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This paper presents a novel real-time algorithm for reducing and dynamically controlling the computational 
complexity of an H.264 video encoder implemented in software. A fast Mode Decision algorithm, based on a 
Pareto optimal MacroBlock classification scheme, is combined with a Dynamic Complexity Control algorithm 
that adjusts the MB Class decisions such that a constant frame rate is achieved. The average coding efficiency 
of the proposed algorithm was found to be similar to that of conventional encoding operating at half the frame 
rate. The proposed algorithm was found to provide lower average bit rate and distortion than Static Complexity 
Scaling. 
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1. INTRODUCTION  
In recent decades, there has been explosive growth in the field of multimedia 

communications. A key enabler of this growth has been the development of efficient 

video coding standards and systems. The H.264 video coding standard, developed by the 

Joint Video Team (JVT [2003]), provides better coding efficiency at low bit rates 

[Wiegand at al. 2003] than previous standards, such as MPEG-2 and H.263. However, for 

some applications, its deployment has been impeded due to the significantly increased 

computational complexity of the encoder. As a result, most real-time H.264 video 

encoders are implemented in specially designed hardware, rather than on general purpose 

processors. Clearly, implementation in software in general purpose, programmable 

processors would provide a more flexible and, in many cases, cost effective solution.  
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A large number of algorithms have been proposed for reducing the computational 

complexity of H.264 video encoding. Generally, these algorithms focus on decision 

prediction and early termination to reduce the average complexity of the most 

computationally demanding components of the video encoder. In almost all cases, these 

algorithms aim to reduce the total encoding time. The algorithms show significant 

variations in frame encoding times. Hence, these methods are not well suited to real-time 

applications in which the encoder must maintain a constant frame encoding time.  

In contrast, almost all published research on real-time software H.264 encoders 

focuses on low-level Instruction Set Architecture (ISA) optimizations and/or global 

encoding parameter adjustments, such as reduced search size or frame rate. Although 

these approaches are very straightforward, they are far from optimal in terms of the 

coding efficiency achieved. 

This paper presents an algorithm for reducing the computational complexity of H.264 

video encoding and dynamically controlling complexity such that the encoder meets real-

time constraints while maintaining optimal coding efficiency. A fast Mode Decision 

(MD) method is presented which reduces the computational complexity of H.264 

encoding and is amenable to complexity control. The method improves on previously 

published fast MD schemes by means of Pareto-optimal MacroBlock (MB) class 

definition and Rate-Distortion (RD) cost based mode prediction metrics. A Dynamic 

Complexity Control (DCC) method is presented which, based on an encoding time 

prediction model, adjusts the fast MD encoding parameters from MB to MB such that 

real-time coding is achieved. Operating in tandem, the methods achieve the goal of real-

time H.264 video encoding in software with high coding efficiency. To the authors' 

knowledge, their work is the first to propose use of a classification-based Dynamic 

Complexity Control algorithm. The main advantages of the approach are RD optimal 

complexity scaling, constant frame encoding complexity and low bookkeeping overhead.  

The paper is organized as follows. Section 2 reviews related work in the field. Section 

3 provides an analysis of the low complexity encoding problem, describes the proposed 

fast MD method and presents experimental results. Section 4 contains an analysis of the 

Dynamic Complexity Control problem, details the proposed DDC method and provides 

experimental results. Section 5 concludes the paper. 

 

2. RELATED WORK 
Since the H.264 standard was adopted and its complexity was studied, various methods 

have been proposed to decrease the complexity of the encoder. Generally speaking, the 



work done by researchers in the field can be divided into two categories - non-real-time 

or low complexity algorithms and real-time implementations. Published work in these 

categories is described in the following two sub-sections.  

 

2.1 Low Complexity H.264 
Most of the complexity of the encoder is due to Motion Estimation (ME) and Mode 

Decision (MD) [Saponara at al. 2002]. Thus optimization of these tools has the greatest 

impact on the overall computational complexity of the encoder.   

