
Ωn Set of all network nodes
ΩT Set of time periods

B. Parameters
θij Angle of ijth element of admittance matrix.
Γ Conservativeness degree of decision maker regarding

the price uncertainty.
ǫi Curtail-able percent of energy of demand in nodei.
ηch/dch Efficiency of charging and discharging of ESS (%).
λ
f/a
t Forecast/actual value of electricity price at timet

($/MWh).
(P/Q)D0

i,t Initial active/reactive demand of nodei at time period
t without demand response (MW).
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Λ̄ Maximum number of nodes allowed to participate in
demand response.

Vmin/max Maximum/minimum voltage magnitude (pu).
Iℓ Maximum feeder capacity (A).
γ
max/min
i Maximum/minimum demand flexibility at nodei.
ES

max/min
i Maximum/minimum energy stored at nodei (MWh).

P
ch,max/min
i Maximum/minimum power charge of ESS at nodei

(MW).
P

dch,max/min
i Maximum/minimum power discharge of ESS at node

i (MW).
λ
max/min
t Maximum/minimum bounds of electricity price at

time t ($/MWh).
Yij Magnitude ofijth element of admittance matrix (pu).
∆±

t Positive/negative deviation of actual price from the
forcasted price ($/MWh).

λ̃t Uncertain electricity price at timet ($/MWh).

C. Variables
(P/Q)

D/G
i,t Active/reactive demand of nodei at time periodt

with demand response (MW).
ωt, ζt,Υ Auxiliary variables.
Λi Binary decision variable indicating whether nodei

participates in demand response or not.
P

ch/dch
i,t Charge/discharge power of ESS at nodei at time

period t.
Iℓ,t Current flowing in feederℓ at time t (A)
γi,t Demand response decision variable of nodei at time

period t.
ESi,t Energy stored in ESS at nodei at time periodt.
(P/Q)net

i,t Net active/reactive power injection to nodei at time
period t with demand response (MW).

LESS
t Power losses in ESS at timet (MW).

ψt Total active power losses at timet (MW).
Vi,t Voltage magnitude at nodei at time periodt.
δj,t Voltage angle at nodei at time periodt.

I. I NTRODUCTION

A. Background and Aim

T HE goal of the distribution network operator (DNO) is to
maximize the efficiency of the network in its territory as

well as monitoring and improving the technical condition of
the network.The cost of electricity is directly linked to the
efficiency of the transmission and particularly the distribution
system. The financial treatment of losses is crucial in this
regard. The role of DNO for dealing with active losses (as a
measure of network efficiency) is different in each regulatory
framework. In some countries like Denmark, France, Belgium,
Austria and Germany the active losses are procured in wholesale
market while in Ireland, Italy, UK and Portugal some incentive
efficiency measure indicators are used [1].There are different
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strategies to efficiency improvement of distribution networks
such as scheduling the distributed energy resources (DER) [2],
[3], capacitor switching, network reconfiguration [4], energy
storage systems (ESS) [5], demand response (DR) [6], etc. The
traditional strategy for DNO is to decrease active losses using
the available options.In this paper, without loss of generality,
among the wide range of performance improving actions, the
focus is placed on ESS scheduling and DR. Demand response
is referred to all actions (including energy storage devices
management, energy reduction and demand shifting) to change
the nominal demand pattern of the end-use consumers [6]. This
paper proposes a method for optimal ESS and DR scheduling to
minimize the active losses payments. This optimization hasone
important uncertainty source namely, electricity prices.There
are different techniques to handle the uncertainties in decision
making frameworks such as information gap decision theory
(IGDT) [7], stochastic programming, fuzzy mathematics and
robust optimization. These techniques are inherently different in
nature and can’t be easily compared with each other. Choosing
the best technique among them depends on the uncertainty
nature and available data about the uncertain parameters ofthe
model. Using fuzzy techniques requires knowing membership
functions. The stochastic models need to know the probability
distribution function (PDF) of uncertain parameters and usually
these techniques are computationally inefficient [8]. The IGDT
framework is very conservative and may lead to over-estimated
actions [8]. It is more suitable in severe uncertainty cases[9].
In this paper, robust optimization is used for handling this
uncertainty. The gap that this paper tries to fill is to answer
two questions:

1) “Loss minimization or loss payment minimization?”.
Which is the best strategy for efficiency maximization
under price uncertainty?

2) How should it be done using DR and ESS?

B. Literature Review

Different references referred toESSand DR for increasing the
efficiency and flexibility in distribution networks. TheESSare
used to increase the network capacity for accepting new wind
turbines [10], voltage regulation [11], maximizing revenue for
non-firm distributed wind generation [12], energy management
and power quality improvement [13] and loss reduction [10].DR
actions canalsobring ancillary services to the grid [14], voltage
control [15], active loss reduction [16] and better exploitation
of renewable energy sources as well as a reduction of the
customers’ energy consumption costs with both economic and
environmental benefits [17].

In [18], a heuristic algorithm is proposed to reduce the
active losses costs reconfiguration of distribution networks. A
distribution system expansion planning model which considers
the construction/reinforcement of substations/feeders/capacitors
banks and the radial topology modification was introduced in
[19]. The optimal allocation of capacitor banks and DG units
is found using the differential evolution algorithm in [20]. It
is multi-objective and tries to optimize the cost of energy not
supplied, reliability index, costs of energy losses and investment.
The shortcoming of these models ( [18]–[20]) is assuming
the constant cost of energy losses as well as ignoring the

uncertainties associated with market prices. ESS and DR are
not considered in them.

