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Abstract. Let C be a Cartan-factor having arbitrary dimension dimC. It is shown that the group Inn(C)
of inner automorphisms of C acts transitively on the manifold Ur(C) of tripotents with finite rank r in C.
This extends results by Loos in [16] valid in finite dimensions, and similar findings by Isidro et.al. [2] [13]
[14] [15]. Hence, the results presented here close a significant gap concerning the transitivity property of the
general infinite dimensional case. The proofs given here are based on new methods, independent of those
used for the finite dimensional cases.

1. Introduction

The set Ur(B(H,K)) of partial isometries of a fixed rank r in B(H,K) provides a well known example of
a Riemannian symmetric space. That Ur(B(H,K)) is connected was shown by Halmos and McLaughlin
[6]. A more general approach to Riemannian symmetric spaces is provided by Jordan structures, such as
JB∗-algebras, JB∗-triples and their weak∗-closed versions, JBW∗-triples, of which B(H,K) is but one of
six fundamental types, the Cartan factors. The partial isometries of B(H,K) are precisely the tripotent
elements. In [16] Loos showed that when C is a finite-dimensional Cartan factor, then the group Inn(C)
acts transitively on the set Ur(C) of tripotents of rank r in C. An analogous statement for Hilbert spaces
of arbitrary dimension was proved in [11]. The goal of the present article is to generalize that result to all
Cartan-factors. The methods of our proofs are independent of those of Loos, and may be applied to the
finite dimensional Cartan-factors, in particular to those of type V and VI, which have dimensions 16 and 27
respectively, though these require more extensive calculations than the other types. In this paper we focus
on the infinite dimensional cases.

The categories of JB∗-triples and JBW∗-triples have gained significance for their profound connections with
several fields in mathematics and mathematical physics. The recent book [5] by Friedman and Scarr presents
applications, mainly of rectangular factors and spin factors, in relativity theory and quantum mechanics.
The Riemannian structure of manifolds of tripotents and of their generalizations in Jordan-algebras was
further investigated in recent works by Isidro et al [13] [14] [15] and Nomura [18]. Precursors of their results
were obtained by Hirzebruch [9]. The above-cited works show that the geodesics in those manifolds are given
by paths of inner automorphisms of the corresponding JBW∗-triple. The arguments presented in [11] and
[12] show that the transitivity of Inn(C) on U1(C) is closely connected to the problem of the existence of
contractive projections onto subtriples of JB∗-triples or JBW∗-triples.

This article is organized as follows. In Section 2 we present some general facts and definitions of the theory
of JB∗-triples and JBW∗-triples. Section 3 is devoted to some details concerning Cartan-factors, which
represent an important class of JBW∗-triples. They arise as the irreducible components of atomic JBW∗-
triples. In this section we also study two examples which illustrate the transitivity property, and which
serve as key tools to proving the general cases. Section 4 contains the main results. Theorem 4.1 shows
that any two minimal tripotents in an (infinite dimensional) Cartan-factor C are connected by an element
ϕ of the group Inn(C), that is Inn(C) acts transitively on the set U1(C) of minimial tripotents in C. As a
corollary, the result holds for any two tripotents of equal finite rank (Theorem 4.3). In the last section, we
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also investigate some consequences of the main result to weak∗-operator limits of inner automorphisms and
to the σ-finite elements of C. However, those results do not provide a straightforward generalization of the
main result, and are therefore to be regarded as tentative.

The techniques depend to a great extent on the coordinatization of the Cartan-factors by grids, a method
introduced by Neher [17]. The strategy of our proof is to use appropriate transformations, reducing the
general case to two special cases, namely that of the Jordan algebra S = Ms

2(C) of symmetric complex
2× 2-matrices, and that of complex Hilbert spaces.

2. Preliminaries

Recall that a JB∗-triple is a complex Banach space A, equipped with a triple product (a, b, c) 7→ {a b c}
from A× A× A to A having the properties that the expression {a, b, c} is symmetric and linear in a and c
and conjugate linear in b, the Jordan triple identity holds, that is

[D(a, b), D(c, d)] = D({a b c}, d)−D(c, {d a b}), (2.1)

where [ , ] denotes the commutator, and D(a, b) is the linear mapping on A defined by D(a, b)c = {a b c}.
Moreover, the mapping (a, a) 7→ D(a, a) is continuous from A × A to the Banach space B(A) of bounded
linear operators on A, for each element a in A, D(a, a) is hermitian in the sense of [1] Definition 5.1, with
non-negative spectrum and has norm ‖D(a, a)‖ = ‖a‖2. If A is also the dual of some Banach space A∗, then
A is said to be a JBW∗-triple, and A∗ is referred to as the predual of A. A subspace B of a A is said to be
a subtriple if {B B B} is contained in B.

An element u of A is said to be a tripotent if {u, u, u} = u. The set of tripotents of A is denoted by U(A).
Let j, k and l be equal to 0, 1 or 2. For each tripotent u of A, the norm- and weak∗-continuous projections

P2(u) = Q(u)2,
P1(u) = 2(D(u, u)−Q(u)2),
P0(u) = idA − 2D(u, u) +Q(u)2

are referred to as the Peirce projections corresponding to u. It can be seen that P0(u) + P1(u) + P2(u)
equals the identity idA on A and that if j 6= k, then Pj(u)Pk(u) equals zero. The ranges, Ak(u) of Pk(u) are
weak∗-closed subtriples of A, referred to as the Peirce spaces of u. Moreover, for all elements a of A,

a ∈ Ak(u) if and only if D(u, u)a =
k

2
a. (2.2)

Hence, the Peirce spaces are the eigenspaces of D(u, u), with eigenvalues 0, 1/2 and 1, respectively. Using
these properties, the algebraic relations u ⊥ v (u and v are orthogonal), u > v (u and v are collinear) and
u ` v (u governs v) are defined for elements u and v of U(A) as follows,

u ⊥ v :⇔ u ∈ A0(v) and v ∈ A0(u), (2.3)
u > v :⇔ u ∈ A1(v) and v ∈ A1(u), (2.4)
u ` v :⇔ u ∈ A1(v) and v ∈ A2(u). (2.5)

