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Abstract 

Probabilistic analysis of traffic loading on a bridge traditionally involves an extrapolation 

from measured or simulated load effects to a characteristic maximum value. In recent years, 

Long Run Simulation, whereby thousands of years of traffic are simulated, has allowed 

researchers to gain new insights into the nature of the traffic scenarios that govern at the limit 

state. For example, mobile cranes and low-loaders, sometimes accompanied by a common 

articulated truck, have been shown to govern in most cases. In this paper, the extreme loading 

scenarios identified in the Long Run Simulation are applied to a non-linear, two-dimensional 

(2D) plate finite element model. For the first time, the loading scenarios that govern in 2D 

nonlinear analyses are found and compared to those that govern for 2D linear and 1D 

linear/nonlinear analyses. Results show that, for an isotropic slab, the governing loading 

scenarios are similar to those that govern in simple one-dimensional (beam) models. 

Furthermore, there are only slight differences in the critical positions of the vehicles. It is also 

evident that the load effects causing failure in the 2D linear elastic plate models are 

significantly lower, i.e. 2D linear elastic analysis is more conservative than both 2D nonlinear 

and 1D linear/nonlinear. 

1.1 Introduction 

A key part of bridge management is the assessment of the safety of bridge structures. A 

bridge is considered to be safe when its capacity to resist load exceeds the effect of the load 

applied. Substantial work has been conducted to develop methods of evaluating the load-

carrying capacity of bridges and the associated uncertainties. In comparison, traffic loading 

on bridges has received less attention. The load models used to represent traffic in safety 

assessment analysis are often over-simplified or taken from conservative standards or codes. 

Site-specific, bridge assessment based on realistic load models offers the potential of 

significant cost savings in maintenance budgets (O’Connor and Enevoldsen 2009). 



In recent years, improvement in the availability and quality of Weigh-In-Motion (WIM) data 

has facilitated this. While WIM data are becoming more widely available, the quantity of 

traffic data is generally not sufficient to cover the return periods of interest. One approach to 

extend measured traffic data is to use statistical information from measurements to find the 

best-fit distributions to load effects and to use these distributions as a basis for extrapolation 

to find the characteristic lifetime, maximum values (Nowak 1993; Miao and Chan 2002). 

However, there is significant uncertainty both in the estimated characteristic load effects 

(Dawe 2003; Gindy and Nassif 2006) and in the critical loading scenarios. An alternative 

approach is to use Monte Carlo simulations on synthetically generated traffic data that has 

been calibrated against measured traffic characteristics, such as vehicle weights, in-lane gaps, 

and inter-lane gaps (Bailey and Bez 1999; O’Connor and OBrien 2005). Notably, even short 

run simulations of this type still require some form of statistical extrapolation based on the 

load effect history, and to avoid the uncertainty resulting from this extrapolation, it is 

necessary to run the simulation for an extended time period. Enright (2010) and Enright and 

OBrien (2012) develop a carefully optimized Monte Carlo simulation program to simulate 

traffic for thousands of years. While it is still an extrapolation, this reduces the variability 

associated with the fitting to statistical distributions by modelling the rare traffic events in 

traffic directly. These ‘long-run’ simulations provide examples of extreme loading scenarios, 

thereby illustrating the types and combinations of vehicles expected to feature in extreme 

bridge loading events. Enright’s simulations are calibrated against extensive WIM data 

collected from five European countries: the Netherlands, Slovakia, the Czech Republic, 

Slovenia, and Poland. Long-run simulation is used in this paper, as it is the only approach 

that provides sufficient information to run a nonlinear analysis of the critical scenarios. 

In earlier work (Hajializadeh at al. 2012), the authors focused on 1D nonlinear analysis of 

two-span bridges subject to extreme traffic loads. In this study two-dimensional (2D), 

nonlinear analysis is performed on simply-supported, solid, isotropic bridges of varying 

lengths and depths. The bridges are subjected to characteristic loading scenarios resulting 

from long-run simulations for three European sites: the Netherlands, Slovakia, and the Czech 

Republic. For each case, a load ratio is calculated (i.e., the factor that the loading needs to be 

multiplied by to cause failure). The load ratio for the 2D nonlinear analysis is compared to 

the factor calculated using a one-dimensional (1D) and 2D linear analyses. 

The nonlinear nature of reinforced concrete causes the redistribution of bending moments 

when a structure is subjected to a load beyond the service load range. The assumption of 

linear behavior is accurate for low stress levels, but as ultimate capacity at critical sections is 

approached, the load is transferred to other parts of the structure. Allowing for this extra 

reserve of strength in a redundant structure results in a more economical bridge assessment. 

The research conducted in this study, can be applied to all existing solid slab bridges in order 

to verify the structural safety at the ultimate limit state and could also be applied to new 

bridges. It should be noted that vehicle/bridge dynamic interaction is not considered – the 

analysis is just static.  



1.1.1 Yield Line Analysis 

Yield line analysis starts by assuming a yield collapse pattern and then obtaining the collapse 

load, usually through the application of virtual work. As the yield line is an upper bound 

method, the theoretical collapse load is the minimum of the collapse loads resulting from all 

kinematically admissible yield collapse patterns.  

Yield line theory is first introduced by Ingerslev (1923). Ingerslev performs the analysis for a 

simply supported rectangular slab by considering the equilibrium between loads and bending 

moments at yield lines. Later, Johansen (1962) continues Ingerslev’s (1923) work with a 

geometric interpretation of the concept. Through the work of Johansen (1962, 1972), Jones 

and Wood (1967) and Nielsen (1964), yield line analysis is today applied to a wide range of 

theoretical and practical applications.  

An integrated form of yield line method is proposed by Munro and Da Fonseca (1978) that 

incorporates finite elements and linear programming. They use triangular finite elements, 

assuming that yield lines can only develop along element edges. This methodology identifies 

the critical yield pattern, (i.e., there is no need to identify initially the collapse mechanism). 

However, collapse mechanisms are limited to the available patterns defined by the applied 

triangular finite element mesh. Jennings et al. (1993) address the variation of mechanism 

geometry using a geometrical optimization technique in conjunction with the linear 

programming algorithm. Thavalingam et al. (1998) use an approach similar to that of Munro 

and Da Fonseca (1978) by developing a semi-automatic, yield line analysis where the initial 

yield pattern is represented by variable node positions. 

A fixed finite element mesh requires an initial pattern to be defined based on the expected 

yield mechanism. Further attempts have been made to resolve this issue. Bauer and Redwood 

(1987) compute the yield load of a plate based on assumed collapse mechanisms generated by 

moving one or more of the nodes used initially in defining the yield line pattern. Dickens and 

Jones (1988) manually adjust the assumed trial yield pattern to reach a closer, overall ratio of 

plastic moment to collapse load for the entire slab in each rigid slab regionJohnson (1994) 

conducts a rigid-plastic yield line analysis of isotropic slabs under a uniformly distributed 

load, using a two-step procedure. In the first step, a yield pattern is predicted using a linear 

finite element analysis, then a less refined mesh is constructed with element boundaries lying 

close to the expected yield lines, to obtain the yield mechanism. Johnson (1996) extends the 

method developed for isotropic slabs (Johnson 1995) to non-isotropic cases. 

Gohnert and Kemp (1995) propose a four-node element, which they termed a “yield line 

element”. Gohnert (2000) uses this element in yield line analysis while assuming elastic-

perfectly plastic behavior. Reported results are within 10% of previous published yield line 

analyses for the same examples (Johansen 1962). 

Taking a different approach, Kwan (2004) proposes a method to resolve the difficulty of 

generating kinematically admissible yield line patterns by introducing ‘dip’ and ‘strike’ 

angles. These angles are used to define the orientation of the rotation axis (strike angle) and 

the amount of rotation (dip angle) of each region in the yielded slab. Although this method 



generates accurate results, it is limited to convex polygonal slabs. To overcome this, Wüst 

and Wagner (2008) present a systematic approach in which all possible yield mechanisms of 

an arbitrary polygonal plate can be found. They use elements similar to those proposed by 

Munro and Da Fonseca (1978) to triangulate the resulting patterns. 

Jackson and Middleton (2009) propose a new method using Johansen’s yield surface. This is 

based on the lower bound theory of plasticity, equilibrium of the finite elements, and 

optimization is achieved by conic programming. This method predicts collapse mechanisms 

close to those found by Johansen’s yield line analysis (Johansen 1962). 

An alternative approach to yield line analysis is the lower-bound strip method proposed by 

Hillerborg (1975), in which the total load is assumed to be distributed between two sets of 

orthogonal strips. O'Dwyer and OBrien (1998) modify this strip method using linear and 

quadratic programming optimization. An automated lower-bound method is presented by 

Burgoyne and Smith (2008).  

Generally nonlinear finite element analyses have been shown to model concrete material 

behavior more realistically than linear analyses. Such approaches have the additional ability 

to obtain more information about the slab responses such as deflection and reactions. 

Powerful commercial software packages which use nonlinear 2D methods are now available 

but are problematic, because of numerical instability due to the highly nonlinear nature of 

cracked concrete and the substantial time required to solve full-scale problems. To overcome 

these drawbacks a lower bound, yield line, finite element analysis approach has recently been 

developed, as described below, and this approach is adopted in this paper. 

1.2 Finite Element Lower Bound “Yield Line” Analysis 

Al-Sabah and Falter (2013) describe a method which can be used as a computationally-

efficient alternative to currently available, nonlinear finite element software packages. The 

method is simple, widely applicable, quick, and economical. Specifically, they use modified, 

rotation-free, plate finite elements to allow plastic “yield lines” to pass through an element. 

Yield is progressively introduced to the elements with each additional load increment until 

failure is detected. This method is used here to account for the nonlinear post-yield behavior 

of reinforced concrete slab bridges. A detailed description of the methodology is given by Al-

Sabah and Falter (2013) but is summarized below. 

1.2.1 Rotation-Free Triangular Plate Element 

A typical plate element has three degrees of freedom per node: one vertical displacement and 

two rotational. This element type needs to satisfy continuity of displacement and a first 

displacement derivative (slope) at its boundaries. Despite the considerable amount of research 

that has been devoted to plate elements, satisfying this type of continuity remains a challenge. 

One way of addressing this is to use a “rotation-free” plate element with fewer degrees of 

freedom (only one degree of freedom per node) along with a simpler formulation (Nay and 



Utku 1972; Hampshire et al. 1992; Phaal and Calladine 1992). This element type is an 

evolution of the Morley’s Triangle element concept (Morley 1971). The disadvantages of this 

element are the following: (i) the increased bandwidth in the global stiffness matrix due to the 

dependency of the element stiffness matrix on the surrounding elements, (ii) the sensitivity of 

rotation-free elements to mesh distortion, and (iii) the difficulty in defining rotational 

boundary conditions. 

A rotation-free element is presumed to have a constant curvature that can be related to the 

out-of-plane displacement of the nodes of the particular element and its three adjacent 

elements. The main difference between triangular, rotation-free elements arises from different 

methods used to relate element curvature to nodal displacement. Sabourin and Brunet (2006) 

use the approach, in which the rigid body rotations of the main element edges are related to 

the out-of-plane nodal displacements. The element curvature is then calculated from the three 

edge curvatures that are in turn calculated from the edge rotation. Phaal and Calladine (1992) 

use 2D quadratic polynomials to interpolate between the six out-of-plane nodal displacements 

and those of the three surrounding elements, where constant curvatures are obtained as 

derivatives of the displacement polynomial. Oñate and Cervera (1993) integrate the curvature 

over the element area to calculate the average constant curvature of the element. Among 

different methods of curvature calculation, Sabourin and Brunet’s (2006) provides features 

that are more desirable for yield line analysis. Their element is also known as the rotation-

free “S3” element.  

To allow internal yield lines to pass through the element, the relationship between bending 

and rigid rotation angle is revised, in the work done by Al-Sabah and Falter (2013). The 

particular nature of the S3 element allows the incorporation of plastic rotation at the 

boundaries with the rigid rotation angles. The effect of a yield line is a stiffness reduction 

which is transformed to each side of an element using transformation tensors (Al-Sabah and 

Falter 2013). For example in Figure 1, for the internal yield line inclined at an angle 𝜗, 

relative to edge 2-3, the tangent stiffness parallel to the yield line (parallel to 𝑥́) is reduced to 

zero. 

 

 

 

 

 

 

Figure 1 Yield-line coordinate system 

In nonlinear analysis, load is applied in increments. When the material is idealized as elastic 

perfectly-plastic, the structure will exhibit multi-linear behavior, which can be used to 

simplify the nonlinear analysis by eliminating the iterations that usually follow each load 

𝜗 

1 

3 2 

𝑥́ 

𝜗 𝑥 

𝑦 
𝑦́ 



increment in order to satisfy equilibrium. In each load increment, the principal bending 

moment is compared to the bending moment capacity. Yield lines are created at elements 

with moment closest to yield and consequently the element stiffness is reduced to a small 

value parallel to the yield line direction. Using small, non-zero, values avoids introducing 

numerical instability.  

The convergence criterion is based on the deflection-load ratio at a certain node. It is the ratio 

of two quantities; the incremental deflection ratio and the incremental load ratio. These two 

ratios are defined as the incremental to the total value for both deflection at a certain node 

and load. The solution stops when the deflection-load ratio exceeds a threshold which is set to 

50 in this analysis.  

1.3 Realistic Traffic Load Model 

For a realistic site-specific load model, the simulation procedure developed by Enright (2010) 

and Enright and OBrien (2012) is used herein. They present a comprehensive model for the 

Monte Carlo simulation of free-flowing traffic on short to medium span bridges, for which 

the combined static and dynamic load effects produced by free-flowing traffic are taken to 

govern. In longer spans, static loading produced by congested traffic is generally considered 

to be more critical. In the model, the parameters for each individual truck and for the relative 

truck positions in each lane are simulated based on statistical distributions derived from the 

measured traffic at each site. For Gross Vehicle Weight (GVW) several models are proposed 

in the literature (Jacob 1991; Kennedy et al. 1992; Cooper 1995; Crespo-Minguillón and 

Casas 1997; Bailey and Bez 1999; O’Connor and OBrien 2005; OBrien et al. 2006). In this 

simulation, the GVW and number of axles for each truck is simulated using the ‘semi-

parametric’ approach proposed by OBrien et al. (2010). Below a specified GVW threshold, 

an empirical (bootstrap) bivariate distribution is used to generate GVW and number of axles. 

Beyond this threshold, the tail of a bivariate Normal distribution is fitted to the frequencies to 

smooth the trend where data are sparse. The Normal distribution is chosen as it is widely 

used, is unbounded, and fits the data reasonably well. 

For axle spacing, Enright (2010) describes the method adopted in this paper in which an 

empirical distribution is used to simulate the maximum axle spacing for each vehicle. For all 

other spacings, a trimodal Normal distribution is fitted to the data. Further details on the 

modeling of axle spacings are given elsewhere (Enright 2010; Enright and OBrien 2012). 

For the weight of individual axles, many different approaches have been used in the literature 

(Harman and Davenport 1979; Grave et al. 2000; Miao and Chan 2002; OBrien et al. 2006). 

Enright (2010) uses bimodal Normal distributions for each axle in each vehicle class. The 

random variable used is the proportion of the GVW carried by each axle. In the measured 

data, the greatest variability is observed in the proportion of the GVW carried by each of the 

front four axles (Enright 2010).  



To simulate headways (the time between the front axles of successive vehicles arriving at the 

same point on the road) a wide variety of distributions are proposed including the following: 

the negative exponential, uniform, gamma, and lognormal (OBrien and Caprani 2005). Here, 

the inter-axle gap (the gap between the rear axle of the leading truck and the front axle of the 

following truck) is used as an approximation for the clear gap between successive vehicles.  

A similar approach to that described by OBrien and Caprani (2005) is used herein to fit gap 

distributions to the observed data at different traffic flows. A negative exponential 

distribution is used for gaps greater than 4 seconds. To account for the observed correlation 

between gaps and the GVW of each truck (i.e. heavier trucks are likely to travel further 

apart), modifications are made to the gap distribution; successive gaps are not fully 

independent, as small gaps tend to occur in clusters (i.e. the gap behind a vehicle is dependent 

to some extent on the gap in front of it). 

1.4 Nonlinear versus Linear Analyses 

A 1000-year simulation was performed for site-specific extreme traffic load scenarios for 

two-lane opposing-direction traffic at three sites in the following countries: The Netherlands, 

Slovakia, and the Czech Republic. The characteristics of these sites are described by Enright 

(2010). The simulated traffic is run over three bridge lengths: 10 m, 15 m, and 20 m. For each 

length, 1000 maximum-per-year mid-span bending moments are calculated, along with 

details of the corresponding loading scenarios. For ease of computation, these annual 

maximum moments are based on a 1D linear elastic analysis of a simple beam, with no 

adjustment for transverse load distribution between lanes. 

It should be noted that, due to the randomness inherent in the process, successive 1000-year 

simulation runs do not produce identical results, and the variation between runs becomes 

more pronounced in the upper tail. Running simulations for much longer periods – 10 000 

years or more – is one way of reducing the variation at 1000 years, and indeed obviate the 

need to fit any distribution to the results. However it has been found that fitting a suitable 

distribution to the 1000-year simulation results allows characteristic load effects to be 

estimated accurately, with minimal bias and variation. In other words, good results are found 

when the length of the simulation equals or exceeds the specified return period.  

Figure 2 shows the maximum mid-span moments for a simply supported bridge for the WIM 

data from the Czech Republic, plotted on Gumbel probability paper (Ang and Tang 2007). 

The Gumbel probability paper is created by linearization of cumulative probability function 

for extreme value distributions, where the y axis is double logarithm of cumulative 

probability distribution. 

In all three cases, the trend is reasonably linear, thereby confirming good agreement with the 

Gumbel extreme value distribution. An upwardly curving trend in the graph would suggest 

that the solution is bounded, i.e., there is a physical upper limit to the load effect. The fact 

that this is not the case suggests that overload is being poorly controlled or that permits are 

being issued for vehicles that generate some very large load effects.   



Unlike the conventional extrapolation approach, this long-run simulation retains information 

about what combinations of vehicles are critical for the most rare, extreme cases. This makes 

it possible, for the first time, to compare 1D analysis with 2D, and linear analysis with 

nonlinear, to determine if the ranking of the critical loading scenarios varies with the method 

of analysis. Due to the high computational cost of 2D nonlinear analysis, only the top 30 

extreme scenarios are analyzed in this way, which is shown as the upper zone in Figure 2. 

 

 

 

(a) 

 

(b) 

Figure 2 Annual maximum bending moments from 1000-year long-run simulations for Czech Republic: 

(a) bridge geometry; (b) probability paper plot 

 

1.4.1 Detailed Analysis of an Extreme Scenario - Czech Republic 

For the 20 m long bridge, the most critical load effect identified in the simulation based on 

the Czech WIM data is at the upper rightmost point in Figure 2. This scenario consists of a 5-

axle and an 8-axle trucks moving in opposing directions. In this study, three types of analyses 

are used to calculate the load ratio for this particular scenario – 1D, 2D linear, and 2D 

nonlinear. For each analysis type, the vehicles are progressively moved over the bridge to 

find the most critical position. The load ratio is simply the ratio of bending moment capacity 

to maximum applied bending moment resulting from the load scenario. As the 1D beam is 
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determinate, the linear and nonlinear analyses give the same results (i.e., the 1D analysis is 

both linear and nonlinear). 

The characteristic cylinder strength, 𝑓𝑐𝑘, is selected to be 35 N/mm
2
 with the reinforcement 

having a characteristic yield strength, 𝑓𝑦𝑘, of 500 N/mm
2
. The bridge deck is taken to be 

10.5 m wide, and a span/depth ratio of 20 is used. The 1D characteristic bending moment 

capacity calculated according to EN 1992-2 for a 20 m bridge is 19 404 kNm. The 

characteristic bending moment capacity for a 10 m bridge is 4 483 kNm, and 9 523 kNm for a 

15 m bridge. 

For the 2D linear analysis, the slab illustrated in Figure 3 is modelled using a rectangular 

plate element with both bending and membrane capabilities (i.e., three degrees of freedom 

per node). Failure is defined by the element with the maximum moment. Figure 4 shows the 

load positions for the 1D (black arrows), 2D linear (blue outline and shaded) and 2D 

nonlinear analyses (red outline, not shaded) at failure. 

 

 

 

 

 

 

 

Figure 3 Plan view of slab bridge deck 

For the 2D nonlinear analysis, the program developed by Al-Sabah and Falter (2013) is used. 

Figure 4(c) illustrates this case. It can be seen that the load position for the 2D nonlinear 

analysis is closer to the 1D linear critical load position than that for the 2D linear analysis 

(i.e., the solid red line (first axle of Truck1 in 2D nonlinear analysis) is closer to the black 

dashed line (first axle of Truck 1 in 1D analysis) than it is to the blue dotted line (first axle of 

Truck1 in 2D linear analysis)). These differences are relatively small (maximum difference is 

0.84 m, which is 4% of the span). 
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Figure 4 Axle position at critical case (minimum load ratio): (a) 1D linear analysis; (b) 2D linear analysis; (c) 2D 

nonlinear analysis – 20 m bridge, Czech Republic 

  

Figure 5 shows the yield line pattern for the critical load position, just prior to failure. The 

yielding starts from the north edge, then develops at the south edge, and finally extends 

through the center of the slab. Higher elastic moments at the edges are explained in the 

contour plot of 2D linear elastic moments of Figure 6(a). These moments are higher at the 

north edge, because the 8-axle truck in the north lane is heavier than the truck in south lane. 

The bending moment contours for the 2D nonlinear analysis, as illustrated in Figure 6(b), 

show that the plastic yielding results in a more uniform moment distribution. The ‘pixelated’ 

pattern is due to the constant curvature assumption in the triangular rotation-free elements. 

This figure also confirms the yield pattern shown in Figure 5(b).  



 

 

(a) (b) 

Figure 5 Yield line pattern for 2D nonlinear analysis: (a) Overview; (b) detail of yield line pattern at south edge 

 

 
 

(a)  (b)  

Figure 6 Bending moment contours for critical case (light color indicates higher moment): (a) 2D linear 

analysis; (b) 2D nonlinear analysis 

1.4.2 Analysis of 30 Extreme Scenarios - Czech Republic 

For the Czech WIM data, the 30 scenarios that give the greatest moments for the 1D analysis 

are considered further. These scenarios are shown by points over dashed line in Figure 2. 

First, load ratios are calculated for all 30 scenarios for each method of analysis (Figure 7). 

The scenarios are ranked according to the magnitude of the moment resulting from the 1D 

analysis. Figure 7(a) shows the load ratios versus scenario number. It shows that the 1D load 

ratios are in good agreement with the 2D nonlinear analysis. This can be explained by the fact 

that the yield pattern in the 2D analysis crosses the slab width, at which point it approaches 

the 1D case. The 1D failure corresponds, roughly speaking, to the point when the average 2D 

bending moment capacity is reached. The 2D linear analysis results in a much lower load 

effect, since it only considers the first yield situation. The load ratio generally increases with 

scenario number, which is not surprising, since the 30
th

 scenario corresponds to the least 

critical scenario (i.e., lowest 1D bending moment at mid-span). Figure 7(b) shows the same 

load ratios against the bending moment at mid-span as calculated by the 1D linear analysis. 
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These bending moments are due to traffic loading and do not include bending moments 

resulting from self-weight. This plot also shows that the load ratio decreases with the increase 

in load effect (bending moment at mid-span). The 2D linear analysis does not show any 

particular trend, and this can be explained by the high sensitivity of first yield to local effects. 

 

(a) 

 

(b) 

Figure 7 Load ratio for the 30 most critical loading scenarios for 20 m slab bridge in Czech Republic: (a) load ratio 

versus scenario number; (b) load ratio versus 1D bending moment at mid-span 

These calculations are repeated for the 10 m and 15 m long bridges and all the results are 

presented in Figure 8. As can be seen in Figure 8, the slope of load ratio vs. load effect 

decreases with an increase in bridge length. Notably, the load ratio for the longer bridge 

resulting from a 2D linear analysis, is less scattered.  
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Figure 8 Load ratio for three types of analyses – Czech Republic 

In Figure 9, the scenarios that are most critical for the 2D nonlinear analysis are compared to 

those that were most critical for the 1D analysis. The top 30 scenarios for a 20 m bridge in the 

Czech Republic site are considered for this purpose. It can be seen in the figure, for example, 

that the 2
nd

 most critical scenario for the 1D analysis, is the 3
rd

 ranked one in the 2D analysis. 

The greatest change in rank is from 6
th

 (in 1D) to 13
th

 (in 2D). Figure 9 shows that the top 10 

ranked scenarios based on load ratios using 2D nonlinear analysis includes 8 from the top 10 

scenarios ranked by the 1D linear mid-span bending moment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Loading scenario ranking based on ranked 1D linear mid-span bending moment and 2D nonlinear load 

ratio – Czech Republic 

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Load Effect (kN.m)

L
o
a
d
 F

a
c
to

r,
 

L
o

ad
 r

at
io

, 
λ
 

Mid-span bending moment (kNm) 

135791113151719212325272930

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29
30

Ranked based on 1D linear analysis 

R
an

k
ed

 b
as

ed
 o

n
 2

D
 n

o
n

li
n

ea
r 

an
al

y
si

s 

Biggest change 

in rank 

Top 10 scenarios ranked by 

2D nonlinear load ratios 

Top 10 scenarios ranked by 1D 

maximum mid-span bending moment 

3
rd

 minimum load ratio using 

2D nonlinear analysis but 2
nd

 

ranked using 1D 



For the most extreme loading scenarios in each case, Figure 10 compares the bending 

moment distributions across the width of the slab. This figure shows the difference between 

the bending moment distributions at the critical position using the 2D and 1D linear analyses. 

The distribution for the 20 m bridge is flatter than the other two, which can be explained by 

two phenomena: (i) higher transverse load sharing in longer bridges, (ii) traffic scenarios with 

heavy vehicles in both lanes feature more frequently for longer bridges (i.e., shorter spans are 

more likely to be governed by single-truck events).  

 

Figure 10 Difference in bending moment distribution between 2D and 1D linear analyses 

Figure 11 gives the bending moment contours for the 2D linear analyses, confirming the 

results shown in Figure 10. In the 10 m slab, the load in lane 1 (south edge) is heavier than 

the load in lane 2 (north edge), which results in an asymmetrical distribution of bending 

moments across the bridge. The distribution becomes more symmetrical for longer spans 

because, for longer spans, there tends to be a greater degree of load sharing. This explains 

why the differences between 2D nonlinear and 2D linear analyses are greater for the shorter 

spans – see Figure 8. To further illustrate this phenomenon, the differences between the 2D 

linear and 2D nonlinear transverse distributions of bending moment are plotted in Figure 12 

for the 30 most critical loading scenarios. It can be seen that the differences are less for 

greater spans (compare Figure 12(c) with Figure 12(a)).  
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Figure 11 Bending moment contours at critical load position for an event with two trucks meeting (light color 

indicates higher moment): (a). 10 m, (b). 15 m and (c). 20 m bridge 

 

Figure 12 Differences in the top 30 bending moment distribution between 1D and 2D linear analyses across the slab 

width: (a) 10 m, (b) 15 m, and (c) 20 m bridge 
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1.4.3 Analysis of 30 Extreme Scenarios - Three Different Sites  

The same procedure is applied to calculate the load ratio for the WIM sites in the Netherlands and 

Slovakia. Figure 13 uses Gumbel probability paper to show the bending moment at mid-span 

using 1D analysis for all sites and bridge lengths. Traffic in the Netherlands has a much higher 

proportion of very heavy vehicles (e.g., 0.03% of vehicles in excess of 100 t compared with only 

0.002% in the Czech Republic), which results in considerably higher bending moments at mid-

span. In comparison, both the Czech Republic and Slovakia have considerably lower bending 

moments with the former being a little higher than the latter. 

 

 

(a) (b) 

 

(c) 

Figure 13 Annual maximum bending moment distribution for different sites: (a) 10 m; (b) 15 m; (c) 20 m bridge 
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One of the findings from Enright’s work (Enright 2010) is that, as the GVW increases to 

extremely high values, low loaders and crane-type vehicles become the predominant vehicle 

types. Detailed analysis of the three examined data sets shows: WIM data from the 

Netherlands includes 2.4% crane-type and 3.8% low loaders compared to Slovakia with 1.7% 

crane-type and 1.0% low loaders and the Czech Republic with 0.7% cranes and 3.4% low 

loaders. This is a reflection of the much higher proportion of extremely heavy vehicles at the 

site in the Netherlands.  

Figure 14 shows the load ratio for the 1D analysis for the three sites and three lengths. Load 

effects calculated using Czech and Slovakian data overlap but there is a clear gap between 

these and the load effects corresponding to the much heavier vehicles found in the Dutch 

data.  

 

Figure 14 Load ratio based on 1D analysis for different sites and different total lengths 

The results of the 2D nonlinear analysis results are very similar, as illustrated in Figure 15(a). 

However, as seen in other figures, the relationship between load ratio and bending moment is 

much more variable in the 2D linear analysis results of Figure 15(b).  

Given the high cost of computation needed for 2D nonlinear analysis, it can be concluded that 

the 1D linear analysis is a good alternative to obtain an estimation of the load ratio for a 

simply supported isotropic bridge slab, subjected to extreme traffic loads. In contrast, the 2D 

linear analysis is quite conservative for load ratio calculation for this type of bridge if 

sufficient ductility exists to allow the yield lines to form.  
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Figure 15 Load ratio for different sites and different total lengths: (a) 2D nonlinear; (b) 2D linear 

Comparing the critical scenarios in the 1D analyses to those that are most critical for the 2D 

nonlinear analyses reveals a high degree of similarity. For the Dutch site, the top 10 ranked 

scenarios for the 1D analysis include all of the top 10 ranked for 2D nonlinear analysis. This 

is true for all three spans at this site. In Slovakia, this type of comparison shows that, for total 

lengths of 10 m and 15 m, 8 of 10 ranked scenarios for 1D mid-span bending moments are 

also in the 2D nonlinear top 10. For the 20 m bridge, 9 of the top 10 1D are in the 2D 

nonlinear top 10. The 1D and 2D nonlinear rankings for the Czech data give results similar to 

those for Slovakia. 

1.5 Conclusion 

Extreme traffic loading is investigated for a range of single-span isotropic slab bridges using 

weigh-in-motion data from three different European sites. Long-run simulations make it 

possible to identify the combinations of vehicles that govern near the maximum-in-1000-year 

level. The 30 most critical loading scenarios in the 1D analyses are used in 2D linear and 

nonlinear analyses. It is found that the ranks do not change significantly, i.e., the most critical 

scenarios from the 1D linear/nonlinear analyses are also the most critical in 2D linear and 2D 

nonlinear analyses. There are small differences in the precise locations of the vehicles that 

govern. 

As the bridges are all isotropic, the 2D nonlinear yield line runs straight across near the center 

in all cases. This is very similar to the result that is found from a 1D analysis where linear and 

nonlinear are the same. A 2D linear analysis is more conservative – first yield occurs at a 

significantly lower level of load than that required to cause plastic collapse. The difference 

between the 2D linear and 2D nonlinear analyses is less for longer spans as there is a greater 

degree of load sharing so the transverse variation in elastic moment is less. 
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