C. Contributions

To the best knowledge of the authors of this paper, there is no
reference addressing the impact of hourly electricity prices as
well as their uncertainty on loss payment minimization actions.
Given the discussed context, the contributions of this workare
fourfold:

1) To provide a framework for economic efficiency increase
for DNO.

2) To considerthe uncertain electricity prices using robust
optimization techniqueand converting the bi-level opti-
mization into a single optimization problem.

3) To model the optimal scheduling of ESSs.
4) To quantify the benefits of DR for efficiency maximiza-

tion.

D. Paper Organization

The remainder ofthe paper is organized as follows. Section
II describes the problem formulation. Section III presentsthe
modelling features and assumptions made in the proposed deci-
sion making framework.Simulationresults and discussions are
presented in Section IV. Section VI concludes the paper.

II. PROBLEM FORMULATION

A. Assumptions

• The DNO is responsible for active loss procurement from
day ahead electricity market [1]. The day ahead market
mechanism is followed in many countries such as Ireland,
Greece and Poland [21]. In this framework, the electricity
prices are set based on market clearing mechanism one day
in advance of actual operating point. The DNO is assumed
to be price taker. However, in some regulatory frameworks
like Nordic countries the real time and intraday balancing
market [22] is used.

• The electricity prices of the day ahead market are subject to
uncertainty. It is due to many different reasons like: compe-
tition between price maker generating units, contingencies
of transmission network and generating units, volatile and
uncertain renewable energy sources and demand uncertainty
[23]. It is assumed that only limited information is available
regarding the electricity prices (interval based modeling
[24]). It is more explained in section III-A.

• The DNO is the owner of ESS and therefore responsible
for controlling the operating schedules of ESS.

• The DNO has the authority for controlling demands in
some specific nodes. This can happen using mutual agree-
ment/contract [25] between the consumers and the DNO.
The gained benefits of this agreement will be shared
between the DNO and the consumers.
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B. Objective functions and constraints

In a generic active power losses minimization strategy, the
following optimization problem is solved:

min
DV

z =
∑

t∈ΩT

ψt (1)

F(DV,Π) ≤ 0 (2)

G(DV,Π) = 0 (3)

ψt in (1) is the hourly active loss.DV and Π represent
the decision variables and input parameters (price values and
technical data), respectively.T denotes the operating horizon.
F andG represent theinequalityand equalityconstraintsof the
optimization framework as described in (5) to (22), respectively.
In this paper, a new strategy is proposed that tries to minimize
total payments related to the active power losses. Obviously,
the optimal actionsDV directly depend on the input parameters
(Π) including price values for the day ahead market. The issue
is that usually there is limited information about the electricity
prices of the next day. The optimization problem can therefore
be formulated as follows:

min
DV

z =
∑

t∈ΩT

(ψtλ̃t) (4)

F(DV,Π) ≤ 0

G(DV,Π) = 0

λ̃t is the uncertain electricity price at timet in day ahead market.

The power flow equations to be satisfied∀i ∈ Ωn, ∀t ∈
ΩT , ∀ℓ ∈ ΩL are:

ψt =
∑

i∈Ωn

Pnet
i,t + LESS

t (5)

Pnet
i,t = PG

i,t − PD
i,t − P ch

i,t + P dch
i,t (6)

Qnet
i,t = QG

i,t −QD
i,t (7)

Pnet
i,t = Vi,t

∑

j∈Ωn

YijVj,tcos(δi,t − δj,t − θij) (8)

Qnet
i,t = Vi,t

∑

j∈Ωn

YijVj,tsin(δi,t − δj,t − θij) (9)

Vmin ≤ Vi,t ≤ Vmax (10)

Iℓ,t = Yℓ=ij(|Vi,t ≺ δi,t − Vj,t ≺ δj,t|) ≤ Iℓ (11)

whereLESS
t is the power losses in ESS at timet. Pnet

i,t , Q
net
i,t in

(6) and (7) are the net injected active and reactive power to bus
i, respectively.Yij , θij are the magnitude and angle of thei−jth
element of admittance matrix, respectively.Vi,t, Vmin, Vmax

in (10) are the voltage magnitude, min/max operating limits
of each bus, respectively.Iℓ in (11) is the current passing
through feederℓ and Iℓ in (11) is the maximum allowable
current in feederℓ. PG

i,t, Q
G
i,t in (6) and (7) are the active and

reactive power injected to the network by the DG units or grid
connection.Ωn,ΩT ,ΩL are the set of system nodes, operating
hours, feeders, respectively.P ch/dch

i,t is the charged/discharged
power of ESS in (6).