A key innovation in H.264 is that it provides Various Block Sizes (VBS). The 

conventional MD algorithm goes through all possible block modes and selects the one 

that has the lowest RD cost [Wiegand et al. 2003]. Conventionally, the modes are 

examined sequentially in the order P16x16, P16x8, P8x16, P8x8, I16x16, I4x4, SKIP 

where P denotes Inter coding relative to a motion compensated MB from the previous 

frame and I denotes Intra coding relative to surrounding MBs in the current frame. The 

numbers denote the size of the sub-blocks within a given 16x16 MB. A SKIP occurs 

when the MB can be simply copied from the previous frame without residual coding. 

The RD cost, J, is calculated using the Lagrangian formula [Everett 1963]: 

       (1) 

where R is the number of bits used for encoding, D is the distortion, calculated as Sum of 

Square Errors (SSE), and λ is the Lagrange multiplier. The Lagrange multiplier controls 

the relative importance of bit rate and distortion.  

Fast MD algorithms can be divided into four categories - Early Termination (ET), 

Forward SKIP Prediction, MB classification and Other.  

ET techniques assume that some block modes can be eliminated from the mode 

search by predicting (i.e. without performing ME) that they would not be selected after a 

full search. The idea of Forward SKIP Prediction is to perform the SKIP decision first, 

not last. This can result in significant computational saving for low motion sequences for 

which the SKIP rate is high (40–60%).  

Combinations of these techniques with various prediction methods are proposed in 

[Yin et al. 2003; Han and Lee 2004; Ahmad et al. 2004; Li et al. 2005; Kim et al. 2006; 

Kannangara et al. 2006]. Of these, we found the most effective, when used with recent 

versions of the JM reference software, to be [Kim et al. 2006] and [Kannangara et al. 

2006], which achieve a 53% and a 19%–67% complexity reduction respectively, with 

insignificant bit rate gain. 



In the MB classification approach, MBs are analyzed and classified according to their 

features. Different H.264 encoding parameters are used for each class. For example, 

‘difficult’ MacroBlocks, i.e. those that are hard to encode, are allocated to classes with 

more computationally complex H.264 settings.  

This idea was investigated in [Deepak and Chen 2001; Zhao and Richardson 2003; 

Wang and Zhu 2005; Yu 2004; Kim and Kuo 2005; Hong et al. 2005; Feng et al. 2006]. 

Of these, the most effective appears to be [Wang and Zhu, 2005]. This technique is based 

on the identification of active and inactive regions of the frame based on a Frame 

Difference (FD) metric. The computed FD value is compared with an activity threshold 

and only active macroblocks are processed using full H.264 complexity settings. Results 

showing a 42% complexity reduction indicate that more sophisticated classification and, 

possibly, use of an additional metric are required to achieve further speed improvements. 

It worth noting that [Hong et al. 2005] and [Feng et al. 2006] also a propose 

classification based approach but focus on encoders where Rate-Distortion Optimization 

(RDO) is on. Switching RDO on significantly increases computational complexity. Since 

this work focuses on low complexity algorithms, RDO is switched off.  

Other methods proposed by the researchers are difficult to categorize since they are 

quite specific. For instance, fast multi-block selection [Chang et al. 2004] is based on the 

idea of detecting fast and slow moving areas of the frame and processing them 

differently.  The method in [Kuo and Chan 2004] is based on the correlation of Motion 

Vectors across the various MB partitions. The results achieved for these methods are 

similar to those obtained for the ET and forward SKIP schemes.  

All of these algorithms reduce the total encoding complexity but do not maintain a 

constant frame encoding time. In addition, none of these papers address the problem of 

making the encoding process amenable to complexity control. 

