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Abstract 

An experimental investigation is carried out to verify the feasibility of using an instrumented vehicle to detect 

and monitor bridge dynamic parameters. The low cost method consists of the use of a moving vehicle fitted with 

accelerometers on its axles. In the laboratory experiment, the vehicle-bridge interaction model consists of a 

scaled two-axle vehicle model crossing a simply supported steel beam. The bridge model also includes a scaled 

road surface profile. The effects of varying the vehicle model configuration and speed are investigated. A finite 

element beam model is calibrated using the experimental results and a novel algorithm for the identification of 

global bridge stiffness is validated. Using measured vehicle accelerations as input to the algorithm, the beam 

stiffness is identified with a reasonable degree of accuracy.  
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Introduction 
The maintenance of bridge structures in a transport network is essential in order to ensure safety, in addition to 

providing cost effective operation of the network. The need to assess and maintain the condition of bridge 

structures has influenced a considerable amount of research in the area of structural health monitoring (SHM) in 

recent years.
1-3,4

 Increasingly, bridges are being instrumented for the purposes of vibration based monitoring, 

which in general focuses on modal parameters such as frequency and mode shapes. A number of authors
5-7

 

provide comprehensive reviews of vibration based damage identification and condition monitoring methods in 

the literature. However, the requirement for direct instrumentation of the bridge to enable monitoring can be a 

downside as it has implications related to time and cost, such as operational downtime, labour required for 

manual installation of multiple sensors and/or data acquisition equipment on the bridge and associated 

maintenance costs for these installations. 

 

This paper presents a laboratory experimental validation of an alternative method for the vibration based 

assessment of bridges. The proposed method is low cost and consists of the analysis of the dynamic response of 

a vehicle as it passes over a bridge, also referred to in the literature as an indirect monitoring approach
8,9

.  The 

vehicle is fitted with accelerometers to its axles, reducing the need for any direct installation of equipment on 

the bridge itself. As all of the data acquisition electronics are also contained within the vehicle which can travel 

at highway speeds, it allows for a so called drive-by bridge inspection system, enabling widespread preliminary 

assessment of existing bridge structures’ conditions without the need to stop the vehicle.  
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The feasibility of extracting bridge dynamic parameters such as natural frequency from the dynamic response of 

an instrumented vehicle has been verified theoretically.
10-13

 Yang et al.
10

 find that the magnitude of the peak 

response in the vehicle acceleration spectra increased with vehicle speed but decreases with increasing bridge 

damping ratio. In a study by McGetrick et al.
12

 the bridge frequency and changes in bridge damping are 

extracted from the vehicle response but they find that it is difficult to detect both parameters in the presence of a 

rough road profile. Also, frequency matching between the vehicle and the bridge is highlighted by both Yang et 

al.
10

 and González et al.
13

 as being beneficial for frequency detection. Yang and Chang
14

 also carry out a 

parametric study which indicates some of the best conditions for frequency detection.  

 

Drive-by inspection has also been tested in field trials and it has been found that accurate determination of the 

bridge natural frequency is feasible for low speeds and sufficiently high dynamic excitation of the bridge due to 

the influence of road roughness on the vehicle response.
15-18 

Yang and Chang
18

 make use of the empirical mode 

decomposition technique to identify the frequencies of higher modes from the vehicle response. 

 

Experimental investigations have been conducted to check the feasibility of the approach as part of a drive-by 

inspection system for bridge monitoring. Toshinami et al.
19 

extract the bridge frequency from the response of a 

passing vehicle in a laboratory experiment. Kim and Kawatani
20

 investigate a condition screening and damage 

detection approach which uses an inspection car for data acquisition from wireless sensor nodes installed on the 

bridge. The inspection car also acts as an actuator to the bridge. It is found that the approach can identify the 

location and severity of damage via analysis and comparison of the stiffness distribution throughout the bridge 

between intact and damaged states. Bu et al.
21

 also present a numerical investigation of a bridge condition 

assessment technique which focuses on the stiffness. Their approach utilises the dynamic response of a vehicle 

moving along a Euler-Bernoulli beam to detect damage in terms of stiffness reduction. They find that vehicle 

speed, measurement noise, road surface roughness and model errors do not have a significant effect on the 

accuracy of the damage detection.  

In this paper, the aim is to experimentally validate a novel stiffness identification algorithm at laboratory scale, 

which uses the measured acceleration responses of the vehicle as the input. In the laboratory, a scaled vehicle-

bridge model is used consisting of a scaled two-axle vehicle and a simply supported steel beam, which 

incorporates a scaled road surface profile. For the purposes of a complete analysis, a coupled Vehicle Bridge 

Interaction (VBI) simulation model is created in MATLAB
22

 and calibrated using the experimental data.  

 

Experimental setup  

Bridge model 
The scaled bridge model used in the experiment is a 5.4 m simply supported steel beam (Figure 1). The simple 

support conditions are shown in Figure 2. The beam is fitted with accelerometers and displacement transducers 

at quarter span, mid-span and three-quarter span to monitor its response in free vibration tests and during vehicle 

crossings. The beam properties obtained from the manufacturer and free vibration tests are given in Table 1. The 

frequency and damping of the beam were calculated as the mean of five repeated free vibration tests. The 

product of the beam’s modulus of elasticity, E and second moment of area, J, i.e., the global beam stiffness, EJ, 

is found by calibration in this study.  

 

The bridge model also incorporates a scaled road surface profile which the vehicle model travels along, shown 

in Figure 3. Only one profile was investigated and this was scaled based on a measured road profile from a 40.4 

m roadway bridge studied by Kim et al.
23

. The measured profile is categorised as very good (Class A) according 

to ISO
24

. Therefore, the scaled profile is intended to be representative of that expected on a typical highway 

bridge. However, some discrepancies with the measured profile exist due to the idealisation of the scaled profile 

as a superposition of steps formed by a simple construction method using layered tape and plastic strips. This 

material was selected to avoid unexpected noise in the measured signal during the moving vehicle experiment, 

which could be caused by interaction between the vehicle’s plastic wheels and the steel track.  For this particular 

profile, the effect of some of the larger irregularities on the vehicle results in a subsequent increase in the 

excitation of the bridge. It follows that the bridge’s influence on the vehicle response also increases; this factor 
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can sometimes be beneficial for indirect approaches and the type of identification algorithm investigated in this 

paper
25

.  

 

Table 1. Bridge model properties. 

Span Length, 

L (m) 

Material density, 

w (kg/m
3
) 

Cross sectional area, 

A (m
2
) 

First natural frequency, 

𝑓𝑏,1 (Hz) 

Damping 

Ratio, ξ 

5.4 7800 6.7 × 10
-3

 2.69 0.016 

 

 

 
Figure 1. Experimental Beam; (a) Laboratory setup (b) Elevation of setup (c) Beam cross-section (units in mm). 

 

 

 
Figure 2. Simple support conditions of beam (a) pinned support (b) roller support (c) rollers. 
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Figure 3. Experimental road profile. 

 

Vehicle Model 
A scaled two–axle vehicle model is instrumented for the experiments (Figure 4).  It is fitted with 2 

accelerometers to monitor the vehicle bounce motion; these are located at the centre of the front and rear axles 

respectively. It also includes a wireless router and data recorder which allow the acceleration data to be recorded 

remotely. The vehicle model can be adjusted to obtain different axle configurations and dynamic properties; the 

spring stiffness of the axles can be varied by changing the springs while the body mass can be varied using steel 

plates. The properties of the three vehicle model configurations chosen for these experiments are given in Table 

2, which were determined prior to testing. The axle masses were obtained using weighing scales. The 

suspension spring stiffness was provided by the spring manufacturer and the suspension damping was 

established as the mean of  five repeated free vibration tests using the logarithmic decrement technique.
26

 The 

axle spacing and track width for all models were 0.4 m and 0.2 m respectively. The vehicle/bridge mass ratios 

were 7.6% for both vehicles V1 and V2 and 9.2% for V3, which were relatively high but are similar to those 

expected in practice for a typical 18 tonne two-axle truck on a short span bridge. 

 

The vehicle was propelled by a motor and pulley system (Figure 5) and its speed was maintained constant by an 

electronic controller as it crossed the bridge. An approach length was provided before and after the bridge span 

to allow for acceleration and deceleration. The entry and exit of the vehicle to the beam was monitored using 

strain sensors in order to synchronise measurements; entry and exit points appeared as peaks in the strain signals. 

The scaled vehicle speeds adopted for the experiment are 0.46 m/s, 0.93 m/s and 1.63 m/s represented by S1, S2 

and S3 respectively. S1 to S3 give dimensionless speed parameters (𝛾) of 0.016, 0.032 and 0.056 respectively 

using equation (1).
27

 They are similar to speed parameters of 0.015, 0.029 and 0.059 estimated using speeds of 

10 km/h, 20 km/h and 40 km/h respectively for an existing 40.4 m bridge span with first bending mode of 2.35 

Hz.  

 

 
Figure 4. Experimental vehicle; (a) side view (b) end view showing accelerometer locations (arrows). 
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Figure 5. Vehicle propulsion system (a) vehicle connection (b) motor and belt (c) pulley wheel. 

 

Table 2. Vehicle model properties. 

Vehicle Mass (kg) 
Suspension stiffness 

(N/m) 

Suspension damping  

(N s/m) 

 Axle 1 Axle 2 Axle 1 Axle 2 Axle 1 Axle 2 

V1 7.9 13.445 2680 4570 16.006 27.762 

V2 7.9 13.445 4290 7310 13.991 35.112 

V3 8.355 17.530 2700 5940 18.023 65.829 

 

𝛾 =
𝑐

2𝑓𝑏,1𝐿
  (1) 

 

In equation (1), 𝛾 is the speed parameter, 𝑐 is the vehicle speed (m/s), 𝑓𝑏,1 is the first natural frequency of the 

bridge (Hz) and L is the bridge span length (m). This dimensionless parameter is important for the scaling of the 

experimental model as it is used to maintain a relationship between vehicle speed, frequency and span length for 

the 5.4 m beam which is similar to that for a 40.4 m bridge subject to real traffic.
23

 

 

Sensors and data acquisition electronics 
The accelerometers used for the bridge and vehicle were KYOWA AS-1GBZ1 small-capacity acceleration 

transducers with rated capacities of ±9.807m/s
2
 (±1g). The displacement transducers used for the bridge were 

CDP-25 transducers by Tokyo Sokki Kenkyjo Co. Ltd (TML) with 25 mm capacity, spring force of 3.4 N and 

sensitivity of 5 × 10
-6

 strain/mm. Three DC-104R dynamic strain recorder units by TML, fitted with BA104 

battery packs, were used for data acquisition and power supply; two units for bridge sensors and one for the 

vehicle (Figure 4). These units stored all data on compact flash memory cards. DC-7630 Dynamic Strain 

Recorder measurement software by TML was used for monitoring, collection and processing of measured data 

from the recorders. Data recorded on the unit fitted to vehicle was monitored remotely during crossings via a 

wireless LAN connection; the recorder was connected to a SX-2500CG wireless Ethernet adapter by Silex 

Technology for this purpose (Figure 4). It should be noted that a scanning frequency of 100 Hz was used by the 

data acquisition system for all experiments. 

 

Outline of experimental procedures 
The aim of the laboratory experiment is to verify that the global bridge stiffness can be extracted from the 

vehicle response. Therefore, a series of experiments are developed for this purpose and they are outlined briefly 

in this section.  
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Vehicle crossing measurements. Beam and vehicle accelerations and beam displacements are recorded 

during vehicle crossings for all vehicle models and speeds. The displacement measurements are used for the 

calibration of the VBI simulation model while the vehicle accelerations are used as input to the stiffness 

identification algorithm. An example of the vehicle accelerations obtained from a crossing for vehicle V1 and 

speed S2 is illustrated in Figure 6(a). By processing these accelerations using a fast Fourier transform (FFT) and 

plotting the corresponding power spectral density (PSD), Figure 6(b) is obtained. The spectral resolution is ± 

0.098 Hz here.  

 
Figure 6. Vehicle 1 and Speed 2 (V1S2) (a) axle 1 accelerations (b) spectrum of axle 1 accelerations. 

 

It can be seen from Figure 6(b) that axle 1 of the vehicle vibrates predominantly at its pitch frequency (3.91 Hz). 

It is found that the dynamic response of axle 2 (not shown here) is much less sensitive to the sprung mass pitch 

rotation of the vehicle as it has a higher axle weight than axle 1. However, a peak corresponding to the bridge 

natural frequency is also present at 2.44 Hz in Figure 6(b). This is lower than the frequency obtained from free 

vibration tests (2.69 Hz). Although the resolution of the spectrum is poorer here than that obtained in free 

vibration tests (± 0.048 Hz) due to the shorter signal length here, the frequency shift is too large for this to be the 

cause of the decrease. The decrease can be attributed to the coupling of the vehicle and beam during the crossing 

as the mass of the system increases; a number of researchers have observed and acknowledged similar trends
28,29

. 

Such variations are accounted for in the time-varying theoretical model via the coupling of the vehicle and 

bridge. 

 

Calibration of theoretical vehicle-bridge interaction model 
To allow for a comprehensive analysis of the experimental results, a VBI simulation model is created in 

MATLAB. The properties of the beam and vehicle used in this VBI model are those given in Table 1 and Table 

2 respectively. To minimise error due to modelling approximations, an FE model updating procedure
30,31

 is used 

which minimises the differences between simulated and experimental data in an optimisation problem. This type 

of procedure has been employed in the analysis of beam and bridge structures, examples of which can be found 

in the literature.
32-34

 Here, the Cross-Entropy (CE) method of optimisation
35

 is used to calibrate the global beam 

stiffness, EJ, in the theoretical VBI model. The objective function used to evaluate the performance of each 

candidate stiffness in the optimisation is defined as the sum of the squared differences between the simulated 

and measured displacement responses of the beam.  

 

Coupled vehicle-bridge interaction model 
The VBI is modelled as a coupled system (Figure 7) with the solution given at each time step using the Wilson-

Theta direct integration scheme. Similar models incorporating the coupling of the vehicle and bridge have been 

employed in the literature
23, 36-38 

and a review of these and other models has been carried out by González.
39
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Figure 7. Coupled vehicle-bridge interaction model. 

 

Vehicle model. The vehicle model in the coupled system is represented by a 2 degree of freedom (DOF) half-

car which crosses the bridge model at constant speed c (Figure 7).  It is a simplified vehicle model but it is 

sufficient to model the important aspects of the response of the experimental vehicle. The configuration of the 

two DOF model can be defined by coordinates 𝑦𝑠  and 𝜃𝑠 , the sprung mass bounce displacement,  and pitch 

rotation respectively. The vehicle body and axle component masses are represented by the sprung mass, 𝑚𝑠. A 

combination of springs of linear stiffness 𝐾𝑖  and viscous dampers with damping coefficient 𝐶𝑖  represent the 

suspension components for the front and rear axles (𝑖 = 1,2). Also, 𝐼𝑠 is the sprung mass moment of inertia and 

the distance of each axle to the vehicle’s centre of gravity (o) is given by 𝐷1 and 𝐷2.  

 

The equations of motion of the vehicle are obtained by imposing equilibrium of all forces and moments acting 

on the vehicle and expressing them in terms of the coordinates 

 

 𝑚𝑠�̈�𝑠 + 𝐹𝑡,1 + 𝐹𝑡,2 = 0  (2) 

 

𝐼𝑠�̈�𝑠 + 𝐷1𝐹𝑡,1 − 𝐷2𝐹𝑡,2 = 0  (3) 

 

where 𝐹𝑡,𝑖 is the dynamic interaction force between the vehicle and bridge at wheel 𝑖 

 

𝐹𝑡,𝑖 = 𝐾𝑖(𝑦𝑠 − (−1)
𝑖𝐷𝑖𝜃𝑠  −  𝑤𝑣,𝑖)  +  𝐶𝑖(�̇�𝑠 − (−1)

𝑖𝐷𝑖�̇�𝑠  −  �̇�𝑣,𝑖);  𝑖 = 1,2 (4) 

 

where 𝑤𝑣,𝑖 is the total displacement under wheel 𝑖. This parameter can be defined in terms of the road profile 

elevation and bridge displacement under wheel i: 𝑟𝑖 and 𝑤𝑏,𝑖 respectively as 

 

𝑤𝑣,𝑖 = 𝑤𝑏,𝑖 + 𝑟𝑖;    𝑖 = 1,2  (5) 

 

The experimental road profile heights 𝑟𝑖  are used for this model (Figure 3). Due to the stepped nature of the 

profile, difficulties can be anticipated in the theoretical model relating to the interaction force transmitted via the 

vehicle dashpots (Figure 7) as infinite velocities can occur. However, in reality, infinite velocities are avoided as 

the vehicle wheels do not experience point contact but contact over a portion of the wheel surface. Therefore, to 

avoid infinite velocities in the model, the wheel contact patch of the vehicle in the experiment is simulated by 

applying a moving average filter to the profile heights over a distance of 0.006 m, which corresponds to one-

fifth of the diameter of the wheel. As sprung mass acceleration measurements are recorded above the suspension 

of each axle in the experiment (Figure 4(b)), the relationship between the coordinates of the vehicle and the 

measurements is defined by the following equation 

 

�̈�𝑠,𝑖 = �̈�𝑠 − (−1)
𝑖𝐷𝑖�̈�𝑠 ;  𝑖 = 1,2  (6) 
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The vehicle system defined by equations (2) and (3) can also be written for the purpose of coupling with the 

bridge model as 

 

𝐌𝐯�̈�𝐯 + 𝐂𝐯�̇�𝐯 + 𝐊𝐯𝐲𝐯 = 𝐟𝐯  (7) 

 

where 𝐌𝐯, 𝐂𝐯, and 𝐊𝐯 are, respectively, the mass, damping and stiffness matrices of the vehicle while 𝐟𝐯 is the 

time varying force vector applied to the vehicle and 𝐲𝐯 = {𝑦𝑠, 𝜃𝑠}
T
 is the displacement vector of the vehicle. 

Expressions for these matrices and vectors are given in Appendix 1. 

 

The experimental properties given in Table 2 for the three vehicle models are used in conjunction with 𝐌𝐯 and 

𝐊𝐯 to carry out modal analysis on the theoretical model. The frequencies obtained from this analysis are given in 

Table 3. The mean frequencies obtained from vehicle acceleration spectra of five free vibration tests for each 

experimental vehicle model are also given in Table 3 for comparison; the standard deviations of the five free 

vibration tests are given in parentheses. The theoretical bounce frequencies match those of the experimental 

model very well. The pitch frequencies do not provide quite as good a match. This can be attributed to 

differences between the mathematical (2-D) and real physical models e.g. the pulley system, and measurement 

errors derived from the dominance of the body bounce frequency in free vibration tests which reduces the 

visibility of the identified pitch frequency peak in the vehicle acceleration spectrum. Such errors may reduce the 

accuracy of the stiffness identification algorithm thus the positive results presented in this paper indicate the 

strength of the algorithm. 

 

 Table 3. Vehicle model frequencies from modal analysis. 

Vehicle 
Body Bounce (Hz) Body Pitch (Hz)  

Theoretical Experiment Mean Theoretical Experiment Mean 

V1 2.93 2.93 (± 0) 3.92 4.24 (± 0.11) 

V2 3.71 3.62 (± 0) 4.96 5.35 (± 0.22) 

V3 2.91 2.91 (± 0) 3.72 3.62 (± 0.20) 

 

Bridge model. The bridge is represented by a simply supported FE beam model (Figure 7) of total span length 

L. It consists of 8 discretised beam elements with 4 degrees of freedom which have constant mass per unit 

length, µ, modulus of elasticity E and second moment of area J. However, to maintain continuity of 

displacement and slope between elements, neighbouring beam elements have common displacement and 

rotation at shared nodes. In addition, boundary conditions are applied by constraining the nodal displacement to 

zero at each end node. Thus, the beam has 16 degrees of freedom in total. The response of the beam model to a 

series of moving time-varying forces is given by the system of equations 

 

𝐌𝐛�̈�𝐛 + 𝐂𝐛�̇�𝐛 + 𝐊𝐛𝐰𝐛 = 𝐍𝐛 𝐟𝐢𝐧𝐭  (8) 

 

where 𝐌𝐛 , 𝐂𝐛  and 𝐊𝐛  are (n × n) global mass, damping and stiffness matrices of the beam model 

respectively, 𝐰𝐛 , �̇�𝐛 and �̈�𝐛 are the (n × 1) global vectors of nodal bridge displacements and rotations, their 

velocities and accelerations respectively, and 𝐍𝐛𝐟𝐢𝐧𝐭 
is the (n × 1) global vector of forces applied to the bridge 

nodes. Here, the parameter n = 18; this consists of the total number of degrees of freedom of the bridge (16) plus 

the two constrained nodal displacements at each end of the beam. The total interaction force between the vehicle 

and the bridge is described using the (nf   × 1) vector 

 

𝐟𝐢𝐧𝐭 = {
𝑃1 + 𝐹𝑡,1
𝑃2 + 𝐹𝑡,2

}  
(9) 
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where 𝑃𝑖  is the static load of axle 𝑖. 𝐍𝐛 is an (n × nf) location matrix that distributes the nf applied interaction 

forces on beam elements to equivalent forces acting on the nodes; for this half-car model, nf  = 2. The details of 

this matrix are given in Appendix 1. This location matrix can be used to calculate the bridge displacement under 

each wheel, 𝑤𝑏,𝑖, in equation (5) using 

{
𝑤𝑏,1
𝑤𝑏,2

} = 𝐍𝐛
T𝐰𝐛  

(10) 

 

Damping ratios of the experimental bridge calculated from free vibration tests were similar for the first two 

modes thus considering these modes,
40

 Rayleigh damping is adopted here to model the damping of the 

experimental beam using  

 

𝐂𝐛 =   𝐌𝐛 +  𝐊𝐛  (11) 

 

where  and  are constants. The damping ratio ξ is assumed to be the same for the first two modes and  and  

are obtained from  = 2 ξ12/(1+2) and  = 2 ξ/(1+2) where 1 and 2 are the first two natural 

frequencies of the bridge.
26 

 

Coupling of the vehicle – bridge interaction system. The vehicle and bridge systems are coupled at the 

contact point of the wheel via the interaction force 𝐟𝐢𝐧𝐭. Equations (7) and (8) are combined to form the coupled 

system of equations as 

 

𝐌𝐠�̈� + 𝐂𝐠�̇� + 𝐊𝐠𝐮 = 𝐟  (12) 

 

where 𝐌𝐠  is the combined system mass matrix, 𝐂𝐠  and 𝐊𝐠  are coupled time-varying system damping and 

stiffness matrices respectively and 𝐟 is the system force vector (see Appendix 1). Also, 𝐮 = {𝐲𝐯, 𝐰𝐛}
𝐓  is the 

displacement vector of the system. Equation (12) is solved using the Wilson-Theta integration scheme
41,42

 using 

the optimal value of the parameter θ = 1.42 (correct to 3 significant figures) for unconditional stability.
43

 

Calibration using Cross Entropy Optimisation 
As the vehicle model has been calibrated prior to experimental testing, the focus of the calibration presented 

here is on the properties of the prismatic beam, specifically its stiffness, EJ (N m
2
). The value provided by the 

manufacturer is EJdesign = 115,400 N m
2
. However, due to the installation of displacement transducers to take 

measurements, it is expected that the apparent or effective stiffness of the beam during the experiment will be 

higher as the CDP-25 transducers provide some resistance to displacement. It must also be noted that there can 

be a difference between the static modulus of elasticity (obtained from static tests) and dynamic modulus of 

elasticity (obtained from dynamic or free vibration tests). Previous research has shown that a structure may react 

with a higher modulus to a dynamic load than to a static one. These differences have been found to be up to 20% 

and higher in bridge structures.
44

 Therefore it is necessary to calibrate the theoretical model to take account of 

this increase.
30

 

 

The CE method of optimisation
35

 has been implemented by Walsh and González
45

 to determine the stiffness 

distribution throughout a FE beam model from its response to a static load. The CE method is an optimisation 

approach which employs Monte Carlo simulation to generate populations of trial solutions which converge to a 

single optimal solution. The process involves two main stages; (1) Generation of a random sample of data (e.g. 

in this paper, candidate stiffness values) and (2) Updating of the mechanism of random data generation to 

produce an improved sample in the next generation. An advantage of this approach is its relative ease of 

implementation while it is insensitive to local optima.
46,47

  

 

In this paper, the approach of Walsh and González
45

 is adapted to determine the global stiffness value for the FE 

beam model which gives the best fit between theoretical static and measured quasi-static beam displacements. 

Hence, the optimisation problem is formulated as a least squares minimisation of the difference, over Nj time 

steps, between these displacements at quarter span, mid-span and three-quarter span of the beam. The objective 
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function is given below in equation (13), where tj is the jth time step and xk is the kth measurement location on 

the beam. The theoretical static displacement responses of the beam, 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑠𝑖𝑚, are simulated by solving the 

coupled system described by equation (12) with the mass and damping matrices set to zero. A low pass filter is 

applied to the measured displacements at 1 Hz to obtain the measured quasi-static responses, 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑏𝑠. The CE 

method is used to obtain the optimal global beam stiffness values for all vehicle models and speeds investigated 

in the experiment. A constant stiffness distribution throughout the beam is assumed.  

 

𝑂(𝐸𝐽) = ∑∑(𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑜𝑏𝑠(𝑥𝑘 , 𝑡𝑗) − 𝑤𝑠𝑡𝑎𝑡𝑖𝑐,𝑠𝑖𝑚(𝑥𝑘 , 𝑡𝑗, 𝐸𝐽))
2

𝑁𝑗

𝑗=1

3

𝑘=1

 

 

(13) 

 

 

The results of the optimisation for all vehicles and speeds are given in Table 4. These values are used for the 

calibrated beam in simulations using the coupled VBI model. On average, these values exceed the design 

stiffness, EJdesign, by approximately 17%. The standard deviation of these values is approximately 1% of the 

mean. Table 4 also shows that the optimal stiffness value decreases with increasing vehicle speed. Although this 

variation is small, it can be attributed to two related factors; vehicle speed and the length of time the vehicle is 

on the beam. For different vehicle speeds, unfiltered dynamic effects in measured responses between 0-1 Hz 

vary and influence this decrease. At higher speeds, the vehicle is on the beam for a shorter length of time. This 

in turn decreases the length of time within which the displacement transducers can influence the beam 

displacement. This effect manifests itself as a slight decrease in stiffness with increasing speed. The optimal 

stiffness value also varies depending on the vehicle model used, illustrating the importance of calibrating the 

theoretical model for all variations of this experimental setup. 
 

Table 4. Results of CE method for calibration of beam stiffness. 

 Optimal Stiffness Values  × 10
5 
(N m

2
) 

Vehicle Speed 

 S1 S2 S3 

V1 1.370 1.343 1.336 

V2 1.359 1.350 1.341 

V3 1.374 1.364 1.356 

 

Drive-by Stiffness Identification 
The experimental investigation includes the validation of a novel algorithm which aims to identify the stiffness 

of a bridge from vehicle acceleration measurements. In this section, the global beam stiffness is found from 

vehicle acceleration signals only, without recourse to the bridge responses used in the calibration of the VBI 

model. The idealisation of the experimental vehicle as a two degree of freedom system in the coupled VBI 

model with both degrees of freedom measured results in a well-conditioned problem. Therefore, elements of a 

similar algorithm employed by González et al.
25

 for the purpose of bridge damping identification are 

incorporated to take account of this idealisation. The details of the algorithm are summarised briefly here. The 

target bridge stiffness values to be identified by the algorithm in the experiment are those found by calibration 

and given in Table 4. 

 

The stiffness identification algorithm involves a sequential procedure comprising of six main steps and these are 

outlined in Figure 8. The measured vehicle accelerations from the experiment are used as input to the algorithm. 

Firstly, the acceleration vector �̈�𝐯 of equation (7) is obtained by converting the acceleration measurements �̈�𝑠,𝑖 

for axle 𝑖 (= 1,2) to sprung mass bounce �̈�𝑠  and pitch accelerations �̈�𝑠  using equation (6). The velocity and 
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displacement vectors of equation (7), �̇�𝐯 = {�̇�𝑠, �̇�𝑠}
T and 𝐲𝐯 = {𝑦𝑠, 𝜃𝑠}

T respectively, are obtained by integrating 

the accelerations with respect to time. 

  
Figure 8. Bridge stiffness identification algorithm. 

 

The second step involves calculating the vector of total contact forces, 𝐟𝐢𝐧𝐭 . Equations (2) and (3), which relate 

to equation (7), are solved as a pair of simultaneous equations to obtain the dynamic forces 𝐹𝑡,𝑖 while the static 

loads 𝑃𝑖  are known from prior measurement, allowing  𝐟𝐢𝐧𝐭  to be established from equation (9). The total 

displacements under each wheel, 𝑤𝑣,𝑖, are calculated in the third step by solving equation (4) as a 1st order 

differential equation in 𝑤𝑣,𝑖 using the Runge-Kutta method. A linear correction is applied to the displacements 

𝑤𝑣,𝑖  to minimise any low frequency drift error arising from the integration of accelerations. The correction 

technique employed is described by González et al.
25

 and is based on the true bridge displacement being zero at 

the entrance and the exit to the bridge, i.e., at 0 m and 5.4 m respectively. 

 

In the fourth step, the total contact forces, 𝐟𝐢𝐧𝐭 , obtained in the second step, are applied directly to the FE beam 

model described earlier (Figure 7). An initial estimate of the stiffness, EJest, is given to the beam to obtain the 

displacement vector  𝐰𝐛 due to the moving loads in  𝐟𝐢𝐧𝐭  (equation (8)). Then, the displacement response of the 

beam, 𝑤𝑏,𝑖, under each force is calculated using equation (10). This process is repeated for stiffness estimates 

ranging from 1 × 10
3
 to 9 × 10

8
 N m

2
 in steps of 0.1. These estimates can be represented by (a × 10

b
) N m

2
 

where a ranges from 1 to 9 in steps of 0.1. As Table 4 shows that the ‘true’ stiffness values fall between 1.3 × 

10
5
 N m

2
 and 1.4 × 10

5
 N m

2
, the step is reduced to 0.01 between these values for a. The power b ranges from 3 

to 8 in steps of 1. This gives a total of 540 stiffness estimates for the beam, which in turn provides 540 estimates 

of 𝑤𝑏,𝑖 for wheel 𝑖. 
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In the fifth step, equation (5) is rearranged to obtain road profile height estimates, 𝑟𝑒𝑠𝑡,𝑖, under each wheel by 

subtracting 𝑤𝑏,𝑖 (step 4) from the total displacements 𝑤𝑣,𝑖 (step 3) giving 

 

𝑟𝑒𝑠𝑡,𝑖 = 𝑤𝑣,𝑖 − 𝑤𝑏,𝑖 ;   𝑖 =  1,2  (14) 

 

Here, a band pass filter (with lower and upper cut-off frequencies of 2 and 10 Hz respectively) is also applied to 

the profile estimates, 𝑟𝑒𝑠𝑡,𝑖. This removes bridge static displacements which, after linear correction, still suffer 

from accumulated errors due a large integration drift. Importantly, the use of this band pass filter to remove low 

frequency errors does not affect the algorithm accuracy as the vibration of the first mode of the bridge, related to 

its stiffness, remains. 

 

The bridge stiffness is identified in the final sixth step. As the wheels follow each other along the same wheel 

path, the profile estimates under each wheel ( 𝑟𝑒𝑠𝑡,1 and 𝑟𝑒𝑠𝑡,2) should be equal for the correct stiffness value. A 

least squares error minimisation process is used to identify the optimal stiffness value from the range of 

estimates investigated. It consists of a summation over all measurements in time, t. The optimal solution is 

identified as the stiffness estimate which provides the minimum least squares error between the profile estimates 

under each wheel (equation (15)).  

 

𝑟𝑒𝑟𝑟𝑜𝑟 =∑(𝑟𝑒𝑠𝑡,1 − 𝑟𝑒𝑠𝑡,2)
2
 

𝑡

  (15) 

Results and discussion  
Figure 9 shows the least squares error between profile estimates under the wheels (𝑟𝑒𝑠𝑡,𝑖) (equation (15)) for 

vehicle V1 and speed S1, on a log-log scale. The minimum error can be seen to occur as a local minimum in the 

region of the true stiffness value. Figure 10(a) and (c) show the total measured axle contact forces for vehicle 

V1 and speed S2 which are used in the algorithm. The corresponding forces predicted by the coupled VBI 

model are also plotted while the frequency spectra of all forces are included in Figure 10(b) and (d) for 

comparison and show that there is a reasonable match between them.  

 

 
Figure 9. Least squares error, 𝑟𝑒𝑟𝑟𝑜𝑟 , versus global stiffness estimates (EJest ) for V1 and S1. Target stiffness 

value is 1.37 × 10
5
 N m

2
. 

 



13 

 

 
Figure 10. Contact forces 𝐟𝐢𝐧𝐭 and their spectra calculated from experiment and predicted using coupled VBI 

model for vehicle V1 and speed S2. (a) Axle 1 forces (b) Axle 1 force spectrum (c) Axle 2 forces (d) Axle 2 

force spectrum. 

 

Table 5 shows the identified global stiffness values from the algorithm for all vehicles and speeds tested. The 

percentage errors are given in Table 6, corresponding to the error between the identified stiffness values and 

those obtained from calibration in Table 4. For each case, the crossings are repeated five times to test the 

repeatability of the method with the mean values given in Table 5. The standard deviations of the identified 

values from the five tests are also given in Table 6 as percentages of the mean values. The results show that the 

algorithm detects the correct stiffness value accurately; within 5% error for vehicles V2 and V3 at all speeds and 

for vehicle V1 at speeds S1 and S2. The test for vehicle V1 and speed S3 gives the least accurate prediction with 

an error of 7.2%. Aside from this case, the algorithm is not very sensitive to the selection of speed. A strength of 

this algorithm is its repeatability, which can be seen from Table 6, with the average standard deviation being 

5.22%. 

 

Table 5. Identified bridge stiffness values. 

 Beam Stiffness, EJidentified , × 10
5 
(N m

2
) 

Vehicle Speed 

 S1 S2 S3 

V1 1.314 1.342 1.240 

V2 1.382 1.284 1.312 

V3 1.406 1.408 1.306 

 

Table 6. Percentage errors and standard deviations of identified stiffness values.  

 Percentage Error (%)  Standard deviation (%) 

Vehicle Speed 

 S1 S2 S3  S1 S2 S3 

V1 -4.10 -0.07 -7.20  1.15 3.96 7.21 

V2 1.69 -4.89 -2.16  9.20 6.27 5.56 

V3 2.33 3.23 -3.69  4.31 4.09 5.24 
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Overall, these are promising results illustrating the potential of implementing the stiffness identification 

algorithm as part of a drive-by bridge inspection system. In practice, the accuracy of the algorithm will depend 

on the existence of an FE model of the bridge and vehicle. It follows that model calibration forms an important 

part of this approach. Also, although vehicle speed has been highlighted in the literature as being important for 

the detection of bridge dynamic parameters from the vehicle response, it is not a critical parameter when 

estimating bridge stiffness using this algorithm. 

 

It is also important to note that the experiment was operated under controlled conditions in a laboratory; it was 

not exposed to changes in environmental or operational effects such as temperature, humidity, wind and other 

traffic loads. In reality at full scale, stiffness-related bridge frequency variations due to such effects are typically 

observed to be of the order of 5-10% but can exceed this, while damage may cause relatively smaller 

variations
48-51

. Therefore, although the percentage errors observed for the experimental results are quite low in 

this paper, the conditions under which this algorithm could be implemented for damage detection may be 

limited in practice by environmental and operational factors, such as traffic and temperature in particular. As 

this method is aimed at short to medium span bridges, the probability of other traffic on the bridge can be small. 

However, in general it may be necessary to incorporate models which remove or reduce the influence of these 

factors
3,48,52

.  

 

Conclusions 
This paper presents the laboratory experimental validation of an algorithm for the identification of global bridge 

stiffness from a vehicle response. For the purpose of the validation, a coupled vehicle-bridge interaction model 

is calibrated using the Cross-Entropy method of optimisation. The calibrated stiffness of the beam is found to be 

higher than the value provided by the manufacturer.  

 

Using the experimental data, it is found that for 8 of the 9 vehicle-speed combinations, the algorithm identifies 

the correct value of stiffness within a 5% margin of error while the average standard deviation of the stiffness 

estimates is 5.2%. In practice, the repeatability of the method and its insensitivity to speed are advantages. It is 

also acknowledged that in practice, preliminary calibration of an FE model of the bridge will be required and 

environmental and operational effects will need to be considered. 

 

The results experimentally verify the feasibility of identifying the bridge stiffness from the acceleration 

measurements of a moving vehicle for the scenarios investigated. Although a number of difficulties are likely to 

arise in the field due to modelling inaccuracies, the results of this validation suggest that an instrumented vehicle 

has the potential to be implemented as a low cost method for the periodic monitoring of the stiffness of short to 

medium span bridges as part of a drive-by inspection system. 
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Appendix 1 

𝐌𝐯 = [
𝑚𝑠 0
0 𝐼𝑠

] 

𝐂𝐯 = [
𝐶1 + 𝐶2 𝐷1𝐶1 − 𝐷2𝐶2

𝐷1𝐶1 − 𝐷2𝐶2 𝐷1
2𝐶1 + 𝐷2

2𝐶2
] 
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𝐊𝐯 = [
𝐾1 + 𝐾2 𝐷1𝐾1 − 𝐷2𝐾2

𝐷1𝐾1 − 𝐷2𝐾2 𝐷1
2𝐾1 + 𝐷2

2𝐾2
] 

𝐟𝐯 =

{
 
 

 
 ∑(𝐾𝑖

2

𝑖=1

𝑤𝑣,𝑖 +  𝐶𝑖�̇�𝑣,𝑖)

−∑(−1)𝑖𝐷𝑖(𝐾𝑖

2

𝑖=1

𝑤𝑣,𝑖 +  𝐶𝑖�̇�𝑣,𝑖)
}
 
 

 
 

 

𝐌𝐠 = [
𝐌𝐯 0
0 𝐌𝐛

], 𝐂𝐠 = [
𝐂𝐯 𝐂𝐯𝐛
𝐂𝐛𝐯 𝐂𝐛 + 𝐂𝐛𝐛

], 𝐊𝐠 = [
𝐊𝐯 𝐊𝐯𝐛
𝐊𝐛𝐯 𝐊𝐛 + 𝐊𝐛𝐛

] 

𝐂𝐛𝐯 = [−𝐍𝐛 [
𝐶1 𝐷1𝐶1
𝐶2 −𝐷2𝐶2

]]
𝑛 × 2

, 𝐂𝐯𝐛 = 𝐂𝐛𝐯
T 

𝐊𝐛𝐯 = [−𝐍𝐛 [
𝑲𝟏 𝑫𝟏𝑲𝟏

𝑲𝟐 −𝑫𝟐𝑲𝟐
]]
𝒏 × 𝟐

, 𝐊𝐯𝐛 = 𝐊𝐛𝐯
𝐓 

𝐂𝐛𝐛 = [𝐍𝐛 [𝐍𝐛 [
𝐶1 0
0 𝐶2

]]
𝑇

]
𝑛 × 𝑛

 

𝐊𝐛𝐛 = [𝐍𝐛 [𝐍𝐛 [
𝐾1 0
0 𝐾2

]]
𝑇

]
𝑛 × 𝑛

 

𝐟 =

{
 
 
 

 
 
 ∑(𝐾𝑖

2

𝑖=1

𝑟𝑖 + 𝐶𝑖�̇�𝑖)

−∑(−1)𝑖𝐷𝑖(𝐾𝑖

2

𝑖=1

𝑟𝑖 + 𝐶𝑖�̇�𝑖)

𝐍𝐛 {
𝑃1 − 𝐾1𝑟1 − 𝐶1�̇�1
𝑃2 − 𝐾2𝑟2 − 𝐶2�̇�2

}
}
 
 
 

 
 
 

(𝑛 + 2) × 1

 

𝐍𝐛 = [

0 0
𝑁1 0
0 𝑁2
0 0

]

𝑛 × 2

 

 

The location matrix 𝐍𝐛  contains zero entries everywhere except the locations of the coordinates which 

correspond to the nodal displacements and rotations of the beam elements that the vehicle is in contact with. It 

should be noted that entries corresponding to the boundary conditions are also zero. The Hermitian shape 

function 𝑁𝑖 for the 𝑖th interaction force located on an element 𝑗 can be written in global coordinates as 

𝑁𝑖 = 

{
 
 
 
 
 

 
 
 
 
 1 − 3 (

𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

2

+ 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

3

(𝑥𝑖 − (𝑗 − 1)𝑙) −
2(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2

3 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

2

− 2 (
𝑥𝑖 − (𝑗 − 1)𝑙

𝑙
)

3

 

−
(𝑥𝑖 − (𝑗 − 1)𝑙)

2

𝑙
+
(𝑥𝑖 − (𝑗 − 1)𝑙)

3

𝑙2 }
 
 
 
 
 

 
 
 
 
 

 

where 𝑙 is the length of the beam element and (𝑗 − 1)𝑙 ≤ 𝑥𝑖 ≤ 𝑗𝑙. 
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