The ESS technical operating constraints to be satisfied∀i ∈

ΩESS & ∀t ∈ ΩT [26] are:

ESi,t = ESi,t−1 +
(

ηchP
ch
i,t − P dch

i,t /ηdch
)

∆t (12)

ESmin
i ≤ ESi,t ≤ ESmax

i (13)

P ch,min
i ≤ P ch

i,t ≤ P ch,max
i (14)

P dch,min
i ≤ P dch

i,t ≤ P dch,max
i (15)

LESS
t = (1− ηch)P

ch
i,t + P dch

i,t (1/ηdch − 1) (16)

whereΩESS is the set of nodes which have ESS. The energy
stored in ESS in timet and busi, ESi,t depends on the energy
stored in ESS in timet− 1 and the charging and discharging of
the ESS (P ch

i,t /P
dch
i,t ) which is described in (12).ηch and ηdch

are the charging and discharging efficiency of ESS, respectively.
∆t is the duration of time intervalt. The stored energy in ESS
should be kept between specific limits (ES

max/min
i ) as enforced

by (13).ESi,t0 is the initial value of stored energy in ESS. The
charging and discharging limits of ESS are given in (14) and
(15).

Demand response constraints for∀i ∈ ΩDR are:

PD
i,t = PD0

i,t × γi,t (17)

QD
i,t = QD0

i,t × γi,t (18)

(1− γmin
i Λi) ≤ γi,t ≤ (1 + γmax

i Λi) (19)
∑

i∈ΩDR

Λi ≤ Λ̄ (20)

∑

t∈ΩT

PD
i,t∆t ≥ (1− ǫi)

∑

t∈ΩT

PD0
i,t ∆t (21)

∑

t∈ΩT

QD
i,t∆t ≥ (1− ǫi)

∑

t∈ΩT

QD0
i,t ∆t (22)

The set of demands participating in DR program is
represented byΩDR. (P/Q)D0

i,t , (P/Q)Di,t specify the origi-
nal/modified demand pattern without/with DR perturbation in
(17) , (18). γi,t denotes the decision variable for changing the
demand pattern in (17),(18). The constraint (19) models the
flexibility degree of the demands.γmax

i and γmin
i specify the

maximum possible increase and decrease of demand in nodei.
Λi is a binary variable. IfΛi = 0 then the nodei does not
participate ina DR program and vice versa. The total number
of nodes which can participate ina DR program are specified
in (20) asΛ̄. Although the demand pattern changes, the total
energy consumption of the demand in nodei is kept more than
100×(1−ǫi) percent of its initial energy value (without DR) as
imposed by (21) and (22). In other words,ǫi is the curtail-able
percent of energy of demand in nodei. Without these equations
((21) and (22)), the DR decision variables (γi,t) as defined in
((17) and (18)) would take their least possible values (γmin

i )
for all time periods. It should be noted that these equationsare
valid for each nodei ∈ ΩDR. This means that the energy of
nodei is redistributed in different time periods (not transferred
to other nodes). In the current formulation, ifΛi are given as
constant input parameters then the model is a non-linear problem
(NLP). This means the nodes participating in demand response
are known in advance. It is also possible to find the optimal
locations of nodes to participate in DR program. In this case,
the resulting problem is a mixed integer non-linear problem
(MINLP).
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It is interesting to know how to determine the order of DR
nodes with respect to their impact on energy losses payments.
A technique to identify the merits of nodes for participating in
DR is enumerating the total number of nodes (Λ̄) permitted to
participate in DR (Λ) from 1 to the number of load points. Then
for the given number of permitted nodes (Λ) the DR participating
nodes are found using binary variablesΛi. In each case, the
optimal nodes (withΛi = 1) are identified. The frequency of
selection in each scheme specifies the merit of each node.

III. PROPOSED STRATEGY

The optimization strategy is to find the optimal decision
variables in such a way that the worst case cost is controlled
for a given degree of conservativeness (Γ). In this section, first
the uncertainty modeling is introduced and finally the robust
optimization based solution strategy is given.

A. Uncertainty modeling

There are several techniques available for modeling the un-
certainty of electricity price in (4). These techniques include
stochastic scenario modeling (Fig.1a ) [8], fuzzy modeling
(Fig.1b ) [27] and robust optimization (Fig.1c) [28]. Usingeach
technique requires certain information regarding the uncertain
parameter. In stochastic scenario based modeling, the decision
maker should be aware of probability density function of un-
certain parameter. In fuzzy modeling the membership function
of uncertain parameters should be known. The computational
burden of these techniques are high and the obtained results
are subject to risk. For example the actual realization of the
uncertain parameter may deviate drastically from the expected
value of the objective function.The robust optimization uses the

Scenario 1 t1 . T

Scenario 2 t1 . T

Scenario i t1 . T

. t1 . T

Scenario N t1 . T

S

tλ

tλ

( )tM
α
λ

1

0

a)

b)

α

max

tλ
min

tλ( )tU λ

c)

f

tλ

tλ

Fig. 1. a) Scenario based stochastic uncertainty modeling, b) Fuzzybased
uncertainty modeling, c) Robust optimization based uncertainty modeling.

uncertainty sets for handling the uncertainties. One of themost
frequently used uncertainty set is interval set.The uncertainty
intervals can be found using different methods as follows:

• Using time series models (ARIMA) [29]
• Using Neural Networks

• Using expert opinion and historic data

The same technique has been used in the literature such as in
[30]–[33]. It is formulated as follows:

λ̃t ∈ U(λ̃t) =
{

λ̃t : λ
min
t ≤ λ̃t ≤ λmax

t

}

(23)

λmin
t , λmax

t are the lower and upper bounds ofλ̃t, respectively.
It is assumed that no information is available from day ahead
market prices other than these bounds.