 

2.2 Real-time H.264 Encoding 
In contrast, real-time encoders must maintain a constant frame encoding time. Most 

papers on the topic describe instruction-level optimizations for particular processors. For 

example, [Kant et al. 2006], [We and Canhui 2006] and [Hsu et al. 2005] describe H.264 

implementations on the Analog Devices' BF561, Texas Instruments TMS320C6416, and 

Pocket PC respectively.  

Joint Rate-Distortion-Complexity (RDC) optimization frameworks for H.264 have 

been proposed for static complexity scaling in [Hu 2006] and [Strottup-Andersen at al. 

2004]. These frameworks seek to reduce total encoding complexity with minimum RD 



loss by determining the best combination of encoding parameters at each complexity 

point. These methods are static in that the encoding parameters are fixed a priori and do 

not change during the encoding process.  

A number of papers have proposed algorithms for Dynamic Complexity Control of 

the H.264 encoder suitable for real-time applications. In [Goto et al. 2006], a simple 

method is described for CPU workload smoothing based on Peak-Load-Suppressed 

Diamond Search ME. The authors’ of [Berger et al. 2007] describe an H.264 encoding 

algorithm that operates on a MB time budget and adaptively eliminates sub16x16 MB 

sizes so as not to exceed the time limit. [Shen et al. 2007] proposes a method for dynamic 

complexity control for Intra coding. A method that limits the reference frame and mode 

search based on the predicted complexity and an assessment of the benefits of search 

depth is described in [Wu et al. 2007]. [Ates and Altunbasak 2008] describes a method 

that limits mode search based on a spatiotemporal activity metric and uses a Lagrangian 

parameter for trading off complexity and RD performance. Unlike the work herein, these 

last two methods do not incorporate forward SKIP prediction or a frame buffering 

technique. The lack of a forward SKIP decision significantly increases computational 

complexity. The lack of a frame buffer means that the frame encoding time budget must 

be set conservatively. A graph in [Ates and Altunbasak 2008] shows that the lack of a 

frame buffer results in 20% of clock cycles going unused. [Kaminsky et al. 2008] 

proposes a method that provides Constant Bit Rate (CBR) and constant complexity 

encoding. In this work, we seek to maximize RD performance subject only to the 

processor performance constraint. Use of CBR can lead to significant variation in visual 

quality during a single sequence. 

The proposal in [Akyol et al. 2007] bears most similarity to the algorithm described 

herein. However, there are a number of key differences. Firstly, [Akyol et al. 2007] uses a 

Pareto analysis to identify the Early Termination thresholds. In contrast, this work uses a 

Pareto analysis to identify the optimal mode search parameters as part of a classification 

approach [Wang and Zhu 2005]. Secondly, [Akyol et al. 2007] uses a PID control loop to 

maintain constant complexity. This loop uses recent MB encoding time measurements to 

adaptively predict the encoding time of the current frame. During scene transitions, the 

average MB encoding time can change rapidly and significantly. This can lead to large 

errors in encoding time prediction. Figure 5 of [Akyol et al. 2007] shows some frames 

requiring almost double the target coding time. In this work, MB encoding times are 

calculated for each class. At a scene transition, the distribution of MB Classes changes 

but the MB encoding times for each class do not. Thus, encoding time prediction is much 



more accurate. Thirdly, in this work, we solve the bookkeeping problem referred to in 

[Akyol et al. 2007] by only requiring storage of the class decision for each MB (3 bits per 

MB). Fourthly, class allocation for the whole frame prior to encoding allows our 

proposed algorithm to achieve constant Rate-Distortion-Complexity encoding over the 

whole frame, avoiding the intra-frame distortion variation arising from the use of MB-by-

MB methods.         

 

3. FAST MODE DECISION 
As discussed previously, MB classification combined with ET and Forward SKIP 

Prediction shows promise for low complexity encoding. Design of a MB classification 

scheme requires selection of the MB classes and definition of accurate class decision 

metrics. Unlike previous work in the area, we propose to select the MB classes based on a 

formal analysis of the coding efficiency and computational complexity of the H.264 

encoding tools and parameters. The class decision metrics are then defined based on their 

computational complexity and accuracy in predicting MB classes. 