If the tripotents u and v are orthogonal then u + v is a tripotent. Moreover, the conditions u ∈ A0(v) and
v ∈ A0(u) (used in (2.3)) are equivalent. A non-zero tripotent u is said to be minimal if it is not the sum of
non-zero orthogonal tripotents. If A is a JBW∗-triple, then u is minimal if and only if Q(u)A = Cu [17]. A
JBW∗-triple is said to be atomic if it is the weak∗-closed span of its minimal tripotents. In this case, each
element a of A can be written as a (possibly infinite) weak∗-convergent linear combination a =

∑
i∈I αiui of

pairwise orthogonal minimal tripotents ui. If a itself is a tripotent, then the (non-zero) coefficients αi are of
unit modulus. The cardinality |I| of the index set I depends only on the element a, and is referred to as the
rank of a. Hence, the minimal tripotents are precisely those of rank one. The rank of the JBW∗-triple A is
the maximal rank of any of its elements. Let Ur(A) denote the set of tripotents having rank r.
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Let Aut(A) be the group of all triple automorphisms of A. The subgroup of Aut(A) generated by the expo-
nentials of itD(a, a) is called the inner automorphism group denoted Inn(A). It is known that if dim(A) <∞
then idA ∈ spR{D(a a) : a ∈ A}, hence T ⊆ Inn(A). This may not be the case in infinite dimensions. How-
ever, the orbit of a tripotent u is the same under TInn(A) as it is under Inn(A), i.e.

TInn(A)(u) = Inn(A)(u). (2.6)

From (2.2) we see that Cu ⊆ A2(u) and that D(u, u)|A2(u) = idA2(u). Therefore expitD(uu)(u) = eitu,
which implies (2.6). Hence, for our purpose, using Inn(A) will not restrict the generality of the arguments.
Observe that if B is a subtriple of A, then Inn(B) is a subgroup of Inn(A). Clearly ϕ ∈ Aut(A) preserves
the set U(A) of tripotents and any relation between them which is defined in terms of the triple product. It
also preserves the rank of tripotents.

For tripotents u, v ∈ U(A) we define the equivalence relation u ∼ v to hold if there exists ϕ ∈ Inn(A) such
that ϕ(u) = v.

The following example illustrates the transitivity property of inner automorphisms. It will also be important
in proving the main result.

Example 2.1. The Cartan factor S := Ms
2(C) of symmetric 2 × 2-matrices is a unital Jordan-algebra of

dimension 3, spanned by the minimal tripotents a, b = I − a, and the tripotent u given by

a =
[

1 0
0 0

]
, b =

[
0 0
0 1

]
, u =

[
0 1
1 0

]
.

It is known that, since S is a finite dimensional triple factor, the inner automorphisms of S act transitively on
the minimal tripotents [16]. Let’s look at the details. Consider the inner derivation G(a, u) := 2(u2a−a2u)
on S, given by

G(a, u)(
[
x y
y z

]
) =

[
−2y x− z
x− z 2y

]
.

To find its exponential, identify G with the linear map on C3 by

G

 x
y
z

 =

 −2y
x− y
2y

 =

 0 −2 0
1 0 −1
0 2 0

 x
y
z

 .
Then, we obtain

exp(tG) =
1
2

 1 + cos(2t) −2 sin(2t) 1− cos(2t)
sin(2t) 2 cos(2t) − sin(2t)

1− cos(2t) sin(2t) 1 + cos(2t)

 .
Thus

exp(tG)
[

1 0
0 0

]
=

1
2

[
cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

]
. (2.7)

This is a well known one-parameter family of inner automorphisms, with exp(π/2)a = b. This shows that
a ∼ b. Since S is finite dimensional, Corollary 5.9 in [16] implies that any two tripotents of rank one are
equivalent. We provide an explicit proof for this case. For elements x, y and z of C2, regarded as a Hilbert
space with the usual inner product, the elementary operator x⊗ y is defined by x⊗ y(z) = 〈z, y〉x (see also
the next section). It is enough to show that a ∼ x ⊗ x̄, for any unit vector x = λe1 + µe2 ∈ H. Hence, we
need to show that

a =
[

1 0
0 0

]
∼

[
λ2 λµ
λµ µ2

]
= x⊗ x̄.

When λ and µ are real then this is achieved by taking λ = cos t and µ = sin t. For complex λ, µ, notice that

D(a, a)
[
x y
y z

]
=

[
x y/2
y/2 0

]
.
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It follows that

exp(it D(a, a))
[
x y
y z

]
=

[
eitx eit/2y
eit/2y z

]
.

Choosing t such that exp(it/2) = λ̄
λ , we see that[

λ2 λµ
λµ µ2

]
∼

[
|λ2| |λ|µ
|λ|µ µ2

]
.

A similar argument shows that [
|λ2| |λ|µ
|λ|µ |µ2|

]
∼

[
|λ2| |λµ|
|λµ| |µ2|

]
,

and so we can conclude that

x⊗ x̄ ∼
[
|λ2| |λ|µ
|λ|µ |µ2|

]
∼

[
|λ2| |λµ|
|λµ| |µ2|

]
=

[
cos2(t) sin(t) cos(t)

sin(t) cos(t) sin2(t)

]
∼

[
1 0
0 0

]
.

A first step into the case of infinite dimensional factors is to deal with Hilbert spaces.

Example 2.2. A complex Hilbert space H with inner product 〈., .〉 is a Cartan-factor of type I. The triple
product is defined for a, b, c ∈ H by

{a, b, c} =
1
2

(〈a, b〉c + 〈c, b〉a) . (2.8)

It is easily seen that the non-zero tripotents are precisely the elements of norm one, and these are also
minimal tripotents, i.e. of rank 1 in H. The relation of Hilbert-orthogonality is that of collinearity in terms
of triple structure.

To make the arguments of this presentation more self-contained we give a proof of the transitivity property
of Hilbert spaces. Let S1(H) denote the the unit-sphere of H. We may first assume that dimH = 2. We
may again refer to Loos’ result in [16] to obtain the transitivity property for the finite dimensional case. The
following calculations, like those in Example 2.1, are more elementary. Consider the basis vector b1, b2 and
an arbitrary vector c of norm one, given by

b1 =
[

1
0

]
, b2 =

[
0
1

]
, c =

[
γ1

γ2

]
Let Bs = {b1, b2} be the standard basis of H. For any complex number λ of modulus one, let a = a(λ) be
the element of H, defined by

a =
1√
2

[
1
λ

]
.

