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Abstract—The distribution network operator is usually responsi- A Maximum number of nodes allowed to participate in
ble for increasing the efficiency and reliability of network operation. demand response.
The target of active loss minimization is in line with efficiency Vinin /maz Maximum/minimum voltage magnitude (pu).
improvement. However, this approach may not be the best way to 7T, Maximum feeder capacity (A).

decrease the losses payments in an unbundled market environment . maz/min Maximum/minimum demand flexibility at node
This paper investigates the differences between loss minimization ESZ”‘”/W" Maximum/minimum energy stored at nod@viwh).

and loss payment minimization strategies. It proposes an effec- pehmaz/min 4o i minimum power charge of ESS at nade
tive approach for decreasing the losses payment considering the i

S e . . MW).
uncertainties of electricity prices in a day ahead energy market deh,maz /min ( - - .
using energy storage systems and demand response. In order to B M?\;({/n\;um/mmmum power discharge of ESS at node
quantify the benefits of the proposed method, the evaluation of maz/min i ( . )- L " .
the proposed technique is carried out by applying it on a 33-bus {\iﬁniél?qér?l\//lr\r;\llrlll)mum bounds of electricity price at
distribution network. . y . .
Yi; Magpnitude ofij*" element of admittance matrix (pu)
Index Terms—Active losses, demand response, energy storage AF Positive/negative deviation of actual price from the
system, robust optimization, uncertainty. B forcasted price ($/MWh).
At Uncertain electricity price at time ($/MWh).
NOMENCLATURE
For quick reference, the main notation used throughout tﬁ:é Varlagl/eos ) ) _ ) )
paper is stated in this section. (P/Q)i @ﬁﬂvggﬁfgg’?eﬂg?@g (Ic\)/lfv\r/l)ode at time periodt
wt, Ct, T Auxiliary variables.
A. Sats and Indices A; Binary decision variable indicating whether node
" participates in demand response or not.
v Index for network buses. pen/den Charge/discharge power of ESS at nadaet time
l Index for network feeders. ’ period .
g Indexfflc_)r opgra&t!on_tl)ntgrvals. K Iot Current flowing in feedef at timet¢ (A)
L Set of lines in distribution networ Vit Demand response decision variable of no@e time
Qpss Set of nodes containing ESS ’ period .
Qpr Set of nodes participating in demand response ES:, Energy stored in ESS at nodeat time periodt.
g" get OI all netwc_)rlé nodes (P/Q)ie Net active/reactive power injection to nodat time
T et of time periods period¢ with demand response (MW).
LESS Power losses in ESS at tintg(MW).
Yy Total active power losses at time(MW).
B. Parameters _ _ Vit Voltage magnitude at nodeat time periodt.
05 Angle of ij'" element of admittance matrix. 3j.t Voltage angle at nodé at time periodt.
r Conservativeness degree of decision maker regarding
the price uncertainty.
€ Curtail-able percent of energy of demand in nade l. INTRODUCTION
TNeh /deh Efficiency of charging and discharging of ESS (%).p Background and Aim
Af @ Forecast/actual value of electricity price at time o )
($/MWh). HE goal of the distribution network operator (DNO) is to
(P/Q)P? Initial active/reactive demand of nodat time period maximize the efficiency of the network in its territory as
¢ without demand response (MW). well as monitoring and improving the technical condition of

. . . the network.The cost of electricity is directly linked to the
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strategies to efficiency improvement of distribution netikg uncertainties associated with market prices. ESS and DR are
such as scheduling the distributed energy resources (DER) jhot considered in them.

[3], capacitor switching, network reconfiguration [4], empe

storage systems (ESS) [5], demand response (DR) [6], e&. Th

traditional strategy for DNO is to decrease active lossésgus
the available optionsin this paper, without loss of generality,
among the wide range of performance improving actions, theTo the best knowledge of the authors of this paper, there is no
focus is placed on ESS scheduling and DR. Demand resporsference addressing the impact of hourly electricity ggias

is referred to all actions (including energy storage devicgvell as their uncertainty on loss payment minimization @i
management, energy reduction and demand shifting) to eha@iven the discussed context, the contributions of this wame

the nominal demand pattern of the end-use consumers [&8. Tfyurfold:

paper proposes a method for optimal ESS and DR scheduling t(?L)
minimize the active losses payments. This optimizationdras
important uncertainty source namely, electricity pricébere
are different techniques to handle the uncertainties insget
making frameworks such as information gap decision theory
(IGDT) [7], stochastic programming, fuzzy mathematics and
robust optimization. These techniques are inherenthedhfit in
nature and can't be easily compared with each other. Chgosin
the best technique among them depends on the uncertainty
nature and available data about the uncertain parametehe of
model. Using fuzzy techniques requires knowing membership
functions. The stochastic models need to know the prolybilD. Paper Organization
distribution function (PDF) of uncertain parameters andally
these techniques are computationally inefficient [8]. TB®T
framework is very conservative and may lead to over-esétha
actions [8]. It is more suitable in severe uncertainty c4Sés
In this paper, robust optimization is used for handling th
uncertainty. The gap that this paper tries to fill is to answé
two questions:

1) “Loss minimization or loss payment minimization?”.
Which is the best strategy for efficiency maximization 1.
under price uncertainty?