 

3.1 Analysis 
3.1.1 Complexity Scaling.  

The H.264 standard utilises a number of encoding tools and provides a number 

parameters for control of these tools. The computational complexity of the encoder can 

be scaled simply by adjusting the encoding parameters.  

The question that arises is: for a given computational complexity requirement, what 

combination of encoding tools and parameter settings provides the best coding 

efficiency? This question was partially addressed in [ISO4964 2002] and [Saponara et al. 

2002] but not in sufficient detail for the purposes of coder design. The method employed 

herein is similar to that described in [Strottup-Andersen at al. 2004], i.e. reduction of the 

3 dimensional Pareto problem to 2 dimensions. However, different encoding parameters 

are considered herein. 

Since changing complexity effects both bit rate and distortion, the need arises to unify 

both quantities into a single metric. Based on the commonly used RD model, we 

introduce a coding efficiency metric that is dependent on visual quality loss and bit rate 

change relative to a reference full complexity encoder: 

       (2) 



where ∆R is a bit rate change as a percentage, ∆D is PSNR loss in dB and µ is a constant, 

relating bit rate loss and distortion increase. Thus, for any given computational 

complexity C, the most efficient encoder can be identified as that providing minimum W.  

The constant µ can be interpreted as the percentage increase in bit rate equivalent to a 

1 dB loss in PSNR. Previous work [Bjontegaard 2001] determined that a 10% decrease in 

bit rate is roughly equivalent to a loss of 0.5 dB in PSNR. In this work, µ was determined 

experimentally. Bit rate and PSNR were measured for Carphone, Container, Paris and 

Akiyo [Xiph.org], QCIF and CIF, at QP settings of 26, 28, 30 and 32. The results were 

plotted and the gradient was determined by fitting a linear model. The gradient was found 

to vary between 3.62 and 29.6 with a mean of 12.9. 

The encoding time and coding efficiency of the encoder were measured across a 

range of encoding tool settings: VBS 1-7; search range 1, 2, 4, 6, 8; and Hadamard 

on/off. For QCIF and CIF, a search range greater than 8 provides little PSNR or bit rate 

advantage, but does lead to a significant complexity increase [ISO4964 2002; Saponara et 

al. 2002]. Hence values greater than 8 were excluded from the analysis. RDO on was also 

excluded since it leads to a complexity of almost 3 times while improving W only slightly 

to –2.83. Use of QP as a complexity control parameter was also considered but the idea 

was rejected due to the adverse impact that increasing QP has on visual quality. In 

experiments, increasing QP from 28 to 30 was found to reduce complexity by only 3.5% 

but to decrease PSNR by 4.3 dB, on average (W=28.2). Hence, QP is set a priori, based 

on application demands, and is not used as a complexity control parameter.  

Measurements of complexity, bit rate and visual quality were performed for various 

combinations of tool settings using the JM 9.5 reference encoder applied a range of 300 

frame QCIF and CIF video sequences. The results are shown in Figure 1. Complexity C 

is normalized relative to encoding with the full encoding parameters define herein as: full 

search, full VBS, search range 8, CABAC, full Hadamard, sub-pixel accuracy on, de-

blocking filter on, RDO off and QP=28. The RDC optimum encoding parameters 

correspond to points on the Convex Hull of Individual Minima (CHIM).  

The maximum PSNR loss is 0.37 dB when complexity is scaled to 28% of full 

complexity, which corresponds to a 17% bit rate increase. Subjective evaluation of visual 

quality revealed no anomalies in the decoded sequences. The slight quality degradation 

measured between full and minimal complexity modes can only be noticed on still 

images. 

Clearly, a complexity scaling encoder should use parameter settings that are RDC 

optimal, i.e. are on the CHIM. Allowing the encoder to scale to all points on the CHIM 



would add unnecessary complexity. Hence, we identified a subset of the CHIM points for 

use in a classification-based fast MD algorithm. For effective scaling, the subset should 

be evenly distributed and span the CHIM. Five MB classes were selected, as shown in 

Figure 2. Experiments were conducted to refine the choice of parameter settings for 

classes B and C. 

 

 
Fig. 1. Variation of W metric with encoding time. 

 

 
Fig. 2. MB classification. 

 

3.1.2 Class Decision Metrics 

Class decision metrics can be divided into three groups: those based on MB motion 

properties (e.g. average MV length, motion intensity), those based on statistical 

information (e.g. probabilities of MB modes) and those based on the properties of MBs 

(e.g. SAD, MAD, Frame difference, MB energy). 



Metrics in the first group are low complexity in that they do not involve manipulation 

of pixels. Initial experiments and literature survey indicates that these metrics are weaker 

than visual metrics in that they do not provide good accuracy. 

Statistical metrics are also low complexity. For various QCIF and CIF sequences, an 

analysis was performed of the probability of block mode transition from one frame to the 

next. The results are shown in the Table I. These findings were incorporated in the design 

of the fast MD algorithm by omitting searches for modes arising from low probability 

transitions. 

Based on our analysis, some form of MB property metric is required. Metrics such as 

MAD, SSE and Frame Energy were excluded due to their high computational 

complexity. Use of the RD cost metric, J, as a class decision metric was studied in this 

work. RD cost has the significant advantage that it is calculated as part of the MD process 

and, in most cases, does not require an additional processing step. Thus, its incremental 

complexity cost is low. 

Table I.  Temporal Transition Probabilities for Different MB Modes, % 

Inter (P-modes) Intra (I-modes) 
From\To SKIP 

P16x16 P16x8 P8x16 P8x8 I4x4 I16x16 
SKIP 85.9 10.2 0.7 0.8 1.4 0.0 0.7 

P16x16 40.5 40.8 3.3 3.5 10.6 0.2 0.9 
P16x8 27.1 33.4 10.9 6.0 20.5 0.7 1.1 
P8x16 27.4 31.0 5.2 12.2 22.3 0.8 0.8 
P8x8 9.6 20.4 3.7 4.4 59.7 1.6 0.3 
I4x4 25.1 12.9 2.6 3.6 25.4 24.4 5.6 

I16x16 67.2 17.2 1.5 1.0 1.7 1.7 9.5 
 

Experiments were conducted to determine if previously calculated values of the RD 

cost could be used as a prediction metric for ET. Pearson correlation coefficients, were 

calculated between J values obtained for MBs and their neighbours in the same and the 

previous frame after full search. In the experiments the optimal J for each MB was used. 

The Pearson coefficient was calculated as: 

            (4) 

where N is the number of 16x16 blocks in the video sequence, Xi is the RD cost of the 

current block and Yi is the RD cost of the neighbouring block. For each value of j, the 

position of the neighbouring block is fixed relative to the current block. MX, SX, MY and SY 



are the mean and standard deviation of Xi and Yi respectively. The results obtained for a 

typical video sequence are provided in Figure 3.  

The RD cost function J is highly correlated between neighbouring blocks. In 

comparison, correlation coefficients between Motion Vectors were reported in 

[Kossentini et al. 1997] to be around 0.4 for blocks in the same frame and around 0.15 for 

blocks in the previous frame. Based on this, it was decided to employ RD cost as a metric 

for ET and Forward SKIP Decisions. 

 
Fig. 3. Correlation coefficients rj for the current frame (right) and the previous frame (left) for Coastguard, CIF.  

X indicates the position of the current block. 
 