B. Robust optimization formulation

The idea of robust optimization is to minimizez in eq.
(4) without knowing the exact values ofλt. Additionally, the
optimal decision making is done in a way that these actions still
remaingood (not optimal)even though the actual values (λat )
of uncertain parameters deviate (to some degreeΓ) from the
forecasted valuesλft . Two cases may happen: first, the actual
price λat is more than the forecasted priceλft . The constraint
for uncertainty modelling of the price can be expressed as:

λat = λft +∆+
t ωt (24a)

∆+
t = λmax

t − λft (24b)

0 ≤ ωt ≤ 1 (24c)

where,ωt is the prediction error. The second case happens when
the actual priceλat is lessthanλft as:

λat = λft +∆−
t ωt (25a)

∆−
t = λmin

t − λft (25b)

As the decision maker seeks the robustness against the undesired
events, theequations given in(25a) , (25b) do not cause trouble.
Actually the main concern of the decision maker is onthe
equations given in(24a) , (24b) where the actual prices may be
more than the forecasted values. Thus, the formulation expressed
in equations(4) , (23) can be replaced by the following one:

min
DV

z =
∑

t∈T

ψtλ
f
t + ψt∆

+
t ωt (26a)

0 ≤ ωt ≤ 1 (26b)
∑

t∈T

ωt ≤ Γ (26c)

Subject to :

(5)to(22)

Γ in (26c) is a parameter specified by the decision maker
which is also called theconservativeness degree . It denotes the
maximum total deviation (robustness degree [28])that can be
tolerated. This parametercan take a valuefrom 0 to 24 (increases
with the conservativeness of the decision maker). For example,
if Γ = 2 this meansthat the algorithm will remain robust even
though the maximum total prediction error is 100% in 2 hours
or 50% in 4 hours of the day ahead market. The robust counter
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part of (26) would become [24]:

min
DV

z =
∑

t∈T

ψtλ
f
t +







maxωt
ψt∆

+
t ωt

Subject to :
(26b), (26c)







(27)

Subject to :

(5)to(22)

The formulation described in (27), requires to solve a bi-
level optimization since the inner maximization tries to simulate
the worst case realization of uncertain price (by changingωt)
while the outer minimization attempts to decrease the undesired
impacts of uncertain prices by controllingDV. The decision
variables in inner maximization iswt and the constraints are
the (26b) , (26c). This is done in order to find the worst case
condition of uncertainty in electrcity prices that would cause the
maximum increase in total payments. Once the optimal valuesof
wt are found, these values are passed to the outer minimization.
The decision variables of this level are the network power flow,
demand response and energy storage system constraints.

The complexity ofthe optimization block,







maxωt
ψt∆

+
t ωt

Subject to :
(26b), (26c)







in (27), is linearwith respect toωt since thetermsψt∆
+
t are

determined in the upper level of optimization. According tothe
duality gap theory [9], it is concluded that :

max
0≤wt∈T

[

ψt1∆
+
t1 · · · ψT∆

+

T

]







wt1
...
wT






(28)



















1 0 · · · 0 0
0 1 · · · 0 0
...

. ..
.. .

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1
1 1 · · · 1 1

























wt1
...
wT






≤



















1
1
...
1
1
Γ



















(29)

is equivalent to :

min
0≤Υ,ζt∈T

[

1 · · · 1 Γ
] [

ζt1 · · · ζT Υ
]⊤

(30)



















1 0 · · · 0 0
0 1 · · · 0 0
...

. ..
.. .

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1
1 1 · · · 1 1



















T 

















ζt1
ζt2
...

ζtT−1

ζT
Υ



















≥



















ψt1∆
+
t1

ψt2∆
+
t2

...

.

.
ψT∆

+

T



















(31)

whereζi,Υ are dual variables.
Using (28) to (31), the bi-level optimization described in (27)
would transform into (32):

min
DV

z =
∑

t∈T

λft ψt +
∑

t∈T

ζt +ΥΓ (32a)

Υ+ ζt ≥ (λmax
t − λft )ψt (32b)

Υ, ζt ≥ 0 (32c)

Subject to :

(5)to(22)

The obtained single level optimization in (32) can be solved
using decomposition technique [34] or Lagrange Relaxation
approach [35]. It is obvious that the resulted single level opti-
mization is easierto solve than the original bi-level optimization
structure.

The decision variables (U ), parameters (Π) and the sets are
as follows:

DV =











ψt, γi,t,Λi, ωt, ζi,Υ

(P/Q)
D/G
i,t , (P/Q)neti,t , Iℓ,t, Vi,t, δj,t

P
ch/dch
i,t , ESi,t











(33)

Π =



















(P/Q)D0
i,t , γ

min/max
i,t , ES

min/max
i

ηch/dch, P
ch,min/max
i , P

dch,min/max
i

λ
max/min
t , λ

f/a
t , λ̃t, θij , Yij

∆±
t ,Γ, Λ̄, Vmin/max, Iℓ



















(34)

Sets = {ΩDR,ΩT ,Ωn,ΩL,ΩESS} (35)

Indeed the DNOs would rather minimize the maximum costs
that the they may experience. This maximum cost occurs when
the actual price is more than the forecast price. The reformu-
lated single level optimization minimized the maximum regret
(payments) of DNO by using duality gap theory [36] and robust
optimization. This is because in deregulated environment the
DNO’s concern is the payments toward the losses (not the losses
as in traditional distributions network management systems). It
is shown that minimizing thez1 =

∑

DV ψt does not result in
minimum z2 =

∑

DV λtψt. Especially whenλt is uncertain.