2) How should it be done using DR and ESS?

C. Contributions

To provide a framework for economic efficiency increase

for DNO.

2) To considerthe uncertain electricity prices using robust
optimization techniqueand converting the bi-level opti-
mization into a single optimization problem.

3) To model the optimal scheduling of ESS

4) To quantify the benefits of DR for efficiency maximiza-

tion.

The remainder othe paper is organized as follows. Section
{ll describes the problem formulation. Section Il presettits
modelling features and assumptions made in the proposéd dec
sion making frameworkSimulationresults and discussions are
yesented in Section IV. Section VI concludes the paper.

PROBLEM FORMULATION

A. Assumptions

« The DNO is responsible for active loss procurement from

B. Literature Review day ahead electricity market [1]. The day ahead market

Different references referred ESSand DR for increasing the
efficiency and flexibility in distribution networks. THESSare

used to increase the network capacity for accepting new wind

turbines [10], voltage regulation [11], maximizing reventor
non-firm distributed wind generation [12], energy manageime
and power quality improvement [13] and loss reduction [DR.
actions caralsobring ancillary services to the grid [14], voltage

mechanism is followed in many countries such as Ireland,
Greece and Poland [21]. In this framework, the electricity
prices are set based on market clearing mechanism one day
in advance of actual operating point. The DNO is assumed
to be price taker. However, in some regulatory frameworks
like Nordic countries the real time and intraday balancing
market [22] is used.

control [15], active loss reduction [16] and better exg@tdn « The electricity prices of the day ahead market are subject to
of renewable energy sources as well as a reduction of the uncertainty. It is due to many different reasons like: compe
customers’ energy consumption costs with both economic and tition between price maker generating units, contingencie
environmental benefits [17]. of transmission network and generating units, volatile and
In [18], a heuristic algorithm is proposed to reduce the uncertain renewable energy sources and demand uncertainty

active losses costs reconfiguration of distribution neksoA
distribution system expansion planning model which cozrsid
the construction/reinforcement of substations/feedapscitors

[23]. It is assumed that only limited information is availab
regarding the electricity prices (interval based modeling
[24]). It is more explained in section IlI-A.

banks and the radial topology modification was introduced in. The DNO is the owner of ESS and therefore responsible
[19]. The optimal allocation of capacitor banks and DG units  for controlling the operating schedules of ESS

is found using the differential evolution algorithm in [20} o The DNO has the authority for controlling demands in
is multi-objective and tries to optimize the cost of energyt n some specific nodes. This can happen using mutual agree-
supplied, reliability index, costs of energy losses aneéatment. ment/contract [25] between the consumers and the DNO.
The shortcoming of these models ( [18]-[20]) is assuming The gained benefits of this agreement will be shared
the constant cost of energy losses as well as ignoring the between the DNO and the consumers.



B. Objective functions and constraints Qpss & Vt € Qp [26] are:

ESiw = ES; 1+ (nen Pt — P [acn) Ae (12)

In a generic active power losses minimization strateye ES™M" < ES;, < ES® (13)

following optimization problem is solved: Pfh’””" < Pf? < Pfh*m“’ (14)

Igilnz = Z e Q) Pidch,min < Pi(’igh < Pidch,max (15)

F(DV, H)tegﬂ(T) 2 LESS =(1- nch)PiC,? + Pic,lgh(l/ndch - 1) (16)
G(DV,I) =0 (3) WhereQpgg is the set of nodes which have ESS. The energy

stored in ESS in time and busi, ES, ; depends on the energy

Y, in (1) is the hourly active lossDV and II represent stored in ESS in timeé—1 and the charging and discharging of
the decision variables and input parameters (price valnels dhe ESS 5}/ P") which is described in (12)5.; and nacn
technical data), respectivelf. denotes the operating horizonare the charging and discharging efficiency of ESS, resmygti
F andG represent thénequalityand equalityconstraintsof the ~ A: is the duration of time interval. The stored energy in ESS
optimization framework as described in (5) to (22), respett  Should be kept between specific limits§;"**/"*"") as enforced
In this paper, a new strategy is proposed that tries to ma@miby (13). ES; ¢, is the initial value of stored energy in ESS. The
total payments related to the active power losses. Obwipugtharging and discharging limits of ESS are given in (14) and
the optimal action®V directly depend on the input parameter§15).

(I7) including price values for the day ahead market. The issueDemand response constraints fore Qpr are:

is that usually there is limited information about the dliettly D pDO
. .. . Pit_})it X Vit (17)
prices of the next day. The optimization problem can theeefo i o ’
be formulated as follows: it = Qe X Vi (18)
minz =3 (¢) ) (1 =" As) < 73ip < (149" As) (19)
v teQr Z AZ S A (20)
F(DV,II) <0 i€Qpr
G(DV,TI) = 0 > PhA > (1—¢) Y PROA, (21)
~ teQr teQr
¢ Is the uncertain electricity price at timién day ahead market.
t ypP y Y QPAz(1-a) Y QPA, (22)
teQr teQr
The power flgw equations to be satisfied € Q,,Vt € The set of demands participating in DR program is
Q,VE €y, are: represented bYQpr. (P/Q)PY, (P/Q)P, specify the origi-
Wy = Z pret 4 [Bss (5) hal/modified demand pattern without/with DR perturbation i
P (17) , (18) v;+ denotes the decision variable for changing the
pret — pG _ pD _ peh | pdeh 6 demand pattern in (17),(18). The constraint (19) models the
S g ©) flexibility degree of the demandsy*** and " specify the
it = Wi — iy (") maximum possible increase and decrease of demand innode
Pt =V, Z Y;;Viicos(8is — 654 — 0i) (8) Aiis a binary variable. IfA; = 0 then the node does not
’ €, participate ina DR program and vice versa. The total number
net _ 17 (s s a of nodes which can participate m DR program are specified
i = Vit EQ: YiVisin(9ie = 05,0 = 0:5) ©) in (20) asA. Although the demand pattern changes, the total
Vv ]i ‘”/ (10) energy consumption of the demand in nade kept more than
min >~ Vit >~ Vmax

_ 100 x (1 —¢;) percent of its initial energy value (without DR) as
Ty = Yomij(|Vie < 0ie — Vi < 05.4]) < I (11) imposed by (21) and (22). In other words,is the curtail-able

where LESS is the power losses in ESS at timePrs! Q;f? in percent of energy of demand in nodléNithout these equations

it o i i i i
- : (21) and (22)), the DR decision variables; {) as defined in
(6) and (7) are the net injected active and reactive poweu$o bE(17) and (18)) would take their least possible values ()

3 tivelyY; ., 0, th itud d le of thejth . ; .
¢, FESPECUVELY.ry;, 0i; are Ine magnitude and ang'e o J for all time periods. It should be noted that these equatamaes

element of admittance matrix, respectively; ;, Viin, Vinas . . .
in (10) are the voltage magnitude, min/max operating Iimit\éalld for each node € Qpr. This means that the energy of

of each bus, respectivelyi, in (11) is the current passing node: is redistributed in different time periods (not transferre

through feeder¢ and 7, in (11) is the maximum allowable to other nodes). In the current formulation, Af are given as
current in feeder. Picjtv ZGt in (6) and (7) are the active andconstant input parameters then the model is a non-line&tgro

reactive power injected to the network by the DG units or grig\lLP)' This means the nodes participating in demand respons

connection.f),,, Qr, Q) are the set of system nodes, operatin re Ifnown in advance. It .'Sf also_possmle to find the 'opt|mal
ch/dch cations of nodes to participate in DR program. In this case

hours, feeders,_ respectivelf’; s the charged/dlschargedthe resulting problem is a mixed integer non-linear problem
power of ESS in (6). (MINLP)

The ESS technical operating constraints to be satisfied



It is interesting to know how to determine the order of DR « Using expert opinion and historic data
nodes with respect to their impact on energy losses payments _ _ _ _
A technique to identify the merits of nodes for participgtim The same te_chnlque has been used in the literature such as in
DR is enumerating the total number of noddg permitted to [30]-[33]. It is formulated as follows:
participate in DR {) from 1 to the number of load points. Then R Ty {~ SAmin <}, < mar}
for the given number of permitted nodes) the DR participating Av@UN) = (A s AT <A < (23)
nodes are found using binary variablds. In each case, the Apin, xmaz gre the lower and upper bounds Xf respectively.

. . . g t
optimal nodes (withA; = 1) are identified. The frequency of i is assumed that no information is available from day ahead
selection in each scheme specifies the merit of each node. market prices other than these bounds.

Ill. PROPOSED STRATEGY

The optimization strategy is to find the optimal decision
variables in such a way that the worst case cost is controlled
for a given degree of conservativene$s. (In this section, first B. Robust optimization formulation
the uncertainty modeling is introduced and finally the rabus

optimization based solution strategy is given. The idea of robust optimization is to minimize in eq.

(4) without knowing the exact values of;. Additionally, the

A. Uncertainty modeling optimal decision making is done in a way that these actialts st
There are several techniques available for modeling the d _malngoqd (not opt|mal)eve_n though the actual valuesy|

certainty of electricity price in (4). These techniqueslade ©' Uncertain parar?eters deviate (to some dedrpdrom the
stochastic scenario modeling (Fig.1a ) [8], fuzzy modeliné?recaSte_d values;. Two cases may hgppfen: first, the actual
(Fig.1b ) [27] and robust optimization (Fig.1c) [28]. Usiagch Price A¢ is more than .the forecastgd prick; . The constraint
technique requires certain information regarding the dage for uncertainty modelling of the price can be expressed as:
parameter. In stochastic scenario based modeling, thaideci A= A{ + Afwy (24a)
maker should be aware of probability density function of un- A+ ymaz _ S (24b)
certain parameter. In fuzzy modeling the membership foncti t ¢
of uncertain parameters should be known. The computational 0 <w: <1 (24c)
burden of these techniques are high and the obtained resyjis, e , is the prediction error. The second case happens when
are sub_]ect to risk. For exam_ple the qctual realization ef thy . ;. 1ual price\? is lessthan )\{ as:
uncertain parameter may deviate drastically from the ebgolec .
value of the objective functionThe robust optimization uses the AL = A{ + A wy (25a)

Ay =2 =] (25b)

PR D) D¢
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XDEDTD >

a)

As the decision maker seeks the robustness against theitgales
events, theequations given in(25a) , (25b) do not cause trouble.
Actually the main concern of the decision maker is tre
equations given irf24a) , (24b) where the actual prices may be
more than the forecasted values. Thus, the formulationessed
in equationg4) , (23) can be replaced by the following one:

=

-

_.
\YAVEVAVe'Y4

-

b) 'y

(}! \ minz = v + AT (26a)
M, () / \ teT

1 26b

2 > 4 05 3 i r (26 )

c) W = (26¢)
teT
min A7 Amax Subject to :
U /1 ﬂ«t t nt
) <«—d - >4 (5)t0(22)

Fig. 1. a) Scenario based stochastic uncertainty modeling, b) Fbazgd I' in (26¢) is a parameter specified by the decision maker
uncertainty modeling, ¢) Robust optimization based unaetanodeling. which is also called theonservativeness degree . It denotes the
maximum total deviationrfbustness degree [28fhat can be
tolerated. This parametean take a valu&om 0 to 24 (ncreases
frequently used uncertainty set is interval setie uncertainty with the conservativeness of the decision makEor example,
intervals can be found using different methods as follows: jf ' = 2 this meanghat the algorithm will remain robust even

o Using time series models (ARIMA) [29] though the maximum total prediction error is 100% in 2 hours

o Using Neural Networks or 50% in 4 hours of the day ahead market. The robust counter

uncertainty sets for handling the uncertainties. One ofntlost



part of (26) would become [24]: The obtained single level optimization in (32) can be solved
using decomposition technique [34] or Lagrange Relaxation
approach [35]. It is obvious that the resulted single levgi-o

mization is easieto solve than the original bi-level optimization

+
max,, Vel wy

min z = > A +{ Subject to: (27)

teT (260), (26¢)
. _ structure.
Subject to : The decision variablesl{), parametersI{) and the sets are
(5)to(22) as follows:

The formulation described in (27), requires to solve a bi- VY, Vit Niywr, Gy T

level optimization since the inner maximization tries tmslate DV = (P/Q)ft/g, (P/Q)7" Tut, Vit, 05 (33)
the worst case realization of uncertain price (by changipg Pf?/d‘:h, ES;,

while the outer minimization attempts to decrease the uretks Do m’m/mw 'mm/max

impacts of uncertain prices by controllingV. The decision (P/Q)ix > Vi S

variables in inner maximization is; and the constraints are = nch/dch,ﬂdl’mm/ m“?PflCh’mm/ maw (34)
the (26b) , (26c¢). This is done in order to find the worst case A;”‘“’/mi”,,\{/“,S\hgij’yij

condition of uncertainty in electrcity prices that wouldusa the AF T A, Vinin /mazs Lo

maximum increase in total payments. Once the optimal valties Sets = {Qpr, 0r, O, 1, Qs ) (35)

w; are found, these values are passed to the outer minimization
The decision variables of this level are the network powaw,floIndeed the DNOs would rather minimize the maximum costs

demand response and energy storage system constraints.

max,,, VA w;
Subject to :
(260), (26¢)

in (27), is linearwith respect taw; since theterms«,; Al are

determined in the upper level of optimization. Accordinghe

duality gap theory [9], it is concluded that :

The complexity ofthe optimization block,

that the they may experience. This maximum cost occurs when
the actual price is more than the forecast price. The refermu
lated single level optimization minimized the maximum eggr
(payments) of DNO by using duality gap theory [36] and robust
optimization. This is because in deregulated environmbat t
DNO'’s concern is the payments toward the losses (not thesoss
as in traditional distributions network management sysjer

is shown that minimizing the; = )", ¢, does not result in

Wty L. . . .
minimum zo = > ., A\t Especially when)\; is uncertain.
max [¢y, Af brAF] (28) bv
0<wier
wr
1 0 - 0 0 1 IV. SIMULATION RESULTS
o 1 - 0 0 wi, 1 A. Data
o S < (29) The proposed algorithm is implemented in GAMS [37] envi-
o0 - 10 wr 1 ronment running on an Int& Xeon™CPU E5-1620 3.6 GHz
o 0 - 0 1 1 PC with 8 GB RAM.As far as the demand response node/nodes
1T - 11 1] is/are known, the proposed framework is a NLP model which
is equivalent to : can be easil_y solved_by cqmmercial solvers such as Modular
T In-core Nonlinear Optimization (MINOS) [38]. However, ii¢
0<rgrlicn 1 - 1 I, (r T (30) optimal DR allocation is to be investigated the model would
=t o o - become MINLP and the Discrete and Continuous OPTimizer
1o - 0 0 Gty wtlAz_S# (DICOPT) [39] solver is used. In large scale networks, usirey
o 1 - 0 0 Gt Vi, A, bender decomposition technique [40] would be beneficiak Th
S . Lo : : non-convexity of the AC-OPF problem makes it difficult to find
oy R (31) " the global optimal solution. S | techniques haven b
00 - 1 0 Com, e global optimal solution. Some novel techniques haven bee
0o 0 ... 1 r . proposed in the literature to address the duality gap in QRF a
1 1 - 1 1 T At | make it convex [41], [42]The proposed model is applied to a

where(;, T are dual variables.
Using (28) to (31), the bi-level optimization described 2v)
would transform into (32):

33-bus distribution network [43]. The peak demand valuexius
in this study are higher than what is reported in [43] in order
to increase the active losses in the network and can be a&ctess
in [44]. T is considered to be 24h. The predicted price values
as well asprice bounds are depicted in Fig. Zhese values can

inz=> My, + + 7T 32a oo ; .

v ; eV ;Ct (329) be found using time series models like ARIMA [45] based on

. historic data The daily load curve shown in (Fig. 2) is obtained
mar __ f

Tt G 2 (A = A ) (32D)  from EirGrid which is the Irish TSO (accessed 28/12/2014) [4

1,6 >0 (32¢) The daily load curve is shown in Fig. 2 [48)Vithout loss of

Subject to : generality it is assumed that no load curtailment can be dampe

(5)t0(22) e; = 0,Vi € Q,. The technical characteristics tife considered

ESS are described in Table I.



— Bs : The loss minimization is performed by optimizing
the ESS and DR schedul@he constraints to be
satisfied are (5) to (22)This implies thatDV,, =
DV, U DVy,.

It should be noted that the electricity price uncertainties
have an impact on the final payments of case A, B and
T —_—_,—,,—,Y,—,Y,—,—,—,Y,——,———— C. It is assumed that the DNO is a price taker entity and
910111213 141516171819 20 21 22 29 24 its operating decisions do not influence the market price

Percent of peak load (%)

-
IN)
w
IN
&
o
~
©

g values. The difference between these cases is that case A
= does not have the tools (DR & ESS) to reduce the undesired
@ price uncertainties. In case B, the tools (DR &OR ESS)
B are available but not an appropriate operating strategy is
g chosen for reducing the payments. In fact, in case B it
= is tried to minimize the losses without considering the
T 13 5 4 5 69 8 01911171912151617 15 19202129 23 24 price values and their uncertainties. In contrary to case
Hour (1) A & B, the decision maker in case C incorporates the
price uncertainties in decision making process. That is why
Fig. 2. Day ahead demand and price characteristics in all of these cases the impact bf values (the degree
TABLE | of conservativeness regarding the future prices) on final
THE TECHNICAL CHARACTERISTICS OFESS payments are assessed.
o Case C) Loss payment minimizati¢abjective function is
Parameter Value _ Unit (32a) ) is achieved by considering the price uncertainties
ggmf 4 (8 x 500KW RElDOX batteries [47] mwﬂ and using optimal scheduling of corresponding decision
Eé’;:g > Y variables which are as follows:
Pyt = pitmer 1 MW — () : The decision variables are the same as dase
P = plchmin 0 MW ThereforeU., = U,,. The constraints to be satisfied
Teh = Tdch 95 % are (5) to (11).

— (5 : The decision variables are the same as dase
ThereforeU., = U,,. The constraints to be satisfied
B. Considered cases are (5) to (11) and (17) to (22).
— (5 : The decision variables are the same as dase

In this study, three different cases are studied: ThereforeU,, — Us,. The constraints to be satisfied
o Case A) This case is added for the purpose of providing are (5) to (22).

a basis for comparison. In this case, neither ESS northe yalue of ' shows the conservativeness degree of the
DR is scheduledNo optimization is performed in this yecision maker. It is a parameter which is set by the decision
case. The constraints to be satisfied are (5) to (ThE  maker. It can vary from 0 (meaning no uncertainty may happen)
decision variables of this case are limited to load floy, 54 (all uncertain parameters may take their worst valtieg

variables and no optimization is performed. This meangnulations have been done for all valuesTof 0 —s 24.
thatDV, = {Vi., i, PS5, QF, }. In this case, it is tried to

satisfy the constraints (5) to (22). This is basically beeau
there is no independent DV (DR or ESS) so the objectife Results
function can be chosen as (1) or (4). 1) Case A: The total payments are641.449(I" = 0) and
» Case B) The active loss minimizati¢abjective function is the total daily active energy losses &669 MWh. The hourly
(1) ) is achieved without considering the price uncertaintiegctive losses are shown in Fig. 3.
and using optimal scheduling of: The possible reduction in loss payments vs the degree of
— B : The loss minimization is performed by optimiz-conservativenesd’) are depicted in Fig. 4. The numerical values
ing the ESS scheduldhe constraints to be satisfiedof possible loss payments for different degrees of unaest4l’)
are (5) to (16).This implies thatDV,, = DV, U are givenin Table II. It is observed that as the uncertainty degree
{ES,., Peh, Péen}. It is supposed that only one ESSncreases, the possible payments would increase fie#l 849
exists in the network. (I' = 0) to $800.452(I" = 24).
— B, : The loss minimization is performed by optimizing 2) Case B:
the DR scheduleThe constraints to be satisfied are « Case B;: The connection node ofthe ESS can have
(5) to (11) and (17) to (22)This implies thatDV,,, = an influence on the efficiency of the active management
DV, U {7+ A;}. In this casejt is assumed that load strategy. This is investigated by changing the connection
demand at only one node participates to a DR program node of ESS in the network. Based on the plots shown in
Theflexibility degree can be adjusted by changing the  Fig. 5, it isevidentthat the best location for ESS connection
fy;f;””/"““’ in (19). It is assumed that™™ = 0.6 and is bus A5. In this case, the active losses do not change with
Y = 0.6. ' the change of" values. However, the possible payments
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T participation regarding thenergy losseminimization. Fig.
6 shows the energy losses payment vs the node where a load

Fig. 4. The energy losses payment reductions (%) 'vin different cases. with a demand response capability is assumeddshown in
A:base case , B: loss minimization (using ESS, using DR Bz, using both Fig. 4, this strategy can reduce the loss payments up to 4.98
DR & ESS B3), C: loss payments minimization (using E®S , using DRC, Ly d 4 Th . | . |
using both DR & ESS5). 6 compared to casél. The minimum total active losses
are8563.55KWh. In the case that bus 30 is selected as the
node with DR capability, the new demand pattern of bus 30
_oso- is depicted in Fig. 8. This new pattern is determined based
Zoor on the technical characteristics of the network includimg t
al admittance matrix as well as the demand pattern of other
Sl nodes (which do not participate in DR program).
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Fig. 5. a) The impact of ESS connection node on active losses (Baséoss or

minimization using ESS). b) The impact of DR connection nodedtivelosses
(caseBa2, loss minimization using DR)
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will change with ESS connection node as shown in Fig. 6.
If the ESS is connected to node #15 then in céksethe

50 [

Ratio of demand to peak load (%)

stored, charged and discharged energy pattern of ESS are 4o
depicted in Fig. 7As shown in Fig. 4, this strategy can %
reduce the loss payments up to 2.83% compared to 4ase TR Ty e

The minimum total active losses are 8635.97 kWh.

CaseBs: Fig. 5 shows the energy lossestie node where Fig. 8. The hourly demand pattern in different cases. A: no ESS/DBs lo
a load with a demand response capability is assui.nedminimization using DR B2), loss payments minimization using DIR'{).
caseB,. Node #30 is the best node for demand response



o CaseBs: It is assumed that the DR node is node #30 ar
the ESS is connected to nodé. Table Il and Fig. 4 show
the energy losses payment as well as total losses s
caseBs, respectively. As shown in Fig. 4, this strategy ca
reduce the loss payments up 766 % compared to case
A. The minimum total active losses a8831.49kWh.

3) Case C: In this case, the proposed algorithm tries t
minimize the total daily payments due to active losses in tl
network using different combinations of actioas previously
described Fig. 11. The hourly energy stored in ESS ¥in caseC; (loss payments

. CaseC;: Again, the impact of ESS connection node off'"mization using ESS)

active losses payments in casg is shown inFig. 9.

This clearly shows that minimum active losses does not

necessarily occur at minimum active losses payments. Node VST in caseC. This implies that the node #30 is the best
15 is optimal for loss minimization not loss payment node for demand response participation regarding thedosse
minimization. Fig. 10 depicts the impact of ESS connection ~Payments minimization. Fig. 9 shows the energy losses
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Fig. 9. The energy losses payments in losses payments minimizatidagstra paym?r?t vs the DR n_Od&nd vs I’ (Casng). In this case,
vs the ESS node (cag;) and DR node (cas€?) for three different values the minimum total active losses vary fra8%82.55kWh to

of I. 8603.97kWh (based on the variation &f values). The new
demand pattern of bus 30 is depicted in Fig.T8is new
pattern is determined based on the technical charactsristi
of the network (like casé3,) as well as the electricity price
variations. As shown in Fig. 4, this strategy can reduce the
loss payments up to 6.43% compared to cdse

o Case(s: It is assumed that the DR node is node #30 and

node on active losses in cagég. The variations of active
energy losses in Fig. 10 shows that ESS operation changes
the line flows and this would increase the total active losses
for different (") and connection nodes.

o
Y
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g v‘%‘ s the ESS is connected to nodé. Fig. 4 shows the energy

= g AN N losses payment VB in caseCs.

; o7 @g&i&ﬁ%ﬁ{(@m@ The enzrgy losses \B in cassng, are shown in Fig. 13.

'é{ ,/-.-.;__\!\ ‘\“““““'Ilil‘:!;}‘;!:’fl;;i‘b!l"‘!‘!“"‘%’ In this case, the minimum total active losses vary from

£ // %ﬁﬁ%ﬁlff{%@&%ﬁ 8619.76kWh to 8672.11kWh (based orT"). As shown in
:‘gx’tg,"l“&“:\\:‘:“‘g“‘l RO T Fig. 4, this strategy can reduce the loss payments up to

11.44% compared to casd.
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Fig. 11 shows the hourly energy stored in ESS\ig case g550 |-
Cy if itis connected to node 11. I I
As shown in Fig. 4, this strategy can reduce the loss g

0
payments by up t0_5.'23 % compargd to case Fig. 13. The active energy losses Vsin different cases. A: no ESS/DR, B:
In this case,the minimum total active losses vary fromioss minimization (using ES®;, using DR Ba, using both DR & ESSBs),
8703.38 kWh to 8746.99 kWh (based ﬁmames). C: loss payments minimization (using E®S , using DRC2, using both DR
& ESS C3).

o Case(s: Fig. 12 shows the energy lassvs thenode where
a load with a demand response capability is assumed and
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The worst possible realization of electricity prices (thea
the given budget of uncertainty’)) is calculated by solving the
max,, z/JtAjwt
following optimization problem:{ Subject to : . Then it
(260), (26¢)
is used for loss payment calculation in all casékhis is why
although the optimal decision variables in case B do not wgpes *° M
on price uncertainty, the payments are dependent on uircers sl .
prices. In other words, the price uncertainty will be présethe
final payments whether considered in decision variablese(€)
or not (case B). The maximum reduction occursCin where
both ESS and DR are used to reduce the active loss paymeg 10 H H 1
The operating strategy of ESS in caSe andC3 depends on o WH [l
price uncertainty so the total round trip losses will be defeant
on I'. The round trip losses of ESS vs time in cages and
C3 are shown in Fig. 14. Since the operation of ESS is nblg. 15. The merits of nodes for participating in DR program
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106 TABLE I
A A TOTAL ACTIVE LOSSES PAYMENTS($) VS (') IN DIFFERENT CASES A: NO
ESS/DR, B:LOSS MINIMIZATION (USING ESSB;, USING DR B3, USING
BOTH DR & ESS B3), C: LOSS PAYMENTS MINIMIZATION (USING ESSC
USING DR C2, USING BOTHDR & ESSC3).

—

ESS & DR DR ESS Base
Cg Bg CQ Bg Cl Bl A
582.40| 599.56| 607.86| 614.30| 615.71| 626.33| 641.45
594.78| 615.15| 624.13| 631.48| 631.36| 644.27| 661.02
605.90 | 629.15| 638.26 | 646.61| 645.31| 660.10| 678.01
614.90| 639.73| 649.32| 658.18| 656.44| 672.17| 691.32
623.46| 650.08| 659.90 | 669.55| 667.22| 684.07| 704.05
631.67 | 658.60| 668.10| 678.12| 676.27| 693.10| 713.11
639.53| 666.79| 675.97 | 686.39| 685.09| 701.81| 721.91
647.16 | 674.63| 683.54| 694.32| 693.55| 710.17| 730.37
654.30 | 681.42| 690.40| 701.22| 700.94| 717.43| 737.74
661.06| 687.92| 697.01| 707.77| 708.15| 724.31| 744.89
10 | 667.61| 694.20| 703.45| 714.27| 715.12| 730.87| 751.45
11| 673.99| 700.44| 709.75| 720.51| 721.68| 737.21| 757.80
12 | 680.07| 706.33| 715.81| 726.41| 727.92| 743.43| 764.03
13 | 685.55| 710.82| 720.66| 730.90| 733.21| 748.06 | 768.66
dependent on electricity price in case B, then th€rgs is 14 | 690.50| 715.28| 725.40| 735.25| 737.46| 752.27| 772.87
constant in this case. The round trip losses of ESSBin 15 | 695.03| 719.64| 729.80| 739.31| 741.51| 756.26 | 776.73

. 16 | 699.40| 723.79| 734.02| 743.36| 745.24| 759.98| 780.14
and B3 are 44.23 KWh , 43.38 KWh, respectively. However, 17| 703.65! 727.85| 737.90| 747.07| 748.77| 763.43| 783.45

the operating schedule of ESS changes with conservatisenes 18| 707.78| 731.56| 741.65| 750.59| 752.17| 766.74| 786.49

degree I) for case C. The comparison between different cases 19 | 711.76| 735.24| 745.36| 754.08) 755.48| 769.98| 789.49
gree ) P 20 | 715.56| 738.72| 748.87| 757.48| 758.68| 773.10| 792.33

Energy losses in ESS (Kw)
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Fig. 14. The round trip losses of ESS s in case C: Active power losses
payments minimization (using ESS; , using both DR & ESSC3).

regarding active losses and losses payments are depickd.in 21| 718.81| 741.49| 751.99| 760.13| 761.44| 775.61| 794.84
13 and Fig. 4, respectively. 22| 721.98| 744.13| 754.47| 762.61| 764.11| 777.90| 796.85
According to Fig. 13, the best strategy for loss minimizatio 23| 72510/ 746.70| 756.76| 764.90) 766.72| 780.04| 798.70

24 | 728.09| 749.15| 758.92| 767.06| 769.27| 782.08| 800.45

is B3 since it focuses on loss minimization and utilizes both
DR and ESS options. In Cases, B;_,3 the total losses do
not change withl" values since these strategies are insensitive )
to price variations. The total losses i, 5 change withr. Solution. This has several reasons as follows:

However, these changesry are less thaid'; because ESSisa « The electricity prices are not the same in all operating

more powerful tool compared to DR (with only one participgti periods (these values act as the weighting factors in opti-
node in DR).Using the technique described in section II-B, the  mization problem). If a constant cost (price) is considered
merits of nodes for participating in DR program are caledat for all time periods, then these strategies will converge to
and shown in Fig. 15. the same answer.

The total numerical values of losses payments in differente The active losses in time periaddepend on active losses
cases vsI{) are described in Table It is found that the values in previous and upcoming time periods. This means

total losses payments are reduced when both DR and ESS are that the optimal decisions may increase the losses intime
utilized compared to base case (A) while this value increase (which has low price values) to decrease the losses in time
with the increase of conservativeness levé). (The simulation t' (' > tort < t). This may increase the total active
results showed that the loss minimization and loss payment losses but it will decrease the payments. It's impossible
minimization strategies do not necessarily converge tcstme to minimize the losses in all time periods because of the



dynamic operating constraints of DR (21) to (22) and ESS «

(12) to (16).
In order to check the robustness of the proposed algorithm a

Monte carlo simulation has been conducted. It intends tdyver
the robustness of the obtained solutions. Caseis used for
robustness verification. For this purpose, the optimal dalee

of DR and ESS are obtained for a given conservativenessalegre®

(e.g.T' = 12) and as indicated in Table Il (cagg;) the total

payments are $680.07. Next, 10000 samples of price values

At,_,,, are generated in a way that; satisfy equations (26b)

and (26c¢). The value of total losses payments are calculated

using (26a). The Monte carlo simulation results are shown in

Fig. 16. The minimum, average, maximum and the standard

deviation of simulated costs are $619.06, $649.05, $678ntB
$8.33, respectively. From Fig.16, it is inferred that usihg
decision variables found by the algorithm guarantees that t

losses payments will not exceed the value specified by the

algorithm (vertical line indicated in Fig.16 which is $660).

The Monte carlo simulation shows that applying the decision
variables can ensure the DNO that the payments will not ekcee

the obtained results in Table Il if the total electricity q@i
uncertainties remain less thah= 12 ((26b) and (26c)).
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Fig. 16. The Monte carlo simulation results for robustnestirtg

V. DISCUSSION

uncertain prices). The only remaining option is avoiding thiosses payments minimization.

10

It is assumed that the market is the only energy procurement
option for DNO. In case, any renewable energy source
exists in the network, the uncertainty of its generation
pattern should be taken into account. On the other hand, the
self owned DG units are not allowed in many regulatory
frameworks.

The maximum annual cost saving for using the strategy of
caseCs is $30645.76. The proposed framework is focused
on operating strategy of DNO (using DR and ESS). This
means that ESS is already installed (so investment cost
are already paid). The obtained annual cost saving can
be shared between the DNO and demand nodes which
participate in DR program as an incentive.

The main idea of the proposed framework is to demonstrate
and quantify the effectiveness of the developed model
in minimizing the losses payments. There are different
frameworks for modeling the demand response such as
welfare maximization on consumer side [48], [49], price
elastic demand curve [50], monetary incentives [51]. The
consumer welfare maximization is neglected as it is outside
the scope of this paper and the DR is limited to demand
shifting. The proposed model receives some inputs and
provides some insights regarding the DR and ESS operation
to deal with electricity price uncertainties as shown in.Fig
17. It can be used to generate the trade-off curve between
consumer welfare maximization and DNO payments mini-
mization.

DR
incentives
erX|b|I|t|es
DR &
snte/sue S

A:tlve
Iosses

ESS
operation

The input-output interactions in the proposed model

Network
topology

VI. CONCLUSION

In this paper, a general framewoik presentedin which

« If the exact values of uncertain electricity prices valugs the uncertain price is considered for lesppaymens mini-
are known Q\{ ) then solving the (4) would be an easymization. This framework can accommodate different styiate
task. The decision maker is not able to find the optim&br efficiency maximization of customersSimulation results
decision variables (because he can't be sure about tieswered the previously posed questions regarding loss and

It was demonstrated that the

high values of the price. In other words, optimal decisiolosses payments minimization strategy dominates thetiadi
making is not toward minimizing the minimum costs thalosses minimization approaches in an unbundled power rsyste
the decision maker may experience. It should be noted tletvironment. The ESS and DR are used as flexibility provider
the model is fed by some price values which some of thetmols to enable the decision maker handle the uncertaiintias
are the same as forecasted and some of them are mm@e efficient wayConsidering the fact that robust optimization
than forecasted values (worst case is calculated basedframework does not need the probability distribution ofentain

the given value of’). Still the ESS tries to store the energyparameters, it can be used in practical ca8esvidenced by the

in periods where the prices are low and release them whamulation results, the proposed method offers some istiage

the prices are high.

features over traditional methods as follows:
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