
1 
 

Identification of bridge mode shapes using Short Time Frequency Domain 

Decomposition of the responses measured in a passing vehicle 

A. Malekjafarian 1,3*, E.J. OBrien 2,3 

1 Research Assistant, email: abdollah.malekjafarian@ucdconnect.ie 
2 Professor, email: eugene.obrien@ucd.ie 
3 School of Civil, Structural & Environmental Engineering, University College Dublin, Ireland  

 

* Corresponding author. Postal address: School of Civil, Structural & Environmental 

Engineering, University College Dublin, Newstead, Belfield, Dublin 4, Ireland.  

Phone number: +353 1 7163209.  

Email address: abdollah.malekjafarian@ucdconnect.ie, a.malekjafarian@gmail.com 

 

Abstract 

This paper processes the signals from accelerometers mounted on a vehicle travelling over a 

bridge. Short Time Frequency Domain Decomposition (STFDD) is used to estimate bridge mode 

shapes from the dynamic response of the vehicle. In Frequency Domain Decomposition (FDD), 

several segments are defined on the bridge and the measurement is performed using two 

instrumented axles. Here, the FDD method is employed in a multi-stage procedure applied to the 

bridge segments in sequence. A rescaling process is used to construct the global mode shape vector. 

The performance of the proposed method is validated using numerical case studies. In other 

indirect bridge identification methods, the road profile may excite the vehicle, making it difficult to 

detect the bridge modes. This is addressed using two concepts: applying external excitation to the 

bridge and subtracting signals in the axles of successive trailers towed by the vehicle. The results 

obtained from the numerical investigation demonstrate that the proposed method can estimate the 

bridge mode shapes with acceptable accuracy. Sensitivity of the method to added white noise is 

also investigated. 

Key words: Vehicle bridge interaction; Frequency Domain Decomposition; Bridge; Mode shape; 

Indirect; Identification; SHM; Damage detection; FDD; VBI. 

1. Introduction 

There is a long history of the use of natural frequency as an indicator of structure and bridge health 

[1, 2]. Damping ratios [3, 4] and mode shapes [5] have also been used as indicators of health and 

damage. The dynamic properties of bridges continue today to be a useful evaluation tool in non-

destructive damage assessment. The principle is that damage in a bridge leads to some loss of 

stiffness and consequently to changes in its dynamic properties [6, 7]. In most vibration-based 

bridge health monitoring techniques, large numbers of sensors are installed on the structure to 

monitor the dynamic properties. Then, conventional modal testing methods [6] or output-only 

modal methods [8] can be used to process the measured signals. These approaches, in which 

sensors are installed directly on the bridge, are known as direct methods [9].  

The idea of an indirect approach, in which the natural frequencies of bridge structures are 

extracted from sensors in a passing vehicle, was first proposed by Yang et al. [10, 11]. In this 
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approach, a vehicle is instrumented and dynamic properties of the bridge are extracted by 

processing the dynamic response of the moving vehicle to the bridge. Through interaction between 

bridge and vehicle, the moving vehicle can be considered as both exciter and receiver. The 

measured vehicle response needs to include high levels of bridge dynamic response. The feasibility 

of this method in practice was experimentally confirmed by Lin and Yang [12] by passing an 

instrumented vehicle over a highway bridge in northern Taiwan. In the case that only bridge 

frequency is required, the indirect approach showed many advantages in comparison with direct 

methods in terms of equipment needed, specialist personnel on site, economy, simplicity, efficiency 

and mobility.  

Bu et al. [13] also proposed a bridge condition assessment method based on the dynamic response 

of a passing vehicle. Yang and Chang [14] applied a pre-processing approach to the measured 

vehicle response using empirical mode decomposition (EMD) to enhance the resolution of the 

approach. The effect of several key parameters on the dynamic response of the vehicle passing over 

the bridge was studied in [15]. It was demonstrated that,  unsurprisingly, a larger bridge/vehicle 

acceleration amplitude ratio results in better accuracy in identifying the bridge frequencies.  

McGetrick et al. [16] demonstrated that with a road profile, better accuracy can be obtained at 

lower vehicle speed. At higher speeds, the road profile’s influence on the vehicle vibration 

dominates the spectrum, hiding the bridge frequency. They showed that changes in bridge damping 

could be efficiently monitored using the proposed instrumented vehicle. Chang et al. [17] showed 

that the existence of road surface roughness results in the appearance of vehicle frequencies which 

cannot be neglected in practice. The feasibility of using an instrumented vehicle to detect the 

natural frequency and changes in structural damping of a model bridge was investigated by Kim 

[18, 19] through a scaled laboratory moving vehicle experiment . Yang et al. [20] used two 

connected vehicles to eliminate the blurring effect of road surface roughness when identifying 

bridge frequencies. 

A novel method for the identification of the damping ratio of a bridge using acceleration 

measurements from a moving vehicle is proposed in [21]. The appearance of vehicle frequencies in 

the sensor acceleration spectrum can be a problem, especially when they are close to the bridge 

first natural frequency [16]. Yang et al. [22] propose some filtering techniques to remove vehicle 

frequency from the spectrum but these are not always effective. Several types of model test carts 

were designed and used to improve the experimental accuracy of identifying bridge frequencies 

from vehicle response in [23]. Keenahan et al. [24] propose a subtraction idea to remove the effect 

of road profile in the measured response of the vehicle. The obtained results were used to detect 

the damping changes in the bridge. 

Zhang et al. [25] propose a damage index that is based on the squares of the bridge mode shapes, 

extracted from the acceleration of a passing vehicle applying controlled dynamic forces. The 

method gives an estimate of the mode shapes. Zhang et al. [26] extended this concept to find the 

operating deflection shape curvature of the bridges. An optimization method is proposed in [27] to 

identify bridge frequencies as well as bridge stiffness indirectly using a passing vehicle. Recently, 

vehicle-based measurement has been extended to construct the mode shapes of bridges 

theoretically [28]. The instantaneous amplitude history of the bridge component response was 

obtained using a Hilbert transform of the response measured in the passing vehicle. Although the 

method worked well when a smooth road profile was used, the accuracy was less in the presence of 

road roughness. The sensitivity of the method to measurement noise was not considered.  
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In recent years, several researchers have developed methods to identify the bridge frequency from 

the acceleration signal in a  passing vehicle [10, 11, 22, 23] and to improve the accuracy of the 

results. In addition, some authors  obtained the damping ratio of the bridge using indirect 

approaches [21, 24], but very few [28] have obtained mode shapes of the bridge indirectly. 

Estimation of bridge mode shape is very important in a dynamic investigation of a bridge. For 

instance, there are discontinuities at the damage points in the mode shapes of a damaged bridge, 

including slope discontinuities at cracks [29, 30]. Furthermore, the bridge mode shape can be used 

as an important tool in model updating of a bridge [31]. 

In this paper a novel Short Time Frequency Domain Decomposition (STFDD), using multi-stage 

measurements, is proposed to obtain bridge mode shape indirectly from accelerations in two 

connected passing axles. The proposed method is based on the Frequency Domain Decomposition 

(FDD) method that is an output-only modal testing method. This was first proposed by Brincker et 

al. [32] to obtain modal parameters of a structure from direct measurements. The proposed 

method involves two main parts. In the first part, several segments are defined in the bridge and 

then a multi-stage measurement procedure is done based on the defined segments. The FDD 

method is applied to the time history acceleration responses from the two following axles in each 

stage. As a result, local mode shape elements are estimated in each stage in the first part of the 

method. In the second part, a correction procedure is performed to construct the global mode 

shape vectors of the bridge from the local estimated mode shape elements. 

Numerical case studies are investigated using Finite Element (FE) models of vehicle bridge 

interaction (VBI) to validate the effectiveness and performance of the proposed method. As noted 

by many authors [16, 17, 20] the presence of road roughness causes the dominance of vehicle 

frequencies. Therefore, in the present study, two concepts are tested to address this problem: (a) 

excitation of the bridge by traffic other than the test vehicle and (b) subtraction of signals 

measured on following axles. The simulations confirm the capability of the proposed method to 

identify the mode shapes of a bridge using signals from passing vehicles. Only one accelerometer is 

assumed on each of the two axles so the proposed method is more efficient than traditional modal 

testing methods, which usually require the installation of several sensors on the structure. 

 

2. Finite Element modelling of vehicle bridge interaction 

In recent years, much research has been carried out on the modelling of vehicle bridge interaction 

(VBI) [33-36]. González et al. [37] carry out a comprehensive review of coupled and uncoupled VBI 

models in the literature. A Finite Element (FE) VBI model similar to that used by Keenahan [24] is 

used here for the numerical investigation of the proposed method. In this model, VBI is modelled as 

a coupled system in which the solution is calculated at each time step. The vehicle and bridge 

models and the iterative VBI procedure employed in this paper are set out in the following sub-

sections. 

 

2.1 Vehicle model  

The two-quarter-car model shown in Fig. 1 illustrates many of the important characteristics of VBI 

[38]. This is used here to represent a 2-axle vehicle and, not connecting quarter-cars is a deliberate 

simplification. Each quarter-car has two independent degrees of freedom corresponding to the 

translational displacements of body bounce, ys and axle hop, yu. The vehicle body and axle 
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component masses are represented by ms and mu (sprung and unsprung). The axle mass connects 

to the road surface via a spring with linear stiffness kt which represents the tyre. The equations of 

motion of the vehicle model are obtained by imposing equilibrium of all forces and moments acting 

on the masses and expressing them in terms of the degrees of freedom: 

 

𝑀𝑣�̈�𝑣 + 𝐶𝑣�̇�𝑣 + 𝐾𝑣𝑦𝑣 = 𝑓𝑖𝑛𝑡 

 

(1) 

where 𝑀𝑣, 𝐶𝑣 and 𝐾𝑣 are the respective mass, damping and stiffness matrices of the vehicle and �̈�𝑣, 

�̇�𝑣 and 𝑦𝑣 are the respective vectors of nodal acceleration, velocity and displacement. 𝑓𝑖𝑛𝑡 is the 

time-varying dynamic interaction force vector applied to the vehicle degrees of freedom. 

 

 

Figure 1: Two following quarter-cars travelling over a bridge. 

 

2.2 Bridge model  

A simply supported beam of total span length L is modelled using the FE method to represent the 

bridge (Fig. 1). The model consists of discretised beam elements with 4 degrees of freedom (2 per 

node) which have constant mass per unit length, m, modulus of elasticity E and second moment of 

area J. 

 

The response of the beam model to a series of moving time-varying forces is given by the system of 

equations: 

𝑀𝑏�̈�𝑏 + 𝐶𝑏�̇�𝑏 + 𝐾𝑏𝑦𝑏 = 𝑓𝑖𝑛𝑡 

 

(2) 

where 𝑀𝑏, 𝐶𝑏 and 𝐾𝑏 are global mass, damping and stiffness matrices of the beam model, 

respectively and �̈�𝑏 , �̇�𝑏 and 𝑦𝑏 are the vectors of nodal bridge accelerations, velocities and 

displacements, respectively. 

 

The damping ratio of the bridge, 𝜉, is considered to be low. Although complex damping mechanisms 

may be present in the structure, viscous damping is typically assumed for bridge structures and is 

deemed to be sufficient to reproduce the bridge response accurately. Therefore, Rayleigh damping 

is adopted here to model viscous damping and is given by: 

 

𝐶𝑏 = 𝛼𝑀𝑏 + 𝛽𝐾𝑏 

 

(3) 
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where 𝛼 and 𝛽 are constants. The damping 𝜉 is assumed to be the same for all modes and 𝛼 and 𝛽 

are obtained from 𝛼 = 2𝜉𝜔1𝜔2/(𝜔1 + 𝜔2) and 𝛽 = 2𝜉/(𝜔1 + 𝜔2) where 𝜔1 and 𝜔2 are the first 

two natural frequencies of the bridge [39]. 

 

2.3 Coupling of the VBI system 

The dynamic interaction between the vehicle and the bridge is implemented in MATLAB. The 

vehicle and the bridge are coupled at the tyre contact points via the interaction force vector. 

Combining equations (1) and (2), the coupled equation of motion is formed as: 

 

𝑀𝑔�̈� + 𝐶𝑔�̇� + 𝐾𝑔𝑢 = 𝐹 

 

(4) 

where 𝑀𝑔 and 𝐶𝑔 are the combined system mass and damping matrices, respectively, 𝐾𝑔 is the 

coupled time-varying system stiffness matrix and F is the system force vector. The vector, 

𝑢 = {𝑦𝑣 , 𝑦𝑏}𝑇 , is the displacement vector of the system. The equations for the coupled system are 

solved using the Wilson-Theta integration scheme [40]. The optimal value of the parameter 𝜃 

=1.420815 is used for unconditional stability in the integration scheme. The initial condition of the 

solution is considered to be zero displacement, velocity and acceleration in all simulations.  

 

3. Theory of Short Time Frequency Domain Decomposition method 

In this section, the theory of estimation of the bridge mode shapes from the vehicle response using 

the proposed new method is described. The method contains two fundamental elements; first, 

applying the FDD method to the measured response of two following vehicles in several stages and 

second, correction of the estimated local mode shapes in each stage using a rescaling procedure. In 

order to introduce the method, a short theoretical background of the FDD method is first 

presented. 

 

3.1 Theoretical background to the FDD method 

FDD is an output-only modal analysis method in the frequency domain, first proposed by Brincker 

et al. [32]. This approach uses the fact that, in a lightly damped structure, modes can be estimated 

from the spectral densities calculated under a white noise input. In order to obtain the natural 

frequencies and mode shapes, the power spectral density matrix of the response for each frequency 

is decomposed by applying Singular Value Decomposition (SVD) to the matrix [41]: 

 

𝐺𝑦𝑦(𝜔𝑖) = [𝑈]𝑖[𝛴]𝑖[𝑈]𝑖
𝐻 

 

(5) 

where [𝑈]𝑖 = [{𝑢}𝑖1, {𝑢}𝑖2, … , {𝑢}𝑖𝑚] is the unitary matrix including the singular vectors {𝑢}𝑖𝑘 and 

[𝛴]𝑖 is a diagonal matrix including singular values 𝜎𝑖𝑘. The superscript "H" indicates the complex 

conjugate of the matrix and j is equal to √−1. If singular values obtained from outputs of the 

structure are plotted in an SVD diagram, dominant peaks are natural frequencies of the structure 

and the corresponding singular vectors are mode shapes [25]. More details of the FDD method are 

provided in the literature [32, 41]. 
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3.2 STFDD method 

Many studies have been reported in the literature that use measured accelerations in a passing 

vehicle for identification of bridge fundamental frequency and damping ratio [10, 11, 22-24, 26]. 

The measured signal from the vehicle consists of both the bridge response (indirectly) and the 

vehicle response. Therefore, the fundamental frequency of the bridge and the vehicle frequency are 

both observable in the fast Fourier transform (FFT) spectrum of the vehicle response. The STFDD 

method is based on this fact that, if the FDD method is applied to the measured signals from 

sensors installed on the two following axles in discrete short time periods, the system mode shape 

can be obtained from a multi-stage procedure. In this paper, the system mode shape is taken as an 

approximation of the bridge mode shape. 

The bridge is divided into a number of segments, each equal in length to the axle spacing. In this 

example, the axle spacing is, s=L/5 and the bridge is divided into five segments, as illustrated in Fig. 

2. Four periods (stages) of measurment (Fig. 2) are defined using the five segments of the bridge. 

The initial locations of the quarter-cars in each stage are shown dotted and the final locations with 

solid lines.  

 

Figure 2: Measurement stages in a 5-segments example. 

Two short signals are measured in each stage that are assembeled in a matrix:  

�̈�𝑗 = [
�̈�𝑗,𝑗

�̈�𝑗,𝑗+1
]      j=1:4 

 

(6) 



7 
 

where �̈�𝑗,𝑗+1  and �̈�𝑗,𝑗 are the short acceleration response vectors that are measured from axle 1 and 

axle 2, respectively where the first index indicates the stage number and the second indicates the 

segment number that the response corresponds to. Therefore �̈�𝑗  is the response matrix obtained 

from each stage. The outputs of the measurement procedure in this case are four matrices of data, 

each including two discrete signals.  

In order to estimate the  mode shape vector for each stage, the FDD method is applied to the 

measured data �̈�𝑗 from each stage. Hence the singular value diagram can be  plotted and the natural 

frequency and two-element vector describing the mode shape can be obtained for each stage as 

shown in the right hand side of Fig. 2. In this example, four 2-element vectors of mode shape are 

obtained at four different locations which are called local mode shape vectors {𝜑𝑗,𝑗, 𝜑𝑗,𝑗+1}𝑇. To 

estimate the global mode shape vector, a relationship between the local mode shape vectors from 

the different stages must be established. For this purpose, a progressive rescaling procedure is 

developed.  

The basis of the proposed STFDD method is that the measured signal from each segment of the 

bridge represents the dynamic beahaviour of the bridge for that segment. The first and second 

elements of the global mode shape vector which are for the first and second segments respectively, 

are obtained from the first stage:  

Φ1 = 𝜑11 

 
(7) 

Φ2 = 𝜑12 

 
(8) 

where Φ1 and Φ2 are the global mode shape elements corresponding to the mid-points of the first 

and the second segments of the bridge. As the signals from Stages 1 and 2 are not measured at the 

same time, 𝜑23  must be rescaled to find the global mode shape of segment 3. The correction ratio is 

defined based on the local mode shape elements obtained for the common segment in Stages 1 and 

2 which are 𝜑22  and 𝜑12 (or 𝛷2). Therefore, the next element of the global mode shape vector 𝛷3 is 

obtained using: 

Φ3 = 𝜑23

Φ2

𝜑22
 

 

(9) 

By applying a similar correction procedure, the other elements of the global mode shape vector are 

obtained, i.e.: 

Φj+1 = 𝜑𝑗,𝑗+1
Φj

𝜑𝑗,𝑗
            j=2:4 

 
(10) 

where Φj+1  is the global mode shape element corresponding to the (j+1)th segment which is 

obtained from the jth stage. The location of the global mode shape elements obtained from the 

method for each segment is considered to be at the mid-point of that segment. 

It should be noted that more mode shape data might be anticipated by considering more bridge 

segments. However, in increasing the number of segments, the quantities of the measured data for 
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each segment are decreased which reduces the accuracy of the FDD identification process. 

Consequently, a compromise number of segments must be chosen for a successful identification 

prodecure. 

Although the speed of the vehicle is assumed to be constant in this method, but it is not necessary 

to keep the speed constant during the implementation. The important thing is that the operator 

must know which part of the signal is measured in which segment; then it is possible to extract the 

local mode shapes from the signals, even with variable speed. However, for less complexity and a 

better result, it is recommended to keep the vehicle speed as constant as possible. 

3.3 Example of two quarter-cars on a smooth profile 

The STFDD method is tested via numerical simulation using the VBI model described in Section 2. 

The bridge is modelled using the FE method as a simply-supported beam  with the properties given 

in Table 1. The first three natural frequencies of the bridge are given in Table 2 where it can be 

seen that the fundamental frequency is 5.65 Hz. The bridge is divided into ten equal segments as 

shown in Fig. 3.  

Table 1. Properties of the bridge. 

Properties Unit Symbol value 

Length m L 15 

Mass per unit kg/m m 28125 

Modulus of 

elasticity 
MPa E 35000 

Second moment 

of area 
m4 J 0.5273 

 

Table 2. First three natural frequencies of the bridge. 

Mode No. 1 2 3 

Natural frequency (Hz) 5.65 22.62 50.89 

 

 
Figure 3: Bridge segments. 

As before, the mid-point of each segment is considered to be the location of the global mode shape 

element obtained for that segment. Therefore, the mode shape vector obtained from the STFDD 

method will have ten elements corresponding to the ten points shown in the figure. As described in 

Section 3.2, two following quarter-cars are modelled passing over this bridge (see Fig. 1) with the 

properties listed in Table 3. The body bounce frequency of both quarter-cars are the same and 

equal to 12.48 Hz. As explained in Section 3.2, nine stages are considered for the ten segments. 
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Table 3. Properties of the quarter-cars. 

Properties Unit Symbol Value 

Body mass kg 
sm
 

9300 

Axle mass kg 
um

 
350 

Suspension stiffness N/m 
sk

 
4×10

5
 

Suspension damping Ns/m 
sc

 
10×10

3
 

Tyre stiffness N/m 
tk
 

1.75×10
6
 

Body bounce frequency Hz 
b  

0.94 

Axle hop frequency Hz 
a  

12.48 

 

The simulation is carried out using the VBI system outlined in Section 2 at the rather slow vehicle 

velocity of 2 m/s. The time histories of acceleration responses from the two following axles are 

calculated using a time interval, dt = 0.001 s. The FDD method is applied to the nine short time 

responses of the following axles. The obtained SVD diagrams from the nine stages of the STFDD 

method are shown in Fig. 4. As the road profile is smooth, vehicle frequencies are not strongly 

excited and two peaks are clear in all of the SVD diagrams corresponding to the first two natural 

frequencies of the bridge. As mentioned in Section 3.1, the singular vectors corresponding to these 

singular values obtained from the peaks of the SVD diagrams, define the local mode shape of each 

mode in each segment. By applying the rescaling process of the STFDD method to the local mode 

shapes obtained from the nine stages, the first two global mode shapes of the bridge are obtained 

and illustrated in Fig. 5. The Modal Assurance Criterion (MAC), defined in Eq. 11, is used to 

compare the calculated mode shapes to the exact shapes obtained from the FE method:   

MAC =
|ΦSTFDD

tΦFE|
2

|ΦSTFDD
tΦSTFDD||ΦFE

tΦFE|
       

(11) 

where ΦSTFDD is the global mode shape obtained from the STFDD method and ΦFE is the exact 

shape obtained from FE method and "t" defines transpose of the matrix. Excellent agreement is 

found in this case.  

4. Effect of road profile 

Previous studies [17, 10, 13 and 15] have indicated that estimation of bridge frequency from the 

vehicle response is difficult in the presence of a road profile. In most cases, although the bridge 

frequency may be detectable in the spectrum of vehicle response, the vehicle frequencies are 

dominant.  

Yang et al. addressed this challenge in [15] by investigating the effect of several key parameters on 

the dynamic response of the vehicle passing over the bridge and concluded that, with high 

vehicle/bridge acceleration amplitude ratios, the probability of successfully identifying the bridge 

frequency is less. In addition, it was demonstrated in [22] that a larger volume of existing traffic 

tends to make the bridge frequency more visible. Generally, this solution seems to be practical, 

especially for longer spans where additional vehicles on the bridge are more likely. Bridge 

frequency is more visible in the measured response of the passing vehicle when ongoing traffic is 

modelled in the simulation. However, this is not a good assumption for short-span bridges where 

the probability of multiple vehicles being present simultaneously on the bridge is small.  



10 
 

 
Stage 1 

 
Stage 2 

 
Stage 3 

 
Stage 4 

 
Stage 5 

 
Stage 6 

 
Stage 7 

 
Stage 8 

 
Stage 9 

Figure 4: SVD diagrams obtained from nine stages.  

 

(a) 

 

(b) 

Figure 5: The first two mode shapes of the bridge. (a) First mode shape, (b) Second mode shape. 
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Recently, Yang et al. [20] and Keenahan et al. [24] proposed the idea of subtraction of the responses 

to improve the results in the presence of profile. Yang et al. [20] use two connected axles passing 

over the bridge. It is shown that subtracting the Fourier transform of the two responses gives a 

residual spectrum in which the bridge frequency is much more clear. However, the method is 

shown to have some limitations. Keenahan et al. [24] propose the idea of subtracting  the measured 

acceleration responses of two following axles travelling over a bridge. It is demonstrated that the 

effect of road profile is substantially removed from the residual acceleration response provided the 

two axles have the same properties.  

Both methods of dealing with the road profile are used in this numerical investigation. In the 

proposed STFDD method, two axle responses are needed to estimate the mode shape values in each 

stage. Therefore, to implement the concept of subtraction, three following axles are necessary at 

each stage (see Fig. 6). Four response difference matrices are obtained from the five stages: 

�̈�𝑗 = [
�̈�𝑗,𝑗−1

�̈�𝑗,𝑗
] = [

�̈�𝑗,𝑗−1 − �̈�𝑗−1,𝑗−1

�̈�𝑗,𝑗 − �̈�𝑗−1,𝑗
]      j=2:5 

(12) 

where �̈�𝑗,𝑗−1 is the difference response obtained in stage j (first index) for segment j-1 (second 

index). The same process of STFDD and the rescaling procedure explained in Section 3.2 is used to 

obtain the global mode shape vector from the response differences. 

 

Figure 6: Subtraction of measured responses in the presence of a road profile.  
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4.1 Example of two following quarter-cars crossing a bridge with a Class A profile in the 

presence of other traffic 

The same bridge as for Section 3.3 is now considered, except that a road profile is added. The 

irregularities of this profile are randomly generated according to the ISO standard [42] for a road 

class ‘A’ (very good) profile, as expected in a well maintained highway. 

To demonstrate the advantage of an external source of excitation (such as other traffic), a random 

force which is almost equal to the interaction force of an axle with weight of 4 tonnes is applied to 

all parts of the bridge. To further improve the quantity of the measured data, the speed of the 

vehicle is reduced to 1 m/s. 

This time, the bridge is divided into six equal segments. The STFDD is applied to the short 

acceleration signals. As an example, the SVD diagram for Stage 3 is shown in Fig. 7. Although the 

vehicle frequency is dominant in this SVD diagram, a peak around 5.65 Hz is also visible. However 

no detectable peak is observed for the second mode of the bridge (around 22.62 Hz) so the second 

mode shape is not detectable. The first mode shape is shown in Fig. 8 and is less close to the exact 

shape than before (MAC = 0.9975). 

 

Figure 7: The SVD diagram obtained from Stage 3 when a Class A profile is present.  

 

Figure 8: The first mode shape when a Class A profile is present.  
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While the proposed method is capable of obtaining the bridge fundamental mode shape in the 

presence of road roughness, it was found to be sensitive to some parameters: (a) the resolution of 

the measured accelerations which is related to the number of segments and the speed of the vehicle 

(it works better at lower speed and for longer segments) (b) the closeness of the bridge frequency 

to a vehicle frequency  (closer makes it harder to distinguish the bridge frequency).  

As noise is a feature of all measurements, it is necessary to assess the proposed method in the 

presence of measurement noise. Previous studies [25] have shown that the estimation of bridge 

dynamic properties from a passing vehicle is not significantly sensitive to noise, since the 

responses are measured at the same location as the excitation. White noise is added to the 

calculated vehicle responses to simulate noise-polluted measurements using Eq. 13:   

𝑤 = 𝑤𝑐𝑎𝑙𝑐 + 𝐸𝑃𝑁𝑛𝑜𝑖𝑠𝑒𝜎(𝑤𝑐𝑎𝑙𝑐) (13) 

 

where 𝑤 is the polluted acceleration, 𝐸𝑃 is the noise level, 𝑁𝑛𝑜𝑖𝑠𝑒  is a standard normal distribution 

vector with zero mean value and unit standard deviation, 𝑤𝑐𝑎𝑙𝑐 is the calculated displacement, and 

𝜎(𝑤𝑐𝑎𝑙𝑐) is its standard deviation. The STFDD method is repeated for different levels of noise and 

the global mode shape vector is obtained for each level. Fig. 9 shows that the STFDD method, when 

external excitation is present, can extract the bridge mode shape with acceptable accuracy in the 

presence of noise up to about 10 %. For noise levels of 5%, 10% and 15%, the MAC values are 

0.9982, 0.9974 and 0.9893 respectively. 

 

Figure 9: Comparison of the first mode shape vectors for different levels of noise when a Class A 

profile is present.  

 

4.2 Three following quarter-cars on a bridge with Class A profile 

In short span bridge, other traffic may not always be present to provide a source of external 

excitation. When other traffic is absent, subtracting acceleration responses in following axles is an 

alternative way to remove the effect of a road profile. To demonstrate the effectiveness of 

subtraction, three following quarter-cars are simulated travelling over the same bridge as before at 

a speed of 1 m/s. The bridge is divided into six segments on this occasion. As explained previously, 

the first signal is the difference in the responses of axles 1  and 2 while the second is the difference 
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in responses of axles 2 and 3.  As an example, the SVD diagram for the third stage is shown in Fig. 

10. The quality of the diagram is clearly improved in contrast to what was obtained in Section 4.1. 

This time, a dominant peak appears around the bridge natural frequency. The peak corresponding 

to the second mode of the bridge is also clearly detectable in this case. The first two global mode 

shapes are shown in Fig. 11. The first mode shape is found with good accuracy while the second 

exhibits some deviation from the exact shape. As the negative effect of road roughness has been 

removed from the signal in this section, the results show better accuracy in comparison with those 

of section 4.1  

 

Figure 10: The SVD diagram obtained from Stage 3.  

 

(a) 

 

(b) 

Figure 11: The first two mode shapes of the bridge (a) First mode shape, (b) Second mode shape. 
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5. Truck-trailers passing over a bridge with a Class A profile  

A more general case of a truck with trailers is investigated in this section travelling over the same 

bridge as before with a Class A profile. The truck is heavy and used to excite the bridge. It is 

assumed to be towing two identical trailers, as illustrated in Fig. 12, and travelling at 1 m/s. 

 

Figure 12: The truck-trailers model.  

OBrien et al. [43] give details of truck-trailer modelling in MATLAB. The properties of the truck and 

trailers are given in Tables 4 and 5 respectively. The same procedure of vehicle bridge interaction 

modelling which was used in previous sections is used in this case. The acceleration responses of 

Axles 4 through 7 are assumed to be measured. To remove the effect of road profile from the 

measured signals, two difference signals are defined as �̈�1 = �̈�6 − �̈�4 and �̈�2 = �̈�7 − �̈�5. The STFDD 

method is applied to these difference responses through five stages and five SVD diagrams are 

obtained. The SVD diagram from Stage 3 is shown in Fig. 13 as an example. The first two natural 

frequencies of the bridge are clearly detectable from this diagram. The mode shapes shown in Fig. 

14 give a very good match to the exact shapes.  

 
Figure 13: The SVD diagram obtained from Stage 3.  
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Table 4. Properties of the truck. 

Property Unit Symbol Value 

Body mass kg ms1 27100 

Axle mass kg mu1 700 

mu2 = mu3 1100 

Suspension stiffness N/m ks1 4×10
5
 

ks2 = ks3 1×10
6
 

Suspension damping Ns/m cs1 10×10
3
 

cs2 = cs3 20×10
3
 

Tyre stiffness N/m kt1 1.75×10
6
 

kt2 = kt3 3.5×10
6
 

Moment of inertia kg m
2
 Is1 1.56×10

5
 

Distance of axle to centre of 

gravity 

m D1 4.57 

D2 1.43 

D3 3.23 

Body mass frequency  Hz fbody,1 1.32 

Axle mass frequency  Hz faxle,1 8.82 

faxle,2 10.17 

faxle,3 10.20 

 

 

Table 5. Properties of the trailers. 

Property  Symbol Value 

Body mass kg ms2 4000 

Axle mass kg mu4 = mu5 = mu6 50 

Suspension stiffness N/m ks4 = ks5  = ks6 4×10
5
 

Suspension damping Ns/m cs4 = cs5  = cs6 10×10
3
 

Tyre stiffness N/m kt4 = kt5 = kt6 1.75×10
6
 

Moment of inertia kg m
2
 Is2 2401.67 

Distance of axle to centre of 

gravity 

m D4 = D5 1.25 

Body mass frequency  Hz fbody,2 2.02 

Axle mass frequency  Hz faxle,4 33.01 

faxle,5 33.04 

Distance of two trailers and 

truck to trailer  

m d1 = d2 1 
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(a) 

 

(b) 

Figure 14: The first two mode shapes of the bridge. (a) First, (b) Second. 

These calculated mode shapes are sensitive to noise, as can be seen in Fig. 15. The first mode is 

more sensitive than the second. In the opinion of the authors, this may be because the trailer body 

mass frequency is closer to the bridge first natural frequency than the second. Clearly, high-

accuracy accelerometers will be needed to minimise measurement noise in the response.  

6. Conclusion 

This paper describes a novel method for indirect identification of bridge mode shapes. When two 

following axles are modelled passing over a bridge, the FDD method can be applied to the short 

time measured signals obtained in several defined stages. By performing a rescaling procedure to 

the local mode shape vectors, the global mode shape is obtained. The performance of the proposed 

method is investigated using several numerical simulations. The effect of road profile in exciting 

the vehicle is a significant challenge for the method. Excitation of the bridge by other traffic 

improves the situation. In the absence of other traffic, subtraction of signals in identical axles is 

shown to be a feasible alternative. A truck towing two trailers is shown to be a possible 

arrangement for finding bridge mode shapes. Provided noise is sufficiently low, mode shapes can 

be found with good accuracy.   
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(a) 

 

(b) 

Figure 15: Sensitivity of calculated mode shape vectors to noise; (a) first mode shape, (b) second 

mode shape. 
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