In the case of SKIP decisions, which must be made for all MBs to ensure a low bit 

rate, calculation of the RD metric can be simplified by noting that RD cost is directly 

proportional to Distortion since Rate is approximately zero. Experiments using a range of 

video sequences were conducted to determine the correlation between Sum of Absolute 

Differences (SAD) and RD cost for SKIP MBs. The computed correlation coefficient was 

0.985. This allows estimation of RD cost for SKIP MBs from SAD. Computational 

complexity was further reduced by use of partially computed SAD. The paper [Wang et 

al. 2004] proposes various SAD sub-sampling strategies. Correlation experiments for 

skipped macroblocks (SAD vs. J) were performed for various pixel patterns. It was found 

that the Quarter pixel pattern provides a mean correlation coefficient of 0.626. The 

Quarter pixel pattern is defined as:         

        (5) 

where s[x,y] is the received pixel and c[x,y] is the reconstructed pixel.  

Use of the Frame Difference visual metric was also investigated [Wang and Zhu 

2005]:  

  

€ 

FD =
x= 0

15

∑
y= 0

15

∑
1 c(x,y) − p(x,y) ≥ Tdiff
0 c(x,y) − p(x,y) ≤ Tdiff

 
 
 

          (6) 

where c(x,y) is the pixel value at position (x,y) for the MB in the current frame, p(x,y) is 

the pixel of the previous frame and Tdiff is an activity threshold, set equal to 10 [Wang 



and Zhu 2005]. Experiments over a range of video sequences indicate that the FD metric 

has a computational complexity of 46% that of SAD8x8 calculation. The metric was found 

to be effective for distinguishing between MBs with active motion and those with 

inactive motion. 

 
3.2 Fast Mode Decision Algorithm 

The proposed fast MD algorithm consists of two parts: Class Decision and Mode 

Search with ET. From the preceding analysis, a Class Decision algorithm was developed 

based on three metrics:  FD, Jprev and SAD8x8. The algorithm is depicted in Figure 4.  

 
Fig. 4. MB class decision algorithm. 

 
The FD metric is used to identify MBs with high motion activity. MBs for which FD 

exceeds a threshold are deemed to be active and are allocated to Class A. For inactive 

macroblocks, the RD cost of the same MB in the previous frame is compared to a 

threshold. MBs with high Jprev are deemed to have been coded with poor efficiency in the 

previous frame and are allocated to Class B. The RD cost in the case of a SKIP decision 

is predicted according to:  

  

€ 

JSKIP_predicted =α ⋅ SAD8x8 + C1           (7) 



where α and C1 are constants. If the predicted RD cost of a SKIP decision is less than the 

mean RD cost in the previous frame, i.e, JSKIP_predicted<Jmean, then a SKIP decision is made 

and the MB is allocated to Class E. Utilization of mean J avoids localizing high and low 

quality areas (the ‘convergence problem’) and produces more consistent results.  

If a SKIP decision is not made, then the partial SAD result is compared to a threshold. 

If it exceeds the threshold, the MB is deemed to be static and encoded with low quality in 

the previous frame and is allocated to Class D. Otherwise the MB is deemed to be static 

and encoded with high quality in the previous frame and is allocated to Class C. 

 

 
Fig. 5. Fast MD algorithm with ET. 



In the case of a SKIP decision (Class E), the value of J must be re-estimated to ensure 

Jprev and Jmean are accurate for the purposes of Class Decisions in the next frame. For P- 

and B- frames separate equations are used: 

               (8) 

                   (9) 

The values of the coefficients in Eqs. (7-9) were derived from correlation experiments 

using a linear approximation. The thresholds were derived from experiments with test 

video sequences. The final values for the coefficients and the thresholds are α=10.12; β=2 

.099, C1=–560.06, C2=–252 .089, χ = 0.57, T1=2300 and T2=400. 

The Mode Search algorithm uses ET based on RD cost. For P-blocks, ET occurs 

when J≥Jmean and for I-blocks when J≥Jmean_INTRA, i.e. the mean RD cost of I-blocks in the 

previous frame. The following mode transitions with low probability are excluded from 

the search: {Skip, Inter16x16, Inter16x8, Inter8x16, Intra16x16} