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GNSS Instantaneous Ambiguity Resolution
and Attitude Determination Exploiting the

Receiver Antenna Configuration
Tarig Ballal, Member, IEEE and C. J. Bleakley, Senior Member, IEEE

Abstract—A novel instantaneous method for GNSS
attitude determination utilising a new phase-difference
ambiguity resolution approach is presented. A triple-
antenna receiver configuration with baseline constraints
is exploited for ambiguity resolution. It is shown that the
ambiguity resolution and attitude determination prob-
lems can be solved using simple closed and semi-closed
form solutions, without using GNSS codes. Simulation
results demonstrate high success rates (> 90%) in most
cases, even when the number of visible satellite vehicles
is samll.

Index Terms—GNSS, GPS, navigation, attitude deter-
mination, phase-difference, ambiguity resolution.

I. INTRODUCTION

VEHICLE attitude determination is an important
Global Navigation Satellite System (GNSS) ap-

plication that is useful for air, sea and land navigation
systems [1], [2], [3], [4]. The attitude determination
problem can be defined as the estimation of the 3-
D orientation of the body frame geometry of the
GNSS antenna configuration relative to a fixed ref-
erence frame [5]. The coordinate system represented
by the body frame is commonly denoted as the local
coordinate system, whereas the reference coordinate
system is referred to as the global coordinate system
[6].

The simplest form of the GNSS vehicle attitude
determination problem is determining the pointing
direction of a single baseline [7], [8]. In this case,
a pointing vector with three components is obtained.
Full (or 3-D) attitude can be obtained by employing
multiple non collinear antenna baselines [4], [9]. The
3-D attitude can be expressed in the form of an
orthogonal 3 × 3 attitude matrix, the rows of which
consist of the pointing vectors of each of the three
axes of the local coordinate system [5].

In most existing GNSS attitude determination meth-
ods, both GNSS code and carrier-phase information
are utilised. The main source of difficulty in GNSS
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attitude determination is the fact that GNSS carrier-
phase is ambiguous, that is the integer part of the
observable carrier-phase is not known. The resolution
of the carrier-phase ambiguity problem is of central
importance for reliable GNSS attitude determination.

The literature provides an assortment of methods
for carrier-phase ambiguity resolution in the context
of vehicle attitude determination [5], [7], [8], [10],
[11], [12]. In most cases, these methods handle the
two problems of ambiguity resolution and attitude
determination simultaneously. Commonly, the problem
is formulated using the phase-double-difference, where
the phase-differences observed between a receiver pair
are further differenced over satellite vehicles (SVs).
In general, ambiguity resolution requires carrier-phase
and code observations over multiple receiver pairs for
multiple SVs. Normally, multiple epochs are used in
the ambiguity resolution process.

Recently, interest in instantaneous attitude determi-
nation (and hence instantaneous ambiguity resolution)
has been shown in the literature. In instantaneous
attitude determination, only data pertaining to a single
epoch is utilised, and attitude is determined on an
epoch-by-epoch basis. A number of techniques have
been proposed in this context [3], [4], [9] . To utilise
all of the information available in a single-epoch, these
techniques follow the double-difference formulation
over one or multiple receiver baselines, and in some
cases, e.g. [9], multiple platforms are utilised. These
techniques have been reported to perform well with
a large number of SVs (#SV > 5). However, per-
formance degrades as the number of SVs decreases.
Therefore, most previous methods fail when #SV =
3, a case of practical interest in urban environments
[1].

In this paper, attitude determination and ambiguity
resolution are studied using a single-difference formu-
lation of the problem. This is motivated by the fact that
a single common clock can be used by all receivers in
the case of attitude determination (contrary to the case
of kinematic positioning), which allows for cancelation
of the receiver clock error in the phase-differences
[1]. This leads to a simplified approach for attitude
determination using the proposed ambiguity resolution
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method. As in [3], [4], [9], the focus herein is on the
most challenging single-epoch, single-frequency case.
The proposed approach can, however, be extended
to the dual-frequency and/or multiple-epoch cases for
enhanced performance, but this is beyond the scope of
this paper.

The proposed ambiguity resolution and attitude de-
termination technique is based on the phase-difference
ambiguity resolution method that the authors of this
paper proposed in [13] and [14]. A key feature of the
proposed method is that, unlike existing GNSS ambi-
guity resolution methods, the proposed method relies
completely on exploiting the receiver configuration to
facilitate the ambiguity resolution task. In other words,
the receivers are configured in a way that leads to a
simplified solution for the ambiguity problem. Herein,
a specific triple-receiver configuration is exploited. The
proposed method provides a significant reduction in
computational complexity compared to existing GNSS
attitude determination methods, and works even in the
case of a minimum number of SVs (three) with no
difficulty.

In [13] and [14], the methods were applied in the
acoustic domain. Applying the approach described in
[13] and [14] directly to GNSS carrier-phase data does
not give satisfactory success rates. In this paper, the
methods are extended to handle the GNSS ambiguity
problem and improve the success rate. First, the joint
ambiguity resolution and pointing vector estimation
problem is dealt with. Subsequently, full attitude de-
termination is obtained from the orthogonal pointing
vectors.

The rest of this paper is organised as follows. In
Section II, a summary of the ambiguity resolution
approach in [13] and [14] is given. In Section III,
the application of the methods in [13] and [14] to the
GNSS pointing vector estimation problem is discussed
and the proposed ambiguity resolution approach is
explained. Section IV explains how to exploit the
methods developed in Section III for full attitude deter-
mination. Section V presents an overview of the simu-
lation environment and simulation tests conducted. The
results of these simulations are presented in Section VI.
The conclusions of this paper are given in Section VII.

II. THE BASIC AMBIGUITY RESOLUTION METHOD

The phase-difference ambiguity resolution approach
described in [13] and [14] uses the receiver configura-
tion depicted in Fig. 1. The three receivers are config-
ured in a linear fashion, with the shortest two baselines
having different lengths, i.e., d12 ̸= d23. Assuming
that all the distances are measured in units of the
wavelength of the frequency of interest, the ambiguity
resolution method restricts the difference between the
length of the shortest two baselines, ∆ ! d23 − d12,

such that
|∆| ≤ 1

2
. (1)

In other words, the difference in the receiver sep-
arations is restricted to be less than or equal to a
half-wavelength of the operational frequency. Eq. (1)
represents a sufficient condition for phase-difference
disambiguation. This condition was derived from a
necessary condition that can be written for the far-field
case in the form [14]

|∆| ≤ 1

1 + | sin(θ)| , (2)

where θ ∈ [−90o, 90o] is the angle that the line-of-
sight (LOS) vector makes with the plane perpendicular
to the receiver baselines, as illustrated in Fig. 1. The
line-of-sight vector in this case pertains to a SV of
interest. Note that the condition in Eq. (2) is less
redundant than that in Eq. (1). However, the latter
condition is more practical since the right-hand side
of the inequality is a fixed quantity leading to a fixed
receiver configuration. Therefore, Eq. (1) was utilised
for developing the ambiguity resolution method. Note
that Eq. (1) is obtained from Eq. (2) by setting θ equal
to ±90o.

Based on the above baseline restriction in Eq. (1),
it was proven that the true phase-difference between
an antenna pair can be recovered from the am-
biguous phase-difference observations using the fol-
lowing method [13]. Let us denote the ambiguous
phase-differences observed over the shortest two base-
lines as {ϕ12,ϕ23} ⊂ [−0.5, 0.5]. These are related
to the unambiguous phase-differences, {φ12,φ23} ⊂
[−d12, d12], by

φ12 = ϕ12 + n12,

φ23 = ϕ23 + n23, (3)

where {n12, n23} ⊂ Z. Note that all phase components
are measured in units of wavelengths.

Using (3) with the condition in (1), three candidate
values for the true (unambiguous) phase-difference,
φ12, can be obtained

φ12(k) =
d12
∆

(ϕ23 − ϕ12 + k) , ∀k ∈ {−1, 0, 1}.
(4)

Among the three-element set, φ12(k), the true phase-
difference is uniquely identifiable, as it is the only one
in the set that satisfies

φ12(k) ∈ [−d12, d12] (5)

To summarise, given a pair of phase-differences,
{ϕ12,ϕ23}, the true phase-difference, φ

′

12, can be
recovered by evaluating (4) and selecting the value
that satisfies (5) as φ

′

12. Since a candidate phase-
difference that satisfies the criterion in (5) is the phase-
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Fig. 1: Receiver antenna configuration for ambiguity
resolution.

difference with the minimum absolute value, the true
phase-difference can be obtained using

φ
′

12 = φ12(k
′
),where k

′
= argmin

k
|φ12(k)|. (6)

In the ideal case, the true phase-difference, and
hence the corresponding ambiguity integer, is perfectly
recovered. However, when noise is present, a non-
integer value may be yielded by (3). This value can
be rounded to the closest integer, i.e.,

n̂12 = ⌊φ12 − ϕ12⌉, (7)

where ⌊.⌉ indicates the rounding operation. Next, n̂12

is placed in (3) to obtain the final estimate of the
unambiguous phase-difference as

φ̂12 = ϕ12 + n̂12. (8)

The reader is referred to [13] and [14] for the
mathematical details and proofs of Eqs. (1–8).

III. GNSS AMBIGUITY RESOLUTION AND
POINTING VECTOR ESTIMATION

In this section, the method discussed in Section II
is applied to the GNSS pointing vector estimation
problem. The pointing vector is a unit vector or direc-
tion cosine vector that indicates the pointing direction
of a line in a reference coordinate system. Pointing
vector estimation is the first step towards full attitude
determination. In the attitude determination context,
carrier-phase information is available in the form of
an ambiguous carrier-phase at each antenna. For the
three-antenna configuration under consideration, the
phase observations are presented in the form of three
vectors; ϕi ⊂ [−0.5, 0.5], i = 1, 2, 3; each vector is
of dimensions Nsv × 1, where Nsv is the number of
visible SVs.

The ambiguous phase-difference vectors, ϕ12 ⊂
[−0.5, 0.5], ϕ23 ⊂ [−0.5, 0.5] and ϕ13 ⊂ [−0.5, 0.5]
are obtained using the operation

ϕ12 = (ϕ1 −ϕ2)− ⌊ϕ1 −ϕ2⌉,
ϕ23 = (ϕ2 −ϕ3)− ⌊ϕ2 −ϕ3⌉,
ϕ13 = (ϕ1 −ϕ3)− ⌊ϕ1 −ϕ3⌉. (9)

The purpose of the rounding operation is to remove
whole-cycle phase-difference components from the

resultant phase-differences to translate these phase-
differences into the [−0.5, 0.5] interval. Proper trans-
lation of phase-differences into the [−0.5, 0.5] interval
requires that fractional parts equal to 0.5 or -0.5 shall
be set equal to zero in the rounding operation (unlike a
standard rounding operation). Note that this translation
is a prerequisite for the ambiguity resolution methods
in [13] and [14].

A phase-difference vector, ϕij , {i, j} ⊂ {1, 2, 3},
is related to the true baseline pointing vector and the
satellite line-of-sight vectors by the following model:

ϕij + nij = dijRatrue + E, (10)

where nij and E are Nsv×1 vectors of the ambiguity
integers and phase-difference noise, respectively; R is
the Nsv×3 matrix of the satellite line-of-sight vectors;
and atrue is the 3×1 true baseline pointing vector. Note
that E is due to the phase noise contributions observed
at both receiver antenna i and j. In the ideal case,
when E = 0, ϕij +nij corresponds to the true phase-
difference. Given the model in Eq. (10), a pointing
vector estimate can be obtained as the solution of the
following minimisation problem:

min
a

∥ φij − dijRa ∥22; (11)

subject to
∥ a ∥22= 1; (12)

where φij = ϕij +nij is an estimate of the vector of
the unwrapped phase-differences, and ∥ . ∥2 denotes
the second-order norm. The minimisation in (11) with
the constrained given in Eq. (12) can be solved using
the Lagrange multiplier method. Based on [15], the
Lagrange multiplier, λ, and the pointing vector can be
obtained by solving

(RTR+ λI)a =
1

d12
RTφ12 (13)

simultaneously with Eq. (12); where I is a 3 × 3
identity matrix and [.]T is the matrix transpose opera-
tion. To obtain the solution for a, a from Eq. (13) is
substituted into Eq. (12). This yields

φT
12R

(
RTR+ λI

)−2
RTφ12 − d212 = 0. (14)

Eq. (14) is nonlinear in λ. As suggested in [15] a
number of iterative methods can be used to solve for λ.
However, Eq. (14) has multiple solutions in λ (in fact,
the equation can be shown to have order equal to 6).
As explained in [15], out of all possible solutions of
Eq. (14), the solution that minimises the cost function
in (11) is the one with the largest value. Thus, we need
to find the largest solution for Eq. (14). It is found by
inspection that the largest root of Eq. (14) is always the
closest one to zero. In this work, the required λ value is
obtained by using Newton’s method to iteratively solve
Eq. (14). The iterations starts from zero and hence the
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final root obtained is the largest root of the equation.
This approach was found to be robust in finding the
correct value of λ. This value of λ is then substituted
in Eq. (13) to obtain the estimate of the pointing vector
as

a =
1

d12

(
RTR+ λI

)−1
RTφ12. (15)

Now, reverting to the ambiguous phase-differences
in Eq. (9), the basic disambiguation method presented
in Section II is used to obtain an estimate of the
vector φ

′

12 that represents the unambiguous phase-
differences between antenna 1 and antenna 2. Next, an
initial estimate of the pointing vector is obtained as the
solution of the constrained linear least squares opti-
misation problem in (11). A pointing vector estimate,
a0 is obtained by the substitutions φ12 = φ

′

12 and
λ = λ0, where λ0 is the Lagrange multiplier obtained
by solving Eq. (14) for φ12 = φ

′

12.
It is noted that the resultant phase-difference vec-

tor φ
′

12 is more noisy than the ambiguous phases-
difference vectors used to obtain it. This is due to the
fact that φ

′

12 combines the noise of the two phase-
difference vectors, ϕ12 and ϕ23 (see Eq. (4)). In
addition, the translation operation in (9), in some cases,
results in the subtraction of an erroneous integer value.
This can happen due to cycle slips caused by the
accumulation of carrier-phase noise. All of these error
contributions result in poor accuracy in pointing vector
estimation. From simulation tests, it is found that (15)
gives only a very rough pointing vector estimate, as
will be shown in Section VI.

To improve the accuracy of pointing vector esti-
mation, the estimate a0 is further refined using the
following two steps. First, φ

′

12 is used to estimate
the vector of the integer parts of the phase-differences
across antenna 1 and antenna 2:

n̂12 = ⌊d12
(
RTa0

)
−ϕ12⌉, (16)

and a refined phase-difference vector is obtained as

φ
′′

12 = ϕ12 + n̂12. (17)

A refined pointing vector estimate, a1, can now be
determined as follows. First, obtain the new Lagrange
multiplier, λ1, by setting φ12 = φ

′′

12 in Eq. (14) and
solving (iteratively). Next, substitute φ

′′

12 and λ1 for
φ

′

12 and λ0 in Eq. (15) to obtain a1.
To obtain the final pointing vector estimate, the

phase-differences between antenna 1 and antenna 3 are
used. These are the phase-differences over the longest
baseline. The vector of the integer components of these
phase-differences is estimated using

n̂13 = ⌊d13
(
RTa1

)
−ϕ13⌉, (18)

and the unambiguous phase-difference is now given by

φ̂13 = ϕ13 + n̂13. (19)

The final pointing vector is obtained from

â =
1

d13

(
RTR+ λ̂I

)−1
RT φ̂13, (20)

where, again, λ̂ is obtained by iteratively in the manner
explained above. Eq. (20) yields improved accuracy for
â compared to a0 and a1, as will be demonstrated in
Section VI.

It should be noted that the two-stage refinement
can, theoretically, be reduced to only one stage by
replacing a1 with a0 in (18). By comparing Eq. (18)
to Eq. (16) under this replacement assumption, it can
be noticed that the pointing vector estimation error is
magnified by a factor equal to d12 for Eq. (16), and
d13 for Eq. (18). Since d13 > d12, the probability
of an erroneous integer in Eq. (18) is higher when
a0 is used instead of a1. Herein, it is assumed that
the ambiguous phase-differences, ϕ12 and ϕ13, have
identical noise properties. We can conclude that by
using a1 instead of a0 the probability of an erroneous
integer is reduced since the quality of the estimate
a1 is better than that of a0. From simulations, we
found that a single-stage of refinement does not add
significant improvement to pointing vector accuracy.
Therefore, herein, the proposed two-stage refinement
scheme is used. Another note is that, to obtain a unique
solution for the pointing vector, at least three SVs are
required, which is the minimum number of SVs that
is considered in this work.

A. A Simplified Approach

It is noticed that the minimisation in (11) can be
archived using the unconstrained least squares method.
In fact, the cost function in (11) is convex and hence
has a unique minimum. The least squares solution
(without constraints) has the same formula as Eq. (15)
for λ = 0 [16]. The resultant pointing vector form
this approach may not have a unit norm. However, the
pointing vector is artificially normalised to unity. This
normalisation corresponds to moving the solution to
the closest point that satisfies the desired constraint.
Throughout the remainder of this paper the later un-
constrained least squares approach will simplyL be
referred to as the least squares (LS) solution. On the
other hand, the alternative approach using the Lagrange
multipliers will be denoted as the constrained least
squares (CLS) solution. The CLS solution is more
computationally demanding than the LS solution since
the iterative method used find the Lagrange multiplier
requires evaluating the right-hand side of Eq. (14) and
its first derivative at each iteration. However, the CLS
solution is expected to perform better than the LS
solution. In the ideal (noise-free) case, all the Lagrange
multipliers will be equal to zero and the two solution
will coincide. It should be noted here that for more
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Fig. 2: Receiver antenna configuration for 3-D attitude
determination.

than two SVs, the matrix (R)T (R) is nonsingular, and
therefore, the inverse (RTR)−1 exists.

IV. THREE-DIMENSIONAL ATTITUDE
DETERMINATION

To obtain 3-D attitude, we need at least a pair
of non-parallel baselines. In this section, we show
how to use the the proposed method for ambiguity
resolution and pointing vector estimation to obtain
full (3-D) attitude by employing a pair of antenna
triplets. Fig. 2 shows a proposed configuration that
can be utilised. In this configuration the total number
of required antennas is reduced to five by having one
antenna shared by two triplets. For this configuration
d23−d12 = d45−d14 = ∆. By applying the techniques
from the previous section, the pointing vectors of the
two (longer) baselines can be determined. Now, we
have two vector observation that are known in the
reference frame, as well as in the body frame. A simple
algebraic method to transform such observations into
attitude matrix is the TRIAD algorithm and its variants
[17], [18]. Since the performance of these methods
is well studied, the following sections focus on the
performance of the proposed methods in estimating
individual pointing vectors.

V. SIMULATIONS

To test the proposed methods, simulations were car-
ried out. The Matlab-based GNSS VISUAL simulation
software from Delft University of Technology, Nether-
lands, was utilised [9]. The software was not used
directly, but a complete simulation was implemented
using the libraries that come with the VISUAL soft-
ware. The simulation was built in Matlab supporting all
of the parameters that appear on the VISUAL interface.

In all simulations, a Global Positioning System
(GPS) L1 frequency (wavelength ≈ 19 cm) was used.

A cut-off elevation angle of 15o was applied. The
tests were carried out over different GPS weeks. The
Almanac file used in the simulation was updated to
match the simulated GPS week. Time was set to 00:00,
and location was set to a latitude and longitude of 50o

and 3o, respectively.
Three antennas were used configured as in Fig. 1,

with the difference ∆ = d23 − d12 equal to 10 cm.
This is slightly over the half-wavelength limit given
in Eq. (1), but was found to work with the 15o cut-
off elevation angle being used. This is justified from
Eq. (2); by applying a cut-off elevation of 15o, |θ| is
restricted to less than 15o and the necessary condition
in Eq. (2) is satisfied for some baseline differences
|∆| > 1/2.

In all simulations, the true carrier-phases were con-
taminated with Gaussian noise of zero mean and a
standard deviation, σ, which was varied between 1 and
7 mm. Based on the statistical characteristics of GPS
L1 carrier-phase observations presented in [19], realis-
tic values of σ fall between 1 and 3 mm. Therefore,
it can be said that some of the test results presented
herein represent challenging scenarios, namely, the
tests results for values of σ > 3 mm. When the number
of SVs needed for a particular test was less than the
total number of visible SVs, the convention adopted
was to choose the lowest-numbered SVs.

To demonstrate the performance of the proposed
methods using the LS and the CLS approaches, two
metrics are used. The first metric is the success rate
(SR∈ [0, 1]), which quantifies the ability of the pro-
posed method to restore the correct integer vector. The
second metric is the root mean squared error (RMSE),
where the error is defined as the deviation, in degrees,
of the estimated pointing vector from the true pointing
vector. The two performance metrics were estimated
over 105 trials, each trial was a simulation of the same
(single) epoch. It should be noted that RMSE was
only estimated over success cases (failure cases were
excluded).

In all simulations involving the CLS approach, the
initial value of λ was set equal to zero. Newton’s
method was used to find the solution for λ. In all cases
convergence was reached after just few iterations.

VI. RESULTS

The purpose of the first set of tests was to char-
acterise the performance of the proposed methods at
different points of time. Table I lists the success rates
on four different dates and GPS weeks. The baseline
lengths were d12 = 45 cm and d13 = 100 cm. The
standard deviation of the undifferenced carrier-phase
noise was set to σ = 3 mm. The table was obtained
for the Nsv = 3 case, which is the least number of
SVs to yield a unique attitude solution. The entry SR0
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TABLE I: Success rates over different GPS weeks for d12 = 45 cm, σ = 3 mm and Nsv = 3.

SR0 SR1 SR
Date GPS week LS CLS LS CLS LS CLS

02-Mar-2008 445 0.94 0.94 0.92 0.77 0.92 0.79
22-Nov-2009 535 1.00 1.00 0.97 0.98 0.93 0.93
21-May-2010 560 0.77 0.77 0.76 0.76 0.97 0.94
21-Aug-2010 573 0.98 0.98 0.96 0.96 0.96 0.96

TABLE II: Attitude RMSE over different GPS weeks for d12 = 45 cm, σ = 3 mm and Nsv = 3.

RMSE0 (deg.) RMSE1 (deg.) RMSE (deg.)
Date GPS week LS CLS LS CLS LS CLS

02-Mar-2008 445 28.37 23.82 3.58 0.81 1.72 0.38
22-Nov-2009 535 9.85 8.51 1.20 0.97 0.54 0.44
21-May-2010 560 27.65 21.85 4.42 2.19 1.78 0.41
21-Aug-2010 573 8.55 6.62 1.05 0.70 0.49 0.32

is the rate at which the integer k in (4) is restored
correctly for all SVs collectively, whereas SR1 is the
rate of success in recovering n12 using Eq. (16). On the
other hand, SR is the overall success rate that coincides
with the integer n13 (Eq. (18)). From the table, it can
be seen that, in all cases, the overall success rate is
reasonably high for such a challenging scenario. The
relationship between SR0 and SR1 on one side, and
the overall success rate (SR) on the other side, does
not show any particular trend. However, on average,
the overall success rate is higher than those of the two
refinement stages. Comparing the LS with the CLS
approaches; SR is very close in all cases, except for
week 445, where the LS offers significantly better SR.
The superiority of the CLS approach will, however, be
demonstrated in the subsequent discussion when noise
is increased.

Table II is the counterpart of Table I and lists the
corresponding pointing vector RMSEs. These are the
errors corresponding to a0 , a1 and â, respectively.
The table shows extremely large RMSEs from the first
stage for both the LS and CLS aproaches. The sec-
ond stage shows significant pointing vector accuracy
improvement, while the final stage exhibits the finest
accuracy. This demonstrates the importance of the
multi-stage refinement approach. Performance differs
in the four cases. This is mainly due to the satellite
geometry, since all other parameters are constant. By
comparing Table I and Table II, it can be concluded
that there is no correlation between success rate and
accuracy in the case of success. The accuracy of the
CLS approach is better than that of the LS in all cases.

In the second set of tests, GPS week 573 was
selected. The date was set to 21-Aug-2010. At time
00:00, 8 SVs were visible (given the 15o cut-off eleva-
tion). Two parameters were varied. The first parameter
was the number of SVs involved in the computations.

The tests started by considered the first three 3 SVs
(those with the lowest numbers). Subsequently, a new
SV was added for each trial (the lowest consecutive
number). This gives a variation of Nsv from 3 to 8. In
addition, σ was varied from 1 to 7 mm. Fig. 3 plots
success rate versus the number of SVs for different σ
values. The figure shows a slight trend of increasing
success rate as the number of SVs increases. This is
more visible for higher σ values. For lower σ val-
ues, success rate approaches unity. The CLS approach
shows noticeably higher success rate (than those of the
LS approach) only with high phase noise levels. For
lower phase noise value, the two approaches performs
almost equivalently (in terms of success rates).

In Fig. 4, the corresponding RMSEs are plotted.
Improvements in pointing vector accuracy with in-
creases in the number of SVs can be clearly seen. The
effect of carrier-phase noise is also clearly seen. Again,
the CLS approach provide better performance (here in
terms of pointing accuracy). This superiority is more
emphasised as σ values increase. This is expected since
the LS approach assumes a zero Lagrange multiplier
value, an approximation whose validity reduces with
high noise levels.

The results presented so far confirm the feasibility of
the proposed method in resolving the phase-difference
ambiguity problem. These tests have been conducted
for a relatively short baseline (100-cm length). This
is suitable for some applications [16]; however, other
applications may require increased baseline lengths for
better pointing vector accuracy. In the final test, the
effect of increasing the baselines of the proposed three-
antenna configuration on success rate is studied. The
baseline d12 was varied from 45 cm (the length used
in all the tests reported above) to 95 cm using a 10-
centimeter increments. This resulted in the length of
baseline d13 falling between 100 and 200 cm. Fig. 5
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Fig. 3: Success rate (SR) versus the number of SVs
(Nsv) for different σ values.

plots success rate against baseline length, d12. The
figure was plotted for the 22-Nov-2009, σ = 3 mm
and Nsv = 3. Increasing the baseline length results in
success rate degradation for both the CLS and LS ap-
proaches, with the latter being more susceptible ro such
baseline increases. For example, for baseline lengths
such as d12 = 95 cm, success rate is inadequately
low for the LS approach, while the CLS shows a. This
effect (success rate degradation with increased baseline
length) is well studied in [13] and [14]. To alleviate the
problem, we suggest adding more antennas when the
baseline is to be increased such that the antenna density
(number of antennas per unit length) is maintained. The
extended configuration should satisfy the |∆| ≤ 1/2
rule for each triplet of neighbouring antennas. This
approach is part of the authors’ future work.

VII. CONCLUSIONS

In this paper, a method for GNSS ambiguity reso-
lution and attitude determination was presented. The
proposed method exploits a specific three-antenna
configuration. Using this configuration, the ambigu-
ity resolution and attitude determination problem was
transformed in such a way that no computationally
intensive optimisation step was required. Ambiguity
was resolved using a simple algebraic method. The
pointing vectors are estimated using either closed-
form expressions or by iterative methods, resulting two
different approaches. A receiver configuration and a
method for full attitude determination were suggested.

The proposed method was tested in simulation. The
results confirm the effectiveness of the approach in the
short baseline case. It was demonstrated that, using
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Fig. 4: The RMSE versus the number of SVs (Nsv)
for different σ values.
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the proposed methods, pointing vector estimation and
hence attitude determination is possible even when
only as few as three satellites are visible. The two
proposed approaches for pointing vector estimation
perform almost equivalently with low phase noise and
shorter baselines, and diverge systematically as phase
noise and/or baseline lengths increase. Both methods
performs acceptably with practical phase noise levels.
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[5] C. Ferrando, A. Pérez, and R. Peña, “Integer ambiguity
resolution in GPS for spinning spacecrafts,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1219–
1229, Oct 1999.

[6] G. Giorgi, “The multivariate constrained LAMBDA method
for single-epoch, single-frequency GNSS-based full attitude
determination,” Proceedings of ION GNSS 2010, pp. 1429–
1439, Sep 2010.

[7] R. Brown and P. Ward, “A GPS receiver with built-in precision
pointing capability,” IEEE Position Location and Navigation
Symposium, pp. 83–93, Mar 1990.

[8] C. H. Tu, K. Y. Tu, F. R. Chang, and L. S. Wang, “GPS
compass: novel navigation equipment,” IEEE Trans.s on
Aerospace and Electronic Systems, vol. 33, no. 3, pp. 1063–
1068, Jul 1997.

[9] P. Buist, P. Teunissen, G. Giorgi, , and S. Verhagen, “Mul-
tiplatform instantaneous gnss ambiguity resolution for triple-
and quadruple-antenna configurations with constraints,” Inter-
national Journal of Navigation and Observation, vol. 2009,
2009.

[10] G. Lu, M. Cannon, G. Lachapelle, and P. Kielland, “Attitude
determination in a survey launch using multi-antenna GPS
technologies,” Proceedings of National Technical Meeting,
ION, Jan 1993.

[11] P. Teunissen, “The least-squares ambiguity decorrelation ad-
justment: a method for fast GPS integer ambiguity estimation,”
Journal of Geodesy, vol. 70, pp. 6582, 1995.

[12] P. Teunissen, “The lambda method for the gnss compass,”
Artificial Satellites, vol. 41, no. 3, pp. 89–103, 2006.

[13] T. Ballal and C. J. Bleakley, “Phase-difference ambiguity res-
olution for a single-frequency signal,” IEEE Signal Processing
Letters, vol. 15, pp. 853–856, Dec 2008.

[14] T. Ballal and C. J. Bleakley, “Phase-difference ambiguity
resolution for a single-frequency signal in the near-field using
a receiver triplet,” IEEE Transactions on Signal Processing,
vol. 58, no. 11, pp. 5920–5926, Nov 2010.

[15] W. Gander, “Least squares with a quadratic constraint,”
Numerische Mathematik, vol. 36, pp. 291–307, 1981.

[16] S. Alban, “An inexpensive and robust GPS/INS attitude
system for automobiles,” Proceedings of the 15th International
Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GPS 2002), pp. 1075–1087, Sep 2002.

[17] H. D. Black, “A passive system for determining the attitude
of a satellite,” AIAA Journal, vol. 2, pp. 13501351, Jul 1964.

[18] M. D. Shuster, “The optimization of triad,” The Journal of the
Astronautical Sciences, vol. 55, pp. 245–257, 2007.

[19] P. Cederholm, “Statistical characteristics of l1 carrier phase
observations from four low-cost GPS receivers,” Nordic
Journal of Surveying and Real Estate Research, vol. 7, no.
1, pp. 58–75, 2010.