IV. SIMULATION RESULTS

A. Data

The proposed algorithm is implemented in GAMS [37] envi-
ronment running on an IntelR© XeonTMCPU E5-1620 3.6 GHz
PC with 8 GB RAM.As far as the demand response node/nodes
is/are known, the proposed framework is a NLP model which
can be easily solved by commercial solvers such as Modular
In-core Nonlinear Optimization (MINOS) [38]. However, if the
optimal DR allocation is to be investigated the model would
become MINLP and the Discrete and Continuous OPTimizer
(DICOPT) [39] solver is used. In large scale networks, usingthe
bender decomposition technique [40] would be beneficial. The
non-convexity of the AC-OPF problem makes it difficult to find
the global optimal solution. Some novel techniques have been
proposed in the literature to address the duality gap in OPF and
make it convex [41], [42].The proposed model is applied to a
33-bus distribution network [43]. The peak demand values used
in this study are higher than what is reported in [43] in order
to increase the active losses in the network and can be accessed
in [44]. T is considered to be 24h. The predicted price values
as well asprice bounds are depicted in Fig. 2.These values can
be found using time series models like ARIMA [45] based on
historic data. The daily load curve shown in (Fig. 2) is obtained
from EirGrid which is the Irish TSO (accessed 28/12/2014) [46].

The daily load curve is shown in Fig. 2 [46].Without loss of
generality it is assumed that no load curtailment can be donee.g.
ǫi = 0, ∀i ∈ Ωn. The technical characteristics ofthe considered
ESS are described in Table I.
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Fig. 2. Day ahead demand and price characteristics

TABLE I
THE TECHNICAL CHARACTERISTICS OFESS

Parameter Value Unit
ESmax

i,t 4 (8 × 500KW REDOX batteries [47]) MWh
ESmin

i,t 1 MWh
ESi,t0 2 MWh

P ch,max
i,t = P dch,max

i,t 1 MW

P ch,min
i,t = P dch,min

i,t 0 MW
ηch = ηdch 95 %

B. Considered cases

In this study, three different cases are studied:

• Case A) This case is added for the purpose of providing
a basis for comparison. In this case, neither ESS nor
DR is scheduled.No optimization is performed in this
case. The constraints to be satisfied are (5) to (11).The
decision variables of this case are limited to load flow
variables and no optimization is performed. This means
that DVa =

{

Vi,t, δi,t, P
G
i,t, Q

G
i,t

}

. In this case, it is tried to
satisfy the constraints (5) to (22). This is basically because
there is no independent DV (DR or ESS) so the objective
function can be chosen as (1) or (4).

• Case B) The active loss minimization(objective function is
(1) ) is achieved without considering the price uncertainties
andusing optimal scheduling of:

– B1 : The loss minimization is performed by optimiz-
ing the ESS schedule.The constraints to be satisfied
are (5) to (16).This implies thatDVb1 = DVa ∪
{

ESi,t, P
ch
i,t , P

dch
i,t

}

. It is supposed that only one ESS
exists in the network.

– B2 : The loss minimization is performed by optimizing
the DR schedule.The constraints to be satisfied are
(5) to (11) and (17) to (22).This implies thatDVb2 =
DVa ∪ {γi,t,Λi}. In this case,it is assumed that load
demand at only one node participates to a DR program.
The flexibility degree can be adjusted by changing the
γ
min/max
i,t in (19). It is assumed thatγmin

i,t = 0.6 and
γmax
i,t = 0.6.

– B3 : The loss minimization is performed by optimizing
the ESS and DR schedule.The constraints to be
satisfied are (5) to (22).This implies thatDVb3 =
DVb1 ∪ DVb2 .

It should be noted that the electricity price uncertainties
have an impact on the final payments of case A, B and
C. It is assumed that the DNO is a price taker entity and
its operating decisions do not influence the market price
values. The difference between these cases is that case A
does not have the tools (DR & ESS) to reduce the undesired
price uncertainties. In case B, the tools (DR &/OR ESS)
are available but not an appropriate operating strategy is
chosen for reducing the payments. In fact, in case B it
is tried to minimize the losses without considering the
price values and their uncertainties. In contrary to case
A & B, the decision maker in case C incorporates the
price uncertainties in decision making process. That is why
in all of these cases the impact ofΓ values (the degree
of conservativeness regarding the future prices) on final
payments are assessed.

• Case C) Loss payment minimization(objective function is
(32a) ) is achieved by considering the price uncertainties
and using optimal scheduling of corresponding decision
variables which are as follows:

– C1 : The decision variables are the same as caseB1.
ThereforeUc1 = Ub1 . The constraints to be satisfied
are (5) to (11).

– C2 : The decision variables are the same as caseB2.
ThereforeUc2 = Ub2 . The constraints to be satisfied
are (5) to (11) and (17) to (22).

– C3 : The decision variables are the same as caseB3.
ThereforeUc3 = Ub3 . The constraints to be satisfied
are (5) to (22).

The value ofΓ shows the conservativeness degree of the
decision maker. It is a parameter which is set by the decision
maker. It can vary from 0 (meaning no uncertainty may happen)
to 24 (all uncertain parameters may take their worst value).The
simulations have been done for all values ofΓ = 0 −→ 24.

C. Results

1) Case A: The total payments are $641.449(Γ = 0) and
the total daily active energy losses are8.669 MWh. The hourly
active losses are shown in Fig. 3.

The possible reduction in loss payments vs the degree of
conservativeness(Γ) are depicted in Fig. 4. The numerical values
of possible loss payments for different degrees of uncertainty (Γ)
are givenin Table II. It is observed that as the uncertainty degree
increases, the possible payments would increase from $641.449
(Γ = 0) to $800.452(Γ = 24).

2) Case B:

• Case B1: The connection node ofthe ESS can have
an influence on the efficiency of the active management
strategy. This is investigated by changing the connection
node of ESS in the network. Based on the plots shown in
Fig. 5, it isevidentthat the best location for ESS connection
is bus #15. In this case, the active losses do not change with
the change ofΓ values. However, the possible payments
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will change with ESS connection node as shown in Fig. 6.
If the ESS is connected to node #15 then in caseB1 the
stored, charged and discharged energy pattern of ESS are
depicted in Fig. 7.As shown in Fig. 4, this strategy can
reduce the loss payments up to 2.83% compared to caseA.
The minimum total active losses are 8635.97 kWh.

• CaseB2: Fig. 5 shows the energy losses vsthe node where
a load with a demand response capability is assumedin
caseB2. Node #30 is the best node for demand response
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participation regarding theenergy lossesminimization. Fig.
6 shows the energy losses payment vs the node where a load
with a demand response capability is assumed.As shown in
Fig. 4, this strategy can reduce the loss payments up to 4.98
% compared to caseA. The minimum total active losses
are8563.55KWh. In the case that bus 30 is selected as the
node with DR capability, the new demand pattern of bus 30
is depicted in Fig. 8. This new pattern is determined based
on the technical characteristics of the network including the
admittance matrix as well as the demand pattern of other
nodes (which do not participate in DR program).
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Fig. 8. The hourly demand pattern in different cases. A: no ESS/DR, loss
minimization using DR (B2), loss payments minimization using DR (C2).
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• CaseB3: It is assumed that the DR node is node #30 and
the ESS is connected to node15. Table II and Fig. 4 show
the energy losses payment as well as total losses vsΓ in
caseB3, respectively. As shown in Fig. 4, this strategy can
reduce the loss payments up to7.66 % compared to case
A. The minimum total active losses are8531.49kWh.

3) Case C: In this case, the proposed algorithm tries to
minimize the total daily payments due to active losses in the
network using different combinations of actionsas previously
described:

• CaseC1: Again, the impact of ESS connection node on
active losses payments in caseC1 is shown in Fig. 9.
This clearly shows that minimum active losses does not
necessarily occur at minimum active losses payments. Node
15 is optimal for loss minimization not loss payment
minimization. Fig. 10 depicts the impact of ESS connection
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Fig. 9. The energy losses payments in losses payments minimization strategy
vs the ESS node (caseC1) and DR node (caseC2) for three different values
of Γ.

node on active losses in caseC1. The variations of active
energy losses in Fig. 10 shows that ESS operation changes
the line flows and this would increase the total active losses
for different (Γ) and connection nodes.

33323130292827262524232221201918171615141312111098765432
24

21

18

15

12

9

Γ

6

3

8.7

8.76

8.66

8.74

8.68

8.72

0

A
ct

iv
e 

en
er

g
y 

lo
ss

es
 (

M
W

h
)

Fig. 10. The impact of ESS connection node on active energy losses (with loss
payments minimization strategy using ESS (C1)).

Fig. 11 shows the hourly energy stored in ESS vsΓ in case
C1 if it is connected to node 11.
As shown in Fig. 4, this strategy can reduce the loss
payments by up to 5.23 % compared to caseA.
In this case,the minimum total active losses vary from
8703.38 kWh to 8746.99 kWh (based onΓ values).

• CaseC2: Fig. 12 shows the energy lossesvs thenode where
a load with a demand response capability is assumed and
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Fig. 11. The hourly energy stored in ESS vsΓ in caseC1 (loss payments
minimization using ESS).

vs Γ in caseC2. This implies that the node #30 is the best
node for demand response participation regarding the losses
payments minimization. Fig. 9 shows the energy losses
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Fig. 12. The energy losses vs the DR node vsΓ (in loss payments minimization
strategy using DR (C2)).

payment vs the DR nodeandvs Γ (caseC2). In this case,
the minimum total active losses vary from8582.55kWh to
8603.97kWh (based on the variation ofΓ values). The new
demand pattern of bus 30 is depicted in Fig. 8.This new
pattern is determined based on the technical characteristics
of the network (like caseB2) as well as the electricity price
variations. As shown in Fig. 4, this strategy can reduce the
loss payments up to 6.43% compared to caseA.

• CaseC3: It is assumed that the DR node is node #30 and
the ESS is connected to node15. Fig. 4 shows the energy
losses payment vsΓ in caseC3.
The energy losses vsΓ in caseC3 are shown in Fig. 13.
In this case, the minimum total active losses vary from
8619.76kWh to 8672.11kWh (based onΓ). As shown in
Fig. 4, this strategy can reduce the loss payments up to
11.44% compared to caseA.
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loss minimization (using ESSB1, using DRB2, using both DR & ESSB3),
C: loss payments minimization (using ESSC1 , using DRC2, using both DR
& ESSC3).
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D. Comparison

The worst possible realization of electricity prices (based on
the given budget of uncertainty (Γ)) is calculated by solving the

following optimization problem:







maxωt
ψt∆

+
t ωt

Subject to :
(26b), (26c)







. Then it

is used for loss payment calculation in all cases.This is why
although the optimal decision variables in case B do not depend
on price uncertainty, the payments are dependent on uncertain
prices. In other words, the price uncertainty will be present in the
final payments whether considered in decision variables (case C)
or not (case B). The maximum reduction occurs inC3 where
both ESS and DR are used to reduce the active loss payments.

The operating strategy of ESS in caseC1 andC3 depends on
price uncertainty so the total round trip losses will be dependent
on Γ. The round trip losses of ESS vs time in casesC1 and
C3 are shown in Fig. 14. Since the operation of ESS is not
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Fig. 14. The round trip losses of ESS vsΓ in case C: Active power losses
payments minimization (using ESSC1 , using both DR & ESSC3).

dependent on electricity price in case B, then theOCESS is
constant in this case. The round trip losses of ESS inB1

andB3 are 44.23 KWh , 43.38 KWh, respectively. However,
the operating schedule of ESS changes with conservativeness
degree (Γ) for case C. The comparison between different cases
regarding active losses and losses payments are depicted inFig.
13 and Fig. 4, respectively.

According to Fig. 13, the best strategy for loss minimization
is B3 since it focuses on loss minimization and utilizes both
DR and ESS options. In CasesA , B1→3 the total losses do
not change withΓ values since these strategies are insensitive
to price variations. The total losses inC1→3 change withΓ.
However, these changes inC2 are less thanC3 because ESS is a
more powerful tool compared to DR (with only one participating
node in DR).Using the technique described in section II-B, the
merits of nodes for participating in DR program are calculated
and shown in Fig. 15.

The total numerical values of losses payments in different
cases vs (Γ) are described in Table II.It is found that the
total losses payments are reduced when both DR and ESS are
utilized compared to base case (A) while this value increases
with the increase of conservativeness level (Γ). The simulation
results showed that the loss minimization and loss payment
minimization strategies do not necessarily converge to thesame
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TABLE II
TOTAL ACTIVE LOSSES PAYMENTS($) VS (Γ) IN DIFFERENT CASES. A: NO

ESS/DR, B:LOSS MINIMIZATION (USING ESSB1 , USING DR B2 , USING

BOTH DR & ESSB3), C: LOSS PAYMENTS MINIMIZATION (USING ESSC1 ,
USING DR C2 , USING BOTH DR & ESSC3).

Γ ESS & DR DR ESS Base
C3 B3 C2 B2 C1 B1 A

0 582.40 599.56 607.86 614.30 615.71 626.33 641.45
1 594.78 615.15 624.13 631.48 631.36 644.27 661.02
2 605.90 629.15 638.26 646.61 645.31 660.10 678.01
3 614.90 639.73 649.32 658.18 656.44 672.17 691.32
4 623.46 650.08 659.90 669.55 667.22 684.07 704.05
5 631.67 658.60 668.10 678.12 676.27 693.10 713.11
6 639.53 666.79 675.97 686.39 685.09 701.81 721.91
7 647.16 674.63 683.54 694.32 693.55 710.17 730.37
8 654.30 681.42 690.40 701.22 700.94 717.43 737.74
9 661.06 687.92 697.01 707.77 708.15 724.31 744.89
10 667.61 694.20 703.45 714.27 715.12 730.87 751.45
11 673.99 700.44 709.75 720.51 721.68 737.21 757.80
12 680.07 706.33 715.81 726.41 727.92 743.43 764.03
13 685.55 710.82 720.66 730.90 733.21 748.06 768.66
14 690.50 715.28 725.40 735.25 737.46 752.27 772.87
15 695.03 719.64 729.80 739.31 741.51 756.26 776.73
16 699.40 723.79 734.02 743.36 745.24 759.98 780.14
17 703.65 727.85 737.90 747.07 748.77 763.43 783.45
18 707.78 731.56 741.65 750.59 752.17 766.74 786.49
19 711.76 735.24 745.36 754.08 755.48 769.98 789.49
20 715.56 738.72 748.87 757.48 758.68 773.10 792.33
21 718.81 741.49 751.99 760.13 761.44 775.61 794.84
22 721.98 744.13 754.47 762.61 764.11 777.90 796.85
23 725.10 746.70 756.76 764.90 766.72 780.04 798.70
24 728.09 749.15 758.92 767.06 769.27 782.08 800.45

solution. This has several reasons as follows:

• The electricity prices are not the same in all operating
periods (these values act as the weighting factors in opti-
mization problem). If a constant cost (price) is considered
for all time periods, then these strategies will converge to
the same answer.

• The active losses in time periodt depend on active losses
values in previous and upcoming time periods. This means
that the optimal decisions may increase the losses in timet
(which has low price values) to decrease the losses in time
t′ (t′ > t or t′ < t). This may increase the total active
losses but it will decrease the payments. It’s impossible
to minimize the losses in all time periods because of the
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dynamic operating constraints of DR (21) to (22) and ESS
(12) to (16).

In order to check the robustness of the proposed algorithm a
Monte carlo simulation has been conducted. It intends to verify
the robustness of the obtained solutions. CaseC3 is used for
robustness verification. For this purpose, the optimal schedule
of DR and ESS are obtained for a given conservativeness degree
(e.g. Γ = 12) and as indicated in Table II (caseC3) the total
payments are $680.07. Next, 10000 samples of price values
λt

1→24
are generated in a way thatwt satisfy equations (26b)

and (26c). The value of total losses payments are calculated
using (26a). The Monte carlo simulation results are shown in
Fig. 16. The minimum, average, maximum and the standard
deviation of simulated costs are $619.06, $649.05, $678.13and
$8.33, respectively. From Fig.16, it is inferred that usingthe
decision variables found by the algorithm guarantees that the
losses payments will not exceed the value specified by the
algorithm (vertical line indicated in Fig.16 which is $680.07).
The Monte carlo simulation shows that applying the decision
variables can ensure the DNO that the payments will not exceed
the obtained results in Table II if the total electricity price
uncertainties remain less thanΓ = 12 ((26b) and (26c)).
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Fig. 16. The Monte carlo simulation results for robustness testing

V. D ISCUSSION

• If the exact values of uncertain electricity prices valuesλ̃t
are known (λft ) then solving the (4) would be an easy
task. The decision maker is not able to find the optimal
decision variables (because he can’t be sure about the
uncertain prices). The only remaining option is avoiding the
high values of the price. In other words, optimal decision
making is not toward minimizing the minimum costs that
the decision maker may experience. It should be noted that
the model is fed by some price values which some of them
are the same as forecasted and some of them are more
than forecasted values (worst case is calculated based on
the given value ofΓ). Still the ESS tries to store the energy
in periods where the prices are low and release them when
the prices are high.

• It is assumed that the market is the only energy procurement
option for DNO. In case, any renewable energy source
exists in the network, the uncertainty of its generation
pattern should be taken into account. On the other hand, the
self owned DG units are not allowed in many regulatory
frameworks.

• The maximum annual cost saving for using the strategy of
caseC3 is $30645.76. The proposed framework is focused
on operating strategy of DNO (using DR and ESS). This
means that ESS is already installed (so investment cost
are already paid). The obtained annual cost saving can
be shared between the DNO and demand nodes which
participate in DR program as an incentive.

• The main idea of the proposed framework is to demonstrate
and quantify the effectiveness of the developed model
in minimizing the losses payments. There are different
frameworks for modeling the demand response such as
welfare maximization on consumer side [48], [49], price
elastic demand curve [50], monetary incentives [51]. The
consumer welfare maximization is neglected as it is outside
the scope of this paper and the DR is limited to demand
shifting. The proposed model receives some inputs and
provides some insights regarding the DR and ESS operation
to deal with electricity price uncertainties as shown in Fig.
17. It can be used to generate the trade-off curve between
consumer welfare maximization and DNO payments mini-
mization.
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Electricity 
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Network 
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DR
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Active 

losses

ESS 

operation

Model

Fig. 17. The input-output interactions in the proposed model

VI. CONCLUSION

In this paper, a general frameworkis presentedin which
the uncertain price is considered for losses payments mini-
mization. This framework can accommodate different strategies
for efficiency maximization of customers.Simulation results
answered the previously posed questions regarding loss and
losses payments minimization. It was demonstrated that the
losses payments minimization strategy dominates the traditional
losses minimization approaches in an unbundled power system
environment. The ESS and DR are used as flexibility provider
tools to enable the decision maker handle the uncertaintiesin a
more efficient way.Considering the fact that robust optimization
framework does not need the probability distribution of uncertain
parameters, it can be used in practical cases.As evidenced by the
simulation results, the proposed method offers some interesting
features over traditional methods as follows:
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• Modeling the uncertainty of electricity prices without
knowing the probability density function using uncertainty
set (with limited historic data) and robust optimization
method. It is tractable and capable of controlling the
conservativeness degree of decision maker.

• It can be utilized to assess the merits of nodes for par-
ticipating in demand response programs based on their
contributions to efficiency maximization of the network.

• Providing the optimal schedule of DR and ESS using a
holistic approach immunized against the inherent operating
uncertainties.

• Increasing the benefits of consumers compared to the
traditional loss minimization approaches. This method by
minimizing the DNO loss payments, reduces the costs of
the DNO and thus provides a clear benefit to the customer.

There are three possible avenues for future work arising from
this paper, namely, 1) multiple uncertainty resource modeling;
e.g. renewable energy resources, demand values, component
failures and 2) considering other active network management op-
tions; e.g. capacitor switching and network reconfiguration and
3) price bounds updating using forecasting tools and available
data from smart grid.
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