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Abstract 

Objective: There is considerable interest in improved off-line automated seizure 

detection methods that will decrease the workload of EEG monitoring units. Also, 

subject-specific approaches have been demonstrated to perform better than 

subject-independent ones. However, for pre-surgical diagnostics, the traditional 

method of obtaining a priori data to train subject-specific classifiers is not practical. We 

present an alternative method that works by adapting the threshold of a 

subject-independent to a specific subject based on feedback from the user. 

 

Methods: A subject-independent quadratic discriminant classifier incorporating 

modified features based partially on the Gotman algorithm was first built. It was then 

used to derive subject-specific classifiers by determining subject-specific posterior 

probability thresholds via user interaction. The two schemes were tested on 529 hours 

of intracranial EEG containing 63 seizures from 15 subjects undergoing pre-surgical 

evaluation. To provide comparison, the standard Gotman algorithm was implemented 

and optimised for this dataset by tuning the detection thresholds. 

 

Results: Compared to the tuned Gotman algorithm, the subject-independent scheme 

reduced the false positive rate by 51 % (0.23 h-1 to 0.11 h-1) while increasing sensitivity 

from 53 % to 62 %. The subject-specific scheme further improved sensitivity to 78 %, 

but with a small increase in false positive rate to 0.18 h-1). 

 

Conclusions:  The results suggest that a subject-independent classifier scheme with 

modified features is useful for reducing false positive rate, while subject adaptation 

further enhances performance by improving sensitivity. The results also suggest that 
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the proposed subject-adapted classifier scheme approximate the performance of the 

subject-specific Gotman algorithm. 

 

Significance: The proposed method could potentially help increase productivity of 

offline EEG analysis. The approach could also be generalised to enhance the 

performance of other subject independent algorithms. 
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1  Introduction 

Epilepsy is a neurological condition characterised by a recurring and random tendency 

of the brain to produce sudden bursts of abnormal electrical activity that disrupt other 

brain functions (Waterhouse 2003). Such episodes are called seizures; clinical 

manifestations include loss of awareness or consciousness, and disturbances of 

movement and sensation (WHO 2009). Epilepsy is highly prevalent, affecting at least 

8.2 per 1,000 of the general population, and has profound social, physical and 

psychological consequences (WHO 2009). 

The electroencephalogram (EEG) is currently one of the most important diagnostic 

tools for epilepsy, as seizures usually manifest characteristic signatures on the EEG 

(Smith 2005). The routine EEG, typically 45 minutes to 1 hour in duration, is the most 

commonly performed EEG investigation on an individual with a suspected seizure 

disorder (Cascino 2002). However, in a significant number of patients, such as those 

with medically refractory epilepsy and who are candidates for surgical resection, 

long-term, continuous EEG evaluation is subsequently required (Cascino 2002). The 

large patient numbers and sheer volume of data generated makes analysing long-term 

EEG records extremely resource-intensive, and puts pressure on many epilepsy units, 

who already face resource constraints (Waterhouse 2003). Automated seizure detection 

algorithms have therefore been sought to alleviate the workload and to increase 

capacity.   

The most familiar of these is the Gotman algorithm (Gotman 1999).  Several 

algorithms have been proposed since the Gotman algorithm. For example, Meier et al 

recently introduced a promising subject independent algorithm that takes into account 

EEG seizure morphology (Meier et al. 2008). However, to our knowledge, the new 



6 

algorithms have not found widespread adoption, and the Gotman algorithm remains the 

current mainstay in most epilepsy units. 

For automated seizure detection algorithms, subject-specific approaches have been 

shown to perform better than global, subject independent approaches (Qu and Gotman 

1997) (Shoeb et al. 2004). The traditional approach to building subject-specific 

systems has been to first record and score data from individuals, and then use this 

training data to develop subject-specific classifiers. While this approach could be 

feasible in other settings, it is not practical for the typical application in epilepsy units, 

i.e. pre-surgical evaluation of long-term EEG. An alternate approach is therefore 

desired.  

To our knowledge there is limited prior work on methods to adapt 

subject-independent seizure detection algorithms into subject-specific solutions. Haas 

et al (Haas et al. 2007) proposed a method to adapt the Osorio–Frei algorithm 

(Osorio et al. 1998). Although promising, its performance across a large number of 

subjects is unclear as only results for a few example subjects were presented. 

Furthermore, the scope for generalisation of the method is somewhat restricted as it is 

specific to algorithms employing spectral filters exclusively. 

From a technical point of view, all previously-proposed seizure detection algorithms 

that we are aware of were developed using the classical, i.e. automated approach, where 

the algorithm is implemented in software and the classifier is applied solely by 

executing the software (Duda et al. 2000). Recently, a new approach, termed 

‘interactive machine learning’, has been proposed, where users actually engages in 

generating the classifier (Ware et al. 2001). The key advantage of this approach is that 

it offers a natural way of integrating a priori and expert knowledge into the modelling 
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stage, and it has demonstrated its potential to be more successful than classifiers built 

using the traditional approach (Ware et al. 2001). 

In the clinical and technical contexts discussed, we present a method that adapts a 

subject-independent quadratic discriminant classifier to each subject. The method 

involves some user interaction, and delivers enhanced performance over the 

subject-independent classifier with minimal user overhead and overall, improved 

productivity. It could also be generalised to enhance the performance of other subject 

independent algorithms where classification is made by thresholding a generated 

confidence measure. 

This paper is structured as follows: we first describe the data used to develop the 

method (Section 2.1), and the features used for classification (Section 2.2). Following 

that, we describe how the subject independent classifier was developed (Section 2.3), 

and then the proposed method to adapt the subject independent classifier to subject 

specific classifiers is explained (Section 2.4). Reference configurations built to provide 

comparison with the proposed schemes are described in Sections 2.5 and 2.6. We then 

present the results (Section 3), and this is followed by a discussion of the method and 

results (Section 4). 

2  Method 

2.1  Subjects and Data 

De-identified data was obtained from the Freiburg EEG Database (Freiburg 2009). 

Briefly, the database contains long-term, intracranial EEG obtained while subjects 

underwent pre-surgical monitoring at the Epilepsy Centre of the University Hospital of 

Freiburg, Germany. Six channels of EEG were available for each subject. The ictal and 
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inter-ictal periods were determined by experienced epileptologists by visual inspection, 

based on identification of typical seizure patterns preceding clinically manifest seizures 

(Freiburg 2009). Ictal and inter-ictal annotations were provided as part of the database. 

EEG was recorded at 256 Hz using a Neurofile NT digital video-EEG system and a 

16-bit ADC. 

Data from 15 subjects who exhibited generalised tonic-clonic seizures (M/F 5/10, 

age 33 r 12 yrs) was analysed. On average, each subject contributed 9.5 (r 3.0) hours of 

ictal data (which included on average 4 r 1 seizures), and 24.0 (r 1.0) hours of 

inter-ictal data. A total of 529 hours of EEG (63 seizures) was analysed. 

2.2  Feature Extraction 

For each subject, each EEG channel was bandpass filtered between 0.3 and 30 Hz, and 

then divided into continuous 2-second, non-overlapping epochs (segments). For each 

epoch, a number of features were computed (details are provided in the subsequent 

paragraphs). Each EEG channel was processed similarly, and the respective features 

were then averaged across the channels. 

2.2.1  Standard Gotman Feature Set 

The standard Gotman features (Gotman 1999) (Chang et al. 2005) are a) average 

half-wave amplitude, b) average half-wave duration and c) coefficient of variation of 

half-wave duration. For each epoch, the peaks and troughs of the filtered EEG were first 

identified, and spurious detections were removed. Spurious detections are 

low-amplitude EEG fluctuations that are falsely detected as peaks or troughs. They 

occur between actual peaks and troughs. A threshold was used to identify these 

spurious detections. The amplitudes of all detected peak-trough pairs were first 

calculated, and the threshold was taken as half of the median of all amplitudes. Pairs 
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with amplitude smaller than the threshold were identified as spurious detections and 

removed. Each EEG segment between a trough and the next peak, and between a peak 

and the next trough was then taken as a half-wave. Half-wave amplitude was computed 

as the peak to trough amplitude, and half-wave duration as the peak to trough time 

interval. Half-wave amplitude and duration values in each epoch were then averaged to 

obtain the average half-wave amplitude and duration features for that epoch 

respectively. The coefficient of variation feature was obtained as the ratio of the 

variance of half-wave durations to the square of average half-wave duration. 

2.2.2  Line Length 

Line length has been proposed as a potential feature for seizure detection in both adults 

(D'Alessandro et al. 2003) and neonates (Greene et al. 2008). For each EEG epoch x of 

length N, line length L was computed using (1) 

 

 L= ¦
k=1

N
 | x[k]�x[k�1] | (1) 

2.2.3  Rectified Zero Crossings 

This feature was motivated by observing that seizures were often associated with EEG 

frequency changes from the baseline. However, changes can be either increases or 

decreases. We therefore use ‘rectified zero crossings’, which estimates the absolute 

value of any change in EEG frequency from the baseline. 

To compute this feature, the number of EEG zero crossings in each epoch were first 

determined. This time series of zero crossings was then centred by subtracting its own 

median, and the absolute value then taken. 
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Rectified zero crossings is conceptually similar to existing frequency-based features, 

such as Gotman’s average half-wave duration, and can be considered a modified 

Gotman feature. Its advantage, is that its value always increases regardless whether the 

EEG frequency increases or decreases relative to the baseline, whereas existing features 

such as Gotman’s average half-wave duration follow the polarity of the change 

(positive or negative). Figure 1 shows a graphical comparison between rectified zero 

crossings and Gotman’s average half-wave duration for the current dataset. As shown 

in Figure 1, the feature is more useful for classification as it provides a consistent 

positive separation between seizure and non-seizure epochs (i.e., the seizure epochs 

tend to have a higher feature value) regardless of the polarity of change in frequency. 

We decided to use rectified zero crossings instead of rectified average halfwave 

duration as determining zero crossings from the EEG signal is computationally simpler 

and we found it to be more reliable than determining peaks and troughs when 

computing halfwave duration. 

2.3  Subject Independent Classification 

2.3.1  Quadratic Discriminant Classifier 

A modified feature set consisting of four features was used together with a Quadratic 

Discriminant Analysis (QDA) classifier to distinguish between seizure and non-seizure. 

The four features were: a) relative half-wave amplitude, b) rectified zero crossings, c) 

coefficient of variation of half-wave duration and d) line length. Each feature was 

log-transformed to closer approximate Gaussian distributions (McDonald 2009), and 

normalised to zero mean and unit standard deviation to prevent subsequent numerical 

difficulties. 
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Briefly, for each epoch (with associated feature vector x), its discriminant values 

gi(x) for each class Zi, i=1,2 (Seizure, Non-seizure), were computed according to (Eq. 2) 

(Duda et al. 2000) 

 

 gi(x)=xTWix+wT
i x+Zi0 (2) 

where 

 

 Wi=� 
1
26

�1
i  (3) 

 

 wi=6
�1
i Pi (4) 

and 

 

 Zi0=� 
1
2P

T
i 6

�1
i Pi� 

1
2 ln |6i|+ln P(Zi) (5) 

 

where Pi are the class means, 6i are the class covariance matrices and P(Zi) are the 

class a priori probabilities, and these were empirically estimated from the entire dataset. 

The class posterior probabilities P(Zi|x) were then obtained using (Eq. 6) 

 

 P(Zi|x)= 
exp(gi)

 ¦
i=1

2
 exp(gi)

 (6) 

 



12 

As the a priori probability of seizure was very low (a0.004 based on empirical data 

from the Freiburg database), setting the posterior probability threshold to 0.5 for 

classification caused a significant number of seizures to be missed. In addition, there is 

temporal dependency in the posterior probability as seizures occur in episodes that are 

sustained and continuous. We therefore assumed that very short and isolated detections 

are physiologically unlikely. Hence, to boost classifier performance, we used a) 

posterior probability smoothing, and b) setting the classification threshold to less than 

0.5. The optimal threshold and amount of smoothing were determined empirically from 

the data (details described in the next sub-section). 

2.3.2  Training and Validation 

A leave one subject out cross validation scheme (de Chazal et al. 2003) was used. In 

brief, one subject was omitted each time, and data from all other subjects was used to 

train a classifier. This involved estimating the class means, covariance matrices and a 

priori probabilities. The trained classifier was then applied on the omitted subject. 

To determine the optimal threshold and smoothing window size, the posterior 

probability of seizure (without smoothing) for each omitted subject was first 

determined using the classifier trained using data from all the other subjects. A series of 

thresholds (step size 0.01) and smoothing window sizes (step size 10) was then applied 

to the computed posterior probability and the corresponding classification performance 

(in terms of sensitivity and false positive rate) for that omitted subject was computed. 

After cycling through all of the omitted subjects, the subject-averaged classification 

performance was then used to identify the optimal threshold/window size combination, 

i.e. the combination with the shortest Euclidean distance to the ideal point (i.e. 100 % 

sensitivity, 0 hr-1 false positive rate). 
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A simple moving average was used for smoothing. For a given threshold, epochs 

whose posterior probabilities exceeded the threshold were classed as seizure episodes. 

A successful seizure detection was considered made if a detected episode occurred 

between the (reference) annotated start and end times of the seizure; otherwise the 

episode was considered a false positive. Sensitivity was calculated as the proportion of 

seizure episodes detected. For example, if a particular subject had five annotated 

seizures and four were successfully detected by the algorithm, sensitivity for this 

subject would be 4/5 = 80 %. The false positive rate was taken as the number of false 

positive episodes per hour of the whole recording. For example, for a 36-hour recording 

with 3 false positive episodes, false positive rate for this subject would be 3/36 = 0.08 

hr-1.  

2.4  Subject-Specific Adaptation 

Using annotated reference data, experimentation with subject-specific Gaussian 

parameters (i.e. class means, covariance matrices and a priori probabilities), smoothing 

window sizes and thresholds led us to the observation that setting subject-specific 

posterior probability thresholds was the most effective approach (results not presented). 

The question therefore became one of determining the optimum subject-specific 

thresholds in such a way that will enhance classification performance with minimal 

user overhead, and deliver overall improved EEG analysis productivity. 

To estimate the optimum threshold for each subject, a probability density function of 

subject-specific thresholds was first estimated using training data (Figure 2 shows an 

example; the method is described in detail later). Threshold values that divided the 

probability density to the left and right side of the global threshold (T0 in Figure 2) into 

equal areas were then determined (Figure 2), and used as test threshold values. 
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Figure 3 presents an overview of the adaptation process. Each subject’s EEG 

recording is first analysed using the automated subject independent classifier described 

in Section 2.3 to determine ‘possible’ seizure episodes. The EEG technologist’s 

experience in interpreting EEGs then used to determine the optimum subject-specific 

threshold interactively. The technologist is presented with a ‘possible’ episode and 

asked to score it as ‘seizure’ or ‘non-seizure’. Based on the technologist’s input, the 

optimum subject-specific threshold is adjusted using a decision tree algorithm (Figure 4, 

details described later). This adaptation process terminates whenever a ‘possible’ 

episode is positively identified as a ‘seizure’ episode, or when the technologist has been 

presented with four ‘possible’ episodes. 

Figure 4 describes the adaptation process in detail. In general, for each threshold 

value being tested, the ‘possible’ episode with the posterior probability nearest to the 

test threshold value is presented to the technologist for scoring. In Step 1, two episodes, 

one on either side of the global threshold T0, are presented to the technologist. If both 

episodes are scored as non-seizures (i.e false positives), the threshold is adjusted 

upwards to T1U (Figure 4, upper path). If both episodes are scored as seizures, or if no 

more episodes with higher posterior probabilities are available, the threshold is set at 

T1D (Figure 4, lower path). If only one episode is positive, the global threshold is left 

unchanged. 

In Step 2, the episode with posterior probability closest to T1U is presented. If it is 

positive, the threshold is set at T2D; otherwise the threshold is adjusted upwards to T2U. 

In Step 3, the episode nearest to T2U is presented. If it is positive, the threshold is set at 

T3D; otherwise the threshold is set at T2U. 

The probability density function of subject-specific thresholds (Figure 2) was 

estimated using the same leave one subject out cross validation methodology (Section 
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2.3.2). For each left out subject, the trained subject-independent classifier was applied, 

with various threshold levels, to data from each training subject to identify the optimum 

subject-specific threshold for that training subject. A beta distribution (Panik 2005) was 

then fitted to the empirical distribution of the obtained subject-specific thresholds. This 

was achieved by evaluating various beta distribution parameter combinations and 

selecting the one with lowest least-square error with respect to the empirical 

distribution. 

2.5  Standard Gotman Algorithm 

The standard Gotman algorithm was implemented for comparison based on 

descriptions by Gotman (Gotman 1999) and Chang et al (Chang et al. 2005). Briefly, 

for each epoch, the average half-wave amplitude relative to a background value, i.e. the 

‘relative half-wave amplitude’, was computed. The background was taken as the 

16-second segment starting from the point 28 seconds before each epoch. A ‘channel 

detection’ was made if a) the relative amplitude exceeded 3, b) the average half-wave 

duration was between 25 and 150 ms, and c) the coefficient of variation of half-wave 

duration was less than 0.6.  

A ‘seizure detection’ was then made if two or more channel detections occurred in the 

same or adjacent epochs, i.e. a) channel detections in adjacent epochs of the same 

channel, or b) channel detections in the same epoch of different channels. If the two 

channel detections were in the same epoch but in two different channels, then the 

average amplitude of the successive epoch in one of the two channels must be at least 

80 % that of the detection epoch. 
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2.6  Reference Configurations 

To differentiate the contributions of the various components of the proposed schemes 

(i.e. feature set, classifier model and subject adaptation), a number of reference 

configurations were built for comparison purposes. 

2.6.1  Subject-Independent Configurations 

Tuned Gotman Algorithm. The channel detection thresholds of the standard 

Gotman algorithm were tuned for the current dataset. This is because, although the 

proposed schemes were developed using cross-validation techniques to avoid 

over-fitting, they are based retrospectively on the given dataset. On the other hand, the 

standard Gotman algorithm is a priori non-tuned if applied as-is, and was therefore 

optimised for fair comparison. 

Specifically, the detection thresholds for the relative amplitude and coefficient of 

variation of half-wave duration were tuned. Sensitivity and false positive rates for each 

subject were determined for various combinations of the two thresholds. The 

combination that minimised the mean Euclidean distance to the ideal point (100 % 

sensitivity, 0 h-1 false positive rate) was taken as the operating point. 

We interpreted the thresholds for average half-wave duration (between 25 and 150 

ms) as broad thresholds for valid EEG frequencies (between 3.3 and 20 Hz), and these 

thresholds were therefore not tuned. 

Standard Gotman Feature Set + QDA. To investigate the contribution of the QDA 

classifier, we replaced the decision model of the standard Gotman algorithm with a 

QDA classifier. The classifier was built using the same methodology as described in 
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Section 2.3 except that here the feature set is the standard Gotman feature set (as 

described in Section 2.2.1). 

2.6.2  Subject-Specific Configurations 

Subject-Specific Gotman Algorithm. Here we sought to estimates the ‘ground truth’ 

performance of a subject-specific Gotman algorithm by obtaining individual sets of 

optimal detection thresholds for each subject. For each subject, sensitivity and false 

positive rates for various combinations of the two thresholds were determined. The 

combination that minimised the Euclidean distance to the ideal point was taken as the 

optimal thresholds for that subject.  

Subject-Specific Standard Gotman Feature Set + QDA. Subject-specific QDA 

classifiers using the standard Gotman feature set were built using cross-validation. 

Briefly, for each subject, the record was divided into n folds, n being the number of 

seizures in that record. The proportion of ictal and inter-ictal data in each fold was kept 

constant. We cycled through the folds, each time leaving one fold out. A classifier was 

trained on all other folds, and tested on the left-out fold. Classification results (in terms 

of Euclidean distance from the ideal point) for various combinations of posterior 

probability threshold and smoothing window size were then averaged across folds, and 

the combination with minimum distance was selected. 

We note that these classifiers are potentially biased, as there wasn’t separate training 

and testing data. Indeed, our intention was not to develop practical subject-specific 

classifiers using this approach, but instead, what we wanted was to estimate the ‘ground 

truth’ performance of such a subject-specific classifier for comparison purposes. 

Subject-Specific Modified Feature Set + QDA. Here we sought to estimate the 

‘ground-truth’ performance of the subject-specific QDA classifier that uses the 
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modified feature set. This serves as comparison to the proposed subject-adaptation 

scheme, as the goal of the proposed scheme is to approximate this ‘ground truth’ 

performance. These ‘ground truth’ classifiers were built using the same methodology as 

described in the previous paragraph, except here the feature set was the modified 

feature set. 

2.7  Statistical Analysis 

Sensitivity and false positive rate performance were combined into a single metric by 

calculating the Euclidean distance from each sensitivity and false positive rate pair to 

the ideal point. Paired t tests were for statistical analysis. Where normality was not 

satisfied, Wilcoxon signed rank test was used. Statistical analysis was carried out using 

SigmaPlot (Systat Software Inc, USA). 

 

3  Results 

Figure 5 presents the performance of the proposed schemes and various reference 

configurations in a receiver-operator characteristic (ROC) curve layout, while Figure 6 

summarises the corresponding ROC distance, sensitivity and false positive rate results. 

Tuned Gotman Algorithm. The standard Gotman algorithm provided sensitivity and 

false positive rates of 55.8 ± 8.8 % and 0.51 ± 0.21 hr-1 respectively (black inverted 

triangle, ROC distance 0.83 ± 0.18). After optimising the detection thresholds of the 

Gotman algorithm for the current dataset (i.e. shift along black ROC curve to point with 

shortest ROC distance), ROC distance improved to 0.62 ± 0.10, although the effect did 

not reach statistical significance (black circle, Wilcoxon signed rank test: z =  -1.852, p 
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= 0.068). False positive rate decreased to 0.23 ± 0.09 hr-1, while sensitivity remained at 

similar levels (53.4 ± 10.0 %). 

QDA Classifier. Replacing the decision model of the standard Gotman algorithm with 

a QDA classifier provided outward expansion of the ROC curve starting around the 

50 % sensitivity, 0.25 hr-1 false positive rate point (red vs. black curves). Compared to 

the tuned Gotman algorithm (red circle vs. black circle), sensitivity increased to 67.3 ± 

8.2 %, but with a concurrent increase in false positive rate to 0.34 ± 0.08 hr-1. ROC 

distance improved from 0.62 ± 0.10 to 0.55 ± 0.08, but we did not manage to detect a 

statistically significant effect (paired t test: t = 0.953, p = 0.357, power < 0.8). 

Modified Feature Set. Modifying the feature set further resulted in a general outward 

expansion of the ROC curve (blue vs. red curves). The optimal global posterior 

probability threshold and smoothing window size were 0.05 and 125 respectively. 

Compared to the tuned Gotman algorithm (blue circle vs. black circle), there was a 

simultaneous increase in sensitivity (to 61.7 ± 9.1 %) and a reduction in false positive 

rate (to 0.11 ± 0.04 hr-1). ROC distance improved from 0.62 ± 0.10 to 0.46 ± 0.08, 

although the effect was just below statistical significance (paired t test: t = 1.796, p = 

0.094, power < 0.8). When compared to the standard Gotman feature set + QDA 

classifier (blue circle vs. red circle), the results suggest that modifying the feature set 

had the effect of reducing false positive rate (by 67.4 %) while generally maintaining 

sensitivity. 

Subject-Specific Classifiers. There are two subject-independent classifier 

configurations, one using the standard Gotman feature set (red circle) and the other 

using the modified feature set (blue circle). Comparing these subject-independent 

classifiers and their subject-specific counterparts (red and blue circles vs. squares 

respectively), the results suggest that adopting a subject-specific approach improves 
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performance by achieving operating points nearer the ideal point than the respective 

subject-independent ROC curves (blue and red curves), i.e. decreased ROC distance. 

This corresponds to increased sensitivity, although there was also an increase in false 

positive rates. 

Subject-Adaptation. The proposed subject-adaptation scheme seeks to 

approximate the ‘ground truth’ subject-specific classifier during offline EEG analysis, 

without needing a priori subject training data. The adaptation algorithm terminated 

after 2 and 3 steps in 2 and 11 subjects respectively. In two subjects, the global posterior 

probability threshold remained unchanged. As shown in Figure 5, the proposed scheme 

(green triangle) closely approximates the ‘ground truth’ (blue square) (ROC distance: 

0.37 ± 0.06 vs. 0.34 ± 0.07. Paired t-test: t = 0.532, p = 0.603). At the same time, the 

proposed scheme also approximates the ‘ground truth’ subject-specific Gotman 

algorithm (black square) (ROC distance: 0.37 ± 0.06 vs. 0.35 ± 0.07. Paired t-test: t = 

0.277, p = 0.786). When compared to the tuned Gotman algorithm (green triangle vs. 

black circle), the subject-adapted scheme achieves increased sensitivity and reduced 

false positive rates (ROC distance: 0.37 ± 0.06 vs. 0.62 ± 0.10. Paired t-test: t = 2.709, p 

= 0.017). 

4  Discussion 

We presented a method for adapting a subject independent classifier to create 

subject-specific classifiers during offline EEG analysis. Compared to the 

commonly-used Gotman algorithm, the method provides significant improvements in 

sensitivity and false positive rate, and the adaptation only requires minimum user 

overhead in the form of the EEG technologist scoring up to four likely seizure episodes 

(as described in Section 2.4). Given that the standard Gotman algorithm is the current 
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mainstay in most epilepsy units (Chang et al. 2005), the proposed algorithm is 

potentially clinically useful as it would significantly increase the productivity of 

scoring EEG recordings. 

For the subject-independent classifier, the selected values are 0.05 for posterior 

probability threshold and 125 for smoothing window size.  The results suggest that 

weighing the posterior probability threshold very much in favor of the ‘seizure’ class 

and smoothing posterior probability values with a 250-minute window (125 x 2-minute 

epochs) is conducive for detection and reducing detection noise. 

Recently, Meier et al introduced a promising subject independent algorithm that 

takes into account seizure morphology (Meier et al. 2008). Compared with the Meier 

algorithm, our proposed algorithm provides comparable false detection rate, albeit with 

lower sensitivity. Nonetheless, our proposed method adds to the body of knowledge as 

we have described a method that provides a way to approximate the performance of a 

subject-specific classifier without requiring a priori training data. In addition, the 

proposed adaptation technique can potentially be generalised as a technique to adapt 

subject independent classifiers. It can be applied to any algorithm that produces a 

confidence measure of a desired class, and where it is desirable to obtain subject 

specific thresholds for subsequent classification. Therefore it could in theory be applied 

to another subject independent classifier that performs better than the one described 

here, to further enhance that classifier’s performance. 

At the moment, there are some limitations to the proposed algorithm in a practical 

setting. First, we need to establish with further studies how well the method will 

generalise to the 20-channel surface electrode configuration commonly used in 

epilepsy units. Second, the usefulness of the algorithm will be limited in epilepsy units 

that practise real-time seizure scoring. For example, it is usual to try to capture three 
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typical events during the monitoring period. So by the time the four suspect events 

required for adaptation is recorded, the monitoring period could be ending. Third, the 

number of subjects available in the current dataset is rather small, causing limitations 

such as limited statistical power in establishing performance differences between 

algorithms. Further evaluation using a larger dataset would be necessary to confirm the 

advantages of some aspects of the proposed scheme. 

In conclusion, we presented a method for improving the performance of a subject 

independent quadratic discriminant classifier by adapting it to subject-specific 

classifiers through limited user interaction. The results suggest that such a method 

could be clinically useful for increasing productivity of EEG analysis. The method 

could also be generalised to enhance the performance of other subject independent 

algorithms. 
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Figure Legends 

 

Figure 1: Per-subject feature values for a) Gotman’s average halfwave duration and b) 

rectified zero crossings for the current dataset. Values shown are per-subject means ± 

SD. 

 

Figure 2: Example of a probability density function of subject-specific thresholds, 

estimated from training data. The dots mark threshold values that divide the probability 

density on either side of the global threshold (T0), by the amount stated in the 

parentheses. For example, the threshold T1U divides the probability density to the right 

of T0 by half. 

 

Figure 3: Overview of the adaptation process. Compared to current workflow, the 

additional adaptation step helps to enhance the accuracy of the automated algorithm 

with minimal user overhead, and increases productivity overall. Please see text for 

detailed descriptions. 

 

Figure 4: Decision tree algorithm for estimating subject-specific posterior probability 

thresholds. T*: Threshold values being tested at each step. Y, N: If positive seizure 

identification has been made. Please see text for detailed descriptions. 

 

Figure 5: Performance of the proposed schemes and reference configurations, presented 

in a receiver-operator characteristics (ROC) layout. Black curve: ROC for standard 

Gotman algorithm on current dataset. Black inverted triangle: Standard detection 

thresholds. Black circle: Tuned detection thresholds for current dataset (point with 
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shortest ROC distance on the curve). Black square: Operating point for ground truth 

subject-specific Gotman algorithm. Red curve: ROC curve for standard Gotman feature 

set + QDA classifier. Red dot: Operating point for subject-independent classifier. Red 

square: Estimated ground truth operating point for subject-specific classifier. Blue 

curve: ROC curve for modified feature set + QDA classifier. Blue dot: Operating point 

for subject-independent classifier. Blue square: Estimated ground truth operating point 

for subject-specific classifier. Green triangle: Operating point of proposed 

subject-adapted classifier. 

 

Figure 6: Summary of the performance of the proposed schemes and reference 

configurations. Panel A: Receiver-operator characteristic (ROC) distance. Panel B: 

Sensitivity and false positive rates. Algorithm 1: Tuned Gotman algorithm. 2: Standard 

Gotman feature set + subject-independent QDA classifier. 3: Modified feature set + 

subject-independent QDA classifier. 4: Modified feature set + subject-adapted QDA 

classifier. Values shown are means ± SEM. *: p < 0.05. 
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