Denote the operator D(a, a) by Dλ, to indicate its dependence on λ. It follows from (2.8) that a is an
eigenvector of Dλ. Any vector orthogonal to a is also an eigenvector of Dλ. It is easy to calculate the matrix
of Dλ and its exponential from the corresponding diagonal forms. The operator exp itDλ, is explicitly given
by

exp itDλ =
1
2

[
eit + eit/2 λ̄(eit − eit/2)

λ(eit − eit/2) eit + eit/2

]
.

In particular, the unit vector b1 is mapped to

(exp itDλ)(b1) = (exp itDλ)
[

1
0

]
=

1
2

[
eit + eit/2

λ(eit − eit/2)

]
. (2.9)

This vector is of norm one, for all reals t. The modulus of its first component is |eit + e
i
2 t|/2 and attains all

values between 0 and 1 when t runs through R. If c is any vector with components γ1 and γ2, and if c has
norm one in H, then |γ2| equals

√
1− |γ1|2 and t can be chosen such that

1
2
|eit + eit/2| = |γ1|, and

1
2
|eit − eit/2| = |γ2|. (2.10)
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If γ1 = 0, then σ(exp 2πiDλ)b1 equals c, for some σ ∈ S1(C). Otherwise set λ = γ2(eit + eit/2)/γ1(eit − eit/2).
The equations (2.10) and (2.9) imply that

|λ| = 1 =
∣∣∣∣ 2γ1

eit + eit/2

∣∣∣∣ , and
2γ1

eit + eit/2
(exp itDλ)

[
1
0

]
= c.

Since a two-dimensional subspace of H is a subtriple, the above result shows the desired equivalence b1 ∼ c
in H.

The following theorem summarizes some results obtained in [11].

Theorem 2.3. Let C be a collinear system in a JB∗-triple A, and let H be the subspace H = spCn
of A.

Then, H is a subtriple of A if and only if, either |C| ≤ 2 or for any three distinct elements u, v, w of C, the
product {u v w} vanishes. If this is the case, then the following results hold.

(1.) The subtriple H is a Hilbert space with orthonormal basis C, and the triple product on H given by
(2.8) coincides with the restriction of the triple product of A to H.

(2.) The set {σ exp itD(a, a) : σ ∈ T, a ∈ H} consists of linear isometric triple isomorphisms on the
whole space A and acts transitively on the unit sphere S1(H) of H.

(3.) If A is a JBW∗-triple, then H is also weak∗-closed in A, and therefore, is a JBW∗-subtriple of A.

Since the set {σ exp itD(a, a) : σ ∈ T, a ∈ H} generates TInn(H), the above result (2.) and (2.6) show
that Inn(H) acts transitively on S1(H).

3. Cartan-factors

There are six types of simple, or irreducible atomic JBW∗-triples, known as the Cartan-factors. They are
refered to, respectively, as the rectangular factors which are of the form B(G,H) for Hilbert spaces G and H,
the hermitean factors consisting of the elements of B(H) that are symmetric with respect to transposition,
the symplectic factors, i.e. the space of the anti-symmetric elements of B(H), the spin factors, constructed
from H, the bi-Cayley triple which is the space of 2 × 2-matrices with entries in the split Octonions Os, as
well as the Albert triple consisting of the symmetric 3 × 3-matrices with entries in Os. Since the bi-Cayley
triple and the Albert triple have (complex) dimension 16 and 27, respectively we will not include them
in our current considerations. Instead we focus on the remaining four types, all of which include infinite-
dimensional examples. In [17] the methods of coordinatization of JBW∗-triples by grids was developed, and
a classification of atomic JBW∗-triples was given.

We briefly discuss some important, well known details concerning the infinite-dimensional cases. For general
information on the subject we refer to the books [5], [16], [17]. Given complex Hilbert spaces H and K, the
space B(H,K) of bounded operators from G to H is a JBW∗-triple when equipped with the triple product

{a, b, c} =
1
2
(ab∗c+ cb∗a). (3.1)

Here, a∗ denotes the ususal adjoint of the element a ∈ B(H,K) [5] [7]. A JBW∗-triple of this form is
a Cartan factor of type I, also referred to as rectangular type. Recall that for x ∈ H and y ∈ K, the
elementary operator y ⊗ x, seen as an element of B(H,K) acts by contraction with the inner product of H
by (y ⊗ x)(z) = 〈z, x〉y. In particular if a := y1 ⊗ x1 and b := y2 ⊗ x2, for x1, x2 ∈ H and y1, y2 ∈ K, then

ab∗ = 〈x2, x1〉y1 ⊗ y2, b∗a = 〈y1, y2〉x1 ⊗ x2. (3.2)

Let (hi)i∈I be an orthonormal basis of H and (kj)j∈J an orthonormal basis of K. Then, for all (i, j) ∈ I×J ,
the element ei,j = kj ⊗ hj is a minimal tripotent of C, and (ei,j)i,j∈I×J is a rectangular grid that spans C.
The Cartan-factors of type II and III are subtriples of the type I factors B(H), and are described by a fixed
conjugation x 7→ x̄ on H. For a ∈ B(H) we set at = A∗x̄. Type II and III factors are the subspaces of B(H)
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consisting of elements with the properties that a = at and a = −at, respectively. An element a of a A is
said to be minimal if {a A a} = Ca. In [7] the minimal elements of Cartan-factors were described in terms
of the elementary operators. In our notation, the minimal elements of type I, II, and III factors are the sets
{x⊗ y : x, y ∈ H, y ∈ K}, {x⊗ x̄ : x ∈ H} and {x⊗ ȳ− y⊗ x̄ : x, y ∈ H}, respectively. For more details see
[7].

For any non-zero cardinal number c a spin factor S(c) is obtained from a Hilbert space H with dimension
c, by setting S = H ⊕H ′ or S = C ⊕H ⊕H ′. The former are the even spin factors, the later are the odd
spin factors. The spaces H and H ′ are of equal dimension and are related by conjugations described below.
The inner product 〈., .〉 of H extends to S by setting

〈(α, x1, y1), (β, x2, y1)〉 = αβ + 〈x1, x2〉+ 〈y1, y2〉.

For the purpose of coordinatization, we use an orthonormal basis B = {ek}k∈K of H. The mapping ej 7→ e′i
is a symmetry between H and H ′, and we define e′0 = e0. The involution ∗ : S → S is the conjugate-linear
involutive map determined by

e∗j = e′j , e∗0 = e0 (i ∈ I). (3.3)

The triple product of S is given by

2{a b c} = 〈a, b〉Sc+ 〈c, b〉Sa− 〈a, c∗〉Sb∗ (3.4)

It will be convenient to write an element a of S as a complex number γ, combined with a column of elements
x and y of H, which will be written as rows, i.e. x = (α1, α2, ...) and y = (β1, β2, ...), for αk, βk ∈ C, k ∈ K.
Then, a ∈ S is given by

a = γ ⊕
[
x
y

]
= γ ⊕

[
α1 α2 α3 ...
β1 β2 β3 ...

]
.

This representation has the advantage that the matrix units ek and e′k appear on top of each other and are
orthogonal, i.e. ek ⊥ e∗k, any other pairing of matrix units provides a collinear pair, that is ek > {ej , e

∗
j},

for j 6= k. We define e0 to be zero, if S is an even spin factor, or otherwise e0 is the unit e0 = (1, 0, 0) ∈ S.
Note that the index 0 is not an element of K.

The Cartan-factor S presented in Example 2.1 is both a hermitean Cartan-factor and a spin factor. As a
spin factor, it is obtained by setting H = C, and S = Ce0 ⊕H ⊕H. Then e0 = (1, 0, 0), e1 = (0, 1, 0) and
e′1 = (0, 0, 1). It is easily seen that S(3) is isomorphic to S presented in Example 2.1. An application of
Theorem 2.3 gives the following result.

Lemma 3.1. Let a be an element of the spin factor S(3) as defined above. Then there exists an inner
automorphism ϕ ∈ Inn(S(3)) such that ϕ(a) = 0e0 + αe1 + βe′1, i.e. the component in e0 vanishes.

Proof. Since a non-trivial spin factor has rank two, the element a ∈ S(3) can be written as a linear combi-
nation of two orthogonal minimal tripotents, i.e. a = αu1 + βu2, for elements u1, u2 ∈ U1(S(3)) which are
such that u1⊥u2, and α, β ∈ C. Since S(3) is a finite dimensional triple factor, It was shown in Example 2.1
that Inn(S(3)) acts transitively on U1(S(3)). In particular, there exists ϕ ∈ Inn(S), such that ϕ(u1) = e1.
Since the set of all tripotents w satisfying e1 ⊥ w is Te∗1, and ϕ preserves orthogonality, it follows that
ϕ(u2) = λe∗1, for some λ ∈ T. The inner automorphism ψ = exp itD(e∗1, e

∗
1) is such that ψ(e0) = eit/2e0,

ψ(e1) = e1, and ψe∗1 = eite∗1. Hence, for an appropriate choice of t ∈ R, the inner automorphism θ = ψ ◦ ϕ
has all the required properties. �

4. Main results

With the preparations given in the previous sections, we can now proceed to establish the announced main
results of this article. We treat the each case of infinite dimensional Cartan-factor separately. The general
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strategy of the proof is the same in each case. The result in the special cases S and Hilbert-spaces is used
repeatedly.

Theorem 4.1. Let C be an infinite dimensional Cartan factor. Then the group Inn(C) acts transitively on
the set U1(C) of minimal tripotents of C.

Proof. Type I: Let the Cartan-factor C be represented by Hilbert spaces H and K. We assume that the
dimensions of H and K are at least 3. The proof for the cases in which dimH,dimK ≤ 2 is a simplifed
version of this proof. It is sufficient to fixed index (i0, j0) ∈ I × J and to provide an inner automorphism ϕ
which sends the element v := ei0,j0 to an arbitrary rank one tripotent u. It is known that the tripotents of
B(H,K) are precisely the partial isometries from H to K. Hence p = u∗u and q = uu∗ are orthoprojections
on H and K respectively. By [7] there are elements x in H and y in K with ‖x‖ = ‖y‖ = 1, such that

u = y ⊗ x =
∑
i∈I

〈hi, x〉 y ⊗ hi.

Consider distinct indices r and s in I. The triple products of these elements are determined by the relations
(3.1) and (3.2). From these we obtain,

{y ⊗ hr, y ⊗ hr, y ⊗ hs} =
1
2
(y ⊗ hr · hr ⊗ y · y ⊗ hs + y ⊗ hs · hr ⊗ y · y ⊗ hr) =

1
2
y ⊗ hs.

A similar calculation shows that, for distinct r and s in J and i an index in I we have,

{kr ⊗ hi, kr ⊗ hi, ks ⊗ hi} =
1
2
ks ⊗ hi.

It can be seen that for three distinct indices, we have

{y ⊗ hr, y ⊗ hr, y ⊗ hs} = 0,
{kr ⊗ hi, kr ⊗ hi, ks ⊗ hi} = 0.

Hence, the collections (y ⊗ hi)i∈I and (kj ⊗ hi)j∈J are collinear systems in C and, by Theorem 2.3, their
respective closed spans are Hilbert spaces and subtriples of A. In particular u = y⊗x is a norm one element
in the span of (y ⊗ hi)i∈I . Moreover, for fixed indices i0 ∈ I and j0 ∈ J there are mappings ϕ1 and ϕ2 in
Inn(C) such that ϕ1(ei0,j0) = y ⊗ hi0 , and ϕ2(y ⊗ hi0) = u. This proves that the relation v ∼ u holds.

Type II: Suppose that C is a Cartan-factor of type II with minimal tripotents a = x ⊗ x̄ and b = y ⊗ ȳ,
where x, y ∈ H have unit norm. Let ⊥H denote the usual orthogonality in a Hilbert-space. Assume first
that x⊥Hy, which is equivalent to saying that a and b are orthogonal tripotents. It is easily checked that
the v = x ⊗ ȳ + y ⊗ x̄ is a tripotent that lies in the Peirce- 1

2 space of both a and b. Moreover, the space
sp{a, b, v} is closed under the triple products, as is verified by the identities

{a, a, a} = a

{a, a, v} =
1
2
v

{a, a, b} =
1
2
b

{a, v, a} = 0

{a, v, v} =
1
2
v

{a, v, b} =
1
2
b

(4.1)

Moreover, these show that the linear map J : C → S determined by

J(a) =
[

1 0
0 0

]
, J(b) =

[
0 0
0 1

]
, J(v) =

[
0 1
1 0

]
(4.2)

is a triple-isomorphism. This together with the transitivity property of S guarantees that a ∼ b. What if x
and y are not orthogonal? If dimH ≤ 3, then there exists z ∈ x⊥H ∩ y⊥H , and, by the aforesaid it follows
that a ∼ z ⊗ z̄ ∼ b. We are left with the case when dimH = 2 and C = S, which has been dealt with in
Example 2.1.
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Type III: Unlike in Type II factors, minimal tripotents in Type III factors may be collinear. This allows
us to employ arguments similar to those used for Type I. We assume the Cartan factor C to be modeled on
the Hilbert space H which has orthonormal basis {ei}i∈I , and that for each i ∈ I, ēi = ei. Although we
may denominate elements as e1 and e2, there is no assertion that H is separable. It is easily checked that
for any fixed i ∈ I, the set Ci := {ei ⊗ ej − ej ⊗ ei : j ∈ I \ {i}} of minimal tripotents is a collinear system
that satisfies the assumption of Theorem 2.3. Remark that, by [7], the minimal elements in a type III factor
are of the form x⊗ y− ȳ⊗ x̄. Furthermore, an easy calculation shows that x⊗ y− ȳ⊗ x̄ is a tripotent if and
only if

‖x‖2‖y‖2 − |〈x̄, y〉|2 = 1. (4.3)

If x̄⊥Hy then we can and will assume that ‖x‖ = ‖y‖ = 1. Note also that if c = x⊗ y − ȳ ⊗ x is a minimal
tripotent then by writing y = αx̄+ z, with z⊥H x̄, we see that

c = x⊗ y − ȳ ⊗ x = x⊗ (αx̄+ z)− (ᾱx+ z̄)⊗ x̄

= x⊗ z − z̄ ⊗ x̄. (4.4)

Therefore, c can be represented by orthogonal vectors, i.e.

x̄ ⊥H z. (4.5)

Using (4.3) and (4.5) we assume that the elements x, y ∈ H which represent the minimal tripotent c =
x⊗ y − ȳ ⊗ x̄ have unit norm and are such that x̄ ⊥H y.

It needs to be shown that
c = x⊗ y − ȳ ⊗ x̄ ∼ e1 ⊗ e2 − e2 ⊗ e1.

First, we know that C1 = {e1⊗ej −ej ⊗e1 : j ∈ I \{1}} is a collinear system which satisfies the assumptions
of Theorem 2.3. Write y = αe1+z, with z ⊥H e1. Suppose that z 6= 0. Then the element (e1⊗z− z̄⊗e1)/‖z‖
is a minimal tripotent contained in spC1 Theorem 2.3 and (4.4) imply that

e1 ⊗
y

‖z‖
− ȳ

‖z‖
⊗ e1 = e1 ⊗

z

‖z‖
− z̄

‖z‖
⊗ e1 ∼ e1 ⊗ e2 − e2 ⊗ e1. (4.6)

If z = 0, then |α| = 1. Notice that c ∼ −c, and use the same argument to conclude that

c ∼ −c = ᾱe1 ⊗ x̄− x⊗ αe1 = e1 ⊗ αx̄− ᾱx⊗ e1 ∼ e1 ⊗ e2 − e2 ⊗ e1.

This finishes the proof in case z = 0.

Since x̄ ⊥H y we can set h1 = x, h2 = ȳ and extend the set {h1, h2} to an orthonormal basis {hi}i∈I ofH. We
write e1 as e1 = αh2+a, with a ⊥H h2. Suppose that a 6= 0. Notice that D2 = {hi⊗h2− h̄2⊗ h̄i : i ∈ I \{2}}
is a collinear system that satisfies the assumption of (2.) in Theorem 2.3, and (a ⊗ h2 − h̄2 ⊗ a)/‖a‖ is a
tripotent in spD2. These facts and (4.6) imply that

e1 ⊗
y

‖a‖
− ȳ

‖a||
⊗ e1 = e1 ⊗

a

‖a‖
− ā

‖a‖
⊗ e1 ∼ x⊗ y − ȳ ⊗ x̄. (4.7)

The case in which a = 0 is easily dealt with in a similar manner as the case z = 0 above. The relations (4.7)
and (4.6) provide the desired equivalence.

Type IV: With the notation of Section 3 the minimal tripotents ek and e′k form an ortho-collinear standard
grid {ek}k∈K ∪{e∗k}k∈K in S. By a standard summability argument, elements x and y of S can have at most
countably many nonzero coordinates with respect to B of H. Therefore, the coordinates of x and y can be
labeled by N. The identities that define a spin triple imply that, for distinct indices j and k in K,

ek ⊥ e′k, ek > ej , ek > e′j . (4.8)

Moreover, in the case when e0 6= 0, we have

e0 ` ek, e0 ` e′k (4.9)
8



Let u be an arbitrary element of U1(S). It is enough to show that there is an inner automorphism ϕ such
that ϕ(u) = e1. In our matrix representation, the elements u and e1 are given by

u = δe0 ⊕
[
λ1 λ2 λ3 ...
µ1 µ2 µ3 ...

]
, e1 = 0⊕

[
1 0 0 ...
0 0 0 ...

]
, e′1 = 0⊕

[
0 0 0 ...
1 0 0 ...

]
.

As first, it is shown that the component δe0 vanishes by applying an appropriate inner automorphism.
Denote by P0, P1 and P1′ the coordinate projections on S onto the one-dimensional subspaces Ce0, Ce1
and Ce′1, respectively. It is straightforward from the definition of the triple product (3.4) that the subspace
T = Ce0 ⊕ Ce1 ⊕ Ce′1 of S is a subtriple of S, isomorphic to the triple factor S(3) described in Lemma 3.1.
Moreover, T is the range of the projection PT := P0 +P1 +P1′ on S. Let ek be an element of B \{e0, e1, e′1}.
For a, b ∈ {e0, e1, e′1}, expressions for D(a, b)ek are obtained from (3.4). If a 6= b, then

D(a, b)ek = 0. (4.10)

If a = b, it can be seen from (3.4), or from (4.8) and (4.9) that,

D(e0, e0)ek = ek, (4.11)

D(e1, e1)ek = D(e∗1, e
∗
1)ek =

1
2
ek. (4.12)

These show that PTD(a, b)ek = D(a, b)PT ek = 0. For ek ∈ {e0, e1, e′1}, we have D(a, b)ek ∈ T . It follows
that PT commutes with all elements of Inn(T ) which is a subgroup of Inn(S). By Lemma 3.1, there exists
an element θ in Inn(T ) which annihilates the component P0(u) = δe0 of PTu in T . We conclude that

0 = P0 θ PT (u) = P0 PT θ(u) = P0 θ(u). (4.13)

In what follows, the spaces H and H ′ are identified with the subtriples 0 ⊕ H ⊕ 0 and 0 ⊕ 0 ⊕ H of S,
respectively. We will show that, for a, b ∈ H, the operator D(a, b) commutes with the coordinate projection
P0 and PH′ onto the spaces Ce0 and H ′. In the case of H ′, we can set e0 = 0 and omit this component
altogether. It will be assumed that |K| ≥ 3. The calculations for |K| ≤ 2 can be simplified in an obvious
way. Consider distinct indices j, k, l in K. The definition of the triple product (3.4) and the relations (4.8)
show that, for s ∈ S,

D(s, e1)e∗1 = 0, (4.14)

D(ek, ek)e∗j =
1
2
e∗j , (4.15)

D(ek, el)e∗j = 0. (4.16)

For an arbitrary element a of H, the operator D(a, a) is a linear combination of D(em, en) (m,n ∈ K). The
above equations show that D(a, a)b ∈ H∗, for all b ∈ H∗. Since H∗ is a closed subspace, this implies that

exp itD(a, a)H∗ ⊆ H∗, (4.17)

hence, that H∗ is invariant under Inn(H). Now, suppose that e0 is not zero. Then, for each index k ∈ K,
the elements e0 and ek are in the relation e0 ` ek for all k ∈ K. This implies that

D(ek, ek)e0 =
1
2
e0,

D(ek, ej)e0 = 0 (for k 6= j).

It follows that, for all a ∈ H,

exp itD(a, a)e0 ∈ Ce0, (4.18)

and, hence, that Ce0 is also invariant under Inn(H). From (4.13) and (4.18) we see that

P0ϕθ(u) = 0. (4.19)

Hence from now on, the component in e0 is assumed to be zero, and is omited. Denote by PH the canonical
projection from S onto H. From the above arguments it can be seen that, for all elements a and b of H ⊆ S,
and all ϕ ∈ Inn(H),

PH D(a, b) = D(a, b) PH , (4.20)
PH ϕ = ϕ PH . (4.21)
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Theorem 2.3 and (4.21) imply that there exists ϕ0 ∈ Inn(H) ⊆ Inn(S) such that

ϕ0(PHθ(u)) = PHϕ0(θ(u)) ∈ Ce1.
From this, (4.19) and (4.21) it follows that

a = ϕ0(θu) =
[
α 0 0 ...
β1 β2 β3 ...

]
∈ U1(S).

To proceed, suppose that α 6= 0. By (3.4) it can be seen that

a3 = {a a a} = (αα+
∑
k∈K

βkβk)
[
α 0 0 ...
β1 β2 β3 ...

]
− αβ1

[
β1 β2 ...
α 0 ...

]
= a.

This equation shows that, if β1 6= 0 then, to match the zero-components in the top row of a it is necessary
that βk = 0, for k 6= 1. Matching all the remaining components of a entails that αα = β1β1 = 1. But then,
a = αe1⊕β1e

∗
1, and, since e1 ⊥ e∗1, the tripotent a has rank two, in contradiction to the assumption. Insisting

on α 6= 0, we conclude that β1 = 0. Using again (3.4) it is easy to verify that C = {e1} ∪ {e′k}k∈K\{1} is a
collinear system such that, for any three distinct elements u, v, w ∈ C, the product {u v w} vanishes. By
Theorem 2.3 there exists ϕ1 ∈ Inn(S) such that ϕ(u) = ϕ1(a) = ϕ1 ◦ ϕ0 ◦ θ(u) = e1, as required.

The case α = 0 is easily dealt with in a similar way, by applying Theorem 2.3 to the Hilbert space and
subtriple H∗ of S. We can find ϕ1 ∈ Inn(S) such that ϕ1(a) = e∗2. Since e1 > e∗2, the subspace Ce1 ⊕Ce∗2 is
a Hilbert space and a subtriple of S. The previous argument finishes the proof. �

In the remainder of this section we present some corollaries and generalizations of Theorem 4.1.

Recall that the rank of a JBW∗-triple A is the maximal cardinality of an orthogonal family in U(A), and
is denoted by rank(A). Notice that any (non-trivial) spin factor has rank 2. If A is a subtriple of B(H,K)
then

rank(A) ≤ min{dim(H), dim(K)}.
A further observation concerning the Peirce-0-space C0(u) (or equivalently the orthogonal complement) of
a minimal tripotent u of A is given next.

Proposition 4.2. Let C be an infinite-dimensional Cartan-factor. Let u ∈ U(C) be a minimal tripotent.
Then the Peirce-0-space C0(u) = u⊥ of u has the following properties: If C is of type I, II, or III, then C0(u)
is of the same type. If C is of type IV, then C0(u) is one-dimensional.

Proof. Let u be an arbitrary minimal tripotent. Using the representations of C as subtriples of A = B(G,H),
we may fix a particular minimal tripotent, e.g. v = h1 ⊕ k1, and note that C0(v) = B(H1,K1), where H1

and K1 are the ortho-complements of the basis vectors h1 and k1 in H and K, respectively. Since there
is an automorphism ϕ of C with ϕ(u) = v, it follows that C0(u) = A0(u) is isomorphic to C0(v). This
proves the statement for the case of type I factors. The argument works for the remaining cases. For type
II and type III factors (where H = K), we set v = h1 ⊗ h1, or v = h1 ⊗ h2 − h2 ⊗ h1, and we observe that
C0(v) = A0(v)∩C. For a type IV factor C = e0⊕H ⊕H ′ we can set v = e1. Then C0(v) = e′1 ' C0(u). �

Theorem 4.1 holds for all finite rank-classes in U(C), as shown next. This result, in particular (1.), is
therefore a more elaborate version of Theorem 4.1. It further generalizes the classical results by in [16], as
well as those in [6].

Theorem 4.3. Let C be a Cartan-factor (of arbitrary dimension). Then the following results hold.

(1.) Let U = {u1, ...un} and V = {v1, ..., vn} be orthogonal subsets of minimal tripotents in a Cartan-
factor C (of arbitrary dimension). Then for any permutation σ of n elements there exists a mapping
ϕ ∈ Inn(C) such that, ϕ(uk) = vσ(k).
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(2.) Let u and v be tripotents of finite rank in C. Then the relation u ∼ v holds if and only if rank(u) =
rank(v).

Proof. (1.): From Theorem 4.1 it can be seen that there exists ϕ1 ∈ Inn(C) with the property that ϕ1(u1) =
vσ(1). Since ϕ1 is a triple-automorphism, it follows that ϕ1(vσ(2)) ⊥ vσ(1). Hence the elements ϕ1(u2) and
vσ(2) are both contained in the Peirce-0-space A0(vσ(1)) of v1. Since, by Proposition 4.2, A0(vσ(1)) is itself
a Cartan-factor, the argument can be repeated for the sets ϕ1(U \ {u1}) and V \ {vσ(1)}.

(2.): It is clear that the condition rank(u) = rank(v) is necessary for u ∼ v to hold. On the other hand, if
rank(u) = rank(v) =: r < ∞ then there exists orthogonal subsets {u1, ...ur} and {v1, ..., vr} of U1(C), such
that u =

∑r
n=1 un and v =

∑r
n=1 vn. Applying the result (1.) shows that u ∼ v, as required. �

5. Remarks on weak∗-operator limits

Dealing with infinite JBW∗-triples C, it is natural to ask how the actions of Inn(C) behaves in relation to
the weak∗-topology. We therefore conclude this paper with some observations concerning limits of sequences
in Inn(C). It is clear that taking such limits will pose some problems regarding the regular properties of
Inn(C). It is beyond the scope of this paper to address these problems in great depth. Instead we provide
some further rather easy consequences of the main results. These may also indicate possible directions of
further research into the connections between limits of products in Inn(C) and more appropriate topologies.
For example, the last theorem of this article provides a ’positive’ and a ’negative’ result concerning the
SOT-closure and the weak∗-closure of Inn(C). It is therefore regarded as tentative, and it leads to the open
problem of establishing more appropriate generalizations of the main result Theorem 4.1. The result (2.) is
a consequence of the well known fact that the unit-ball is the weak∗-closure of the unit-sphere.

Recall that any (linear) topology τ on C gives rise to the correspoding τ -operator topology which is defined
as follows. A net {Pi}i∈I in B(C) is said to converge in the τ -operator topology if, for each a ∈ C, the
net {Pia}i∈I is τ -convergent. For any set I, let Ifin denote the set of all finite subsets of I, partially
ordered by set-inclusion. Then, {Pi}i∈I is said to be τ -operator summable if the net {

∑
i∈F Pi}F∈Ifin is

τ -operator convergent. We will use the weak∗-topology τ = σ(C,C∗) on C or the norm topology on C∗. The
norm-operator topology is the well known strong operator topology (SOT). For any set F , l2(F ) denotes the
Hilbert-space of l2-summable functions f : F → C. Given any two index sets F and G, denote by CF×G

the type I factor CF×G := B(l2(F ), l2(G)). The next two results are of technical nature. They are obtained
from standard methods in operator theory.

Lemma 5.1. Let C := CI×J be the type I Cartan-factor B(H,K), parametrized by the index sets I and J
and with corresponding standard grid G := {ei,j := hi⊗kj : (i, j) ∈ I×J} (as in Section 3). For (i, j) ∈ I×J ,
let Pi,j be the canonical projection from C to Cei,j, with pre-adjoint Pi,j∗ on the predual C∗ of C. Then, for
subsets F of I and G of J , the family {Pi,j∗}(i,j)∈F×G is SOT-summable in B(C∗), and {Pi,j}(i,j)∈F×G is
σ(C,C∗)-operator summable in B(C).

Proof. For all (finite) subsets F of I and G of J , the projection PF×G :=
∑

k∈F×G Pk on C is weak∗-
continuous and contractive. Any partition F = F1 ∪ F2 (with F1 ∩ F2 = ∅) of F provides a grading

CF×G = CF1×G ⊕ CF2×G.

Accordingly, b ∈ CF×G is written as b = b1 ⊕ b2, for b1 ∈ CF1×G and b2 ∈ CF1×G. Choose a norm one
element x = x1 + x2 in l2(F ), with x1 ∈ l2(F1), x2 ∈ l2(F2). Then 1 = ‖x1‖2 + ‖x2‖2. Let αj and βj
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(j = 1, ..., |G|) be the standard coordinates of b1x and b2x in l2(G). Then,

‖b‖2 ≤ ‖(b1 + b2)x‖2 = ‖b1x1 + b2x2‖2

=
|G|∑
j=1

|αj + βj |2 ≤
|G|∑
j=1

|αj |2 + |βj |2 = ‖b1x1‖2 + ‖b2x2‖2

≤ ‖b1‖2‖x1‖2 + ‖b2‖2‖x2‖2 ≤ ‖b1‖2 + ‖b2‖2. (5.1)

The Hahn-Banach theorem implies that for each x ∈ PF×G∗C∗, there exists b1 ∈ PF1C and b2 ∈ PF2C with
‖b1‖ = ‖b2‖ = 1 and

(b1 · PF1∗x) = ‖PF1∗x‖, (b2 · PF2∗x) = ‖PF2∗x‖.

We can assume that not both of these expressions vanish simultaneously. Define the elements b′1 and b′2 by

b′1 =
‖PF1x‖b1

(‖PF1x‖2 + ‖PF2x‖2)
1
2
, b′2 =

‖PF2x‖b2
(‖PF1x‖2 + ‖PF2x‖2)

1
2
.

Then, by (5.1),

‖b′1 + b′2‖2 ≤ ‖b′1‖2 + ‖b′2‖2 = 1.

Moreover,

|((b′1 + b′2) · (PF1x+ PF2x))|2 = ‖PF1x‖2 + ‖PF2x‖2

This and the contractivity of PF×G implies that

‖x‖2 ≥ ‖PF×Gx‖2 = ‖PF1×Gx+ PF2×Gx‖2 ≥ ‖PF1x‖2 + ‖PF2x‖2. (5.2)

To see that {
∑

k∈F Rkx}F∈Ifin is a Cauchy-net in the norm of C, consider any ε > 0, and let the mapping
f : Ifin → R+ be defined by f(F ) := ‖PF×Gx‖2. By (5.2), the constant Mx, defined by Mx := sup{f(F ) :
F ∈ Ifin} is finite. There exists F0 ∈ Kfin, such that Mx − ε2 ≤ f(F0). The relations (5.2) show that, for
any G ∈ Kfin which is such that F0 ∩G = ∅, we have

Mx − ε2 ≤ f(F0) ≤ f(F0 ∪G)− f̃(G).

It follows that

f(G) = ‖
∑
k∈G

Pkx‖2 ≤ ε2,

and hence that ‖
∑

k∈G Pkx‖ ≤ ε. This shows the desired Cauchy property, and hence the SOT-convergence
of {PF×G}F∈Ifin,G∈Jfin . We define the sum P to be the corresponding SOT -limit. It follows that for all
a ∈ C and all x ∈ C∗,

lim
F→∞

(
∑
k∈F

Pka · x) = lim
F→∞

(a ·
∑
k∈F

Pk∗x) = (b · Px).

This means precisely that (Pka)k∈K is σ(C,C∗)-summable, for each a ∈ E∗, hence that (Pk)k∈K is σ(C,C∗)-
operator summable. �

Corollary 5.2. Let {Fn}n∈N and {Gn}n∈N be sequences of subsets Fn ⊆ I and Gn ⊆ J , with the property
that Fn+1 ⊆ Fn, Gn+1 ⊆ Gn,

⋂
n∈N Fn = ∅, and

⋂
n∈N Gn = ∅. For each n ∈ N, let ϕn be an element of

Inn(CFn×Gn). Then the sequence {
∏m

n=1 ϕn}m∈N is σ(C,C∗)-operator convergent, with limit ϕ of norm at
most one.

Proof. Let x be an arbitrary element of C∗. Lemma 5.1 and its proof show that for each ε > 0 there exists
Fε ∈ Ifin and Gε ∈ Jfin such that, for all F ∈ Ifin, G ∈ Jfin, with F ∩ Fε = ∅, G ∩Gε = ∅, the values

‖x|CF×G
‖ = ‖PF×G∗x‖, ‖x|CFε×G

‖ = ‖PFε×G∗x‖, ‖x|CF×Gε
‖ = ‖PF×Gε∗x‖,
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are less than or equal to ε. By assumption there exists also m ∈ N which is such that Fn ∩ Fε = ∅ and
Gn ∩ Fε = ∅, whenever n ≥ m. This implies that, for n ≥ m the relation CFn×Gn⊥CFε×Gε holds. It follows
that ϕn|CFε×Gε

= idCFε×Gε
, hence, for all r ∈ N, that (idC −

∏m+r
n=m+1 ϕn)PFε×Gε = 0. We set, for r ∈ N,

∆ϕ :=
m∏

n=1

ϕn −
m+r∏
n=1

ϕn = (idC −
m+r∏
n=1

ϕn)
m∏

n=1

ϕn.

Since the mappings ϕn are isometries, we have that ‖(idC −
∏m+r

n=1 ϕn)‖ ≤ 2. Combining these results we
find that

‖∆ϕ(x)‖ = ‖((idC −
m+r∏
n=1

ϕn)(PFε×G + PF×Gε + PF×G)
m∏

n=1

ϕn)(x)‖ ≤ 6ε.

This shows that the desired convergence holds. Let ϕ be the corresponding limit, a linear operator on C.
Since each ϕn, hence all finite products

∏m
n=1 ϕn are isometries, it follows that |f

∏m
n=1 ϕn(a)| ≤ ‖f‖‖a‖,

for all f ∈ C∗, a ∈ C, and, hence that ‖ϕ‖ ≤ 1. �

Recall that, by definition, a tripotent u of a JBW∗-triple A is σ-finite if any orthogonal family of tripotents
in A2(u) is at most countable. For characterizations of σ-finite trioptents in terms of the geometry of A,
see [4] [3] or [10] If A is a Cartan-factor this is equivalent to the condition that there exists a countable
orthogonal family (un)n∈N of minimal tripotents such that u is the weak∗-convergent sum u =

∑
n∈N un.

Theorem 5.3. Let C be a Cartan factor of infinite rank. Then, the following results hold.

(1.) Let u and v be σ-finite tripotents of C of proper infinite rank. Then there exists a sequence {ϕn}n∈N
in Inn(C) such that ϕ =

∏
n∈N ϕn exists as a weak∗-operator limit, and ϕ(u) = v.

(2.) For each tripotent u of finite rank r in C, there exists a sequence {ϕn}n∈N in Inn(C) such that
ϕ =

∏
n∈N ϕn exists as a weak∗-operator limit, and ϕ(u) = 0 in the weak∗-topology.

Proof. (1.): Let G = {ei,j}(i,j)∈I×J be the standard grid of C, described in Section 3. The index sets I
and J are infinite. Hence, we can assume that N ⊆ I ∩ J . Then G contains a countable orthogonal family
of minimal tripotents F = {eii}i∈M . Since u is σ-finite, it can be written as the sum u =

∑∞
n=1, for some

orthogonal family (un)n∈N in U1(C). Similarly, we can assume that v =
∑

i∈M eii. The procedure used in
the proof of Corollary 4.3 is applied inductively to obtain the formal product ϕu =

∏
m∈M ϕm, which is

such that ϕu(un) = en,n. Notice that type II and III factors are weak∗-closed subtriples of type I factors. By
construction, the sequence {ϕm}m∈N satisfies the assumptions of Corollary 5.2. Hence, ϕu is well defined as
an operator on C and as a limit of the finite partial products. We conclude that ϕu(u) =

∑
n∈N en,n = v.

This completes the proof of (1.).

(2.): From the classification of the Cartan-factors it can be seen that each of the corresponding grids
contains a maximal orthogonal family F of cardinality |F| = rank(C). Therefore, F contains a countable
subset (en)n∈N. Theorem 4.3 implies the existence of a sequence (ϕn) in Inn(C) such that ϕn(en) = en+1.
The argument used in the prove of (1.) shows that

∏
n∈N ϕn exists. Hence (

∏n
k=1 ϕn(e1))n∈N is a weak∗-null

sequence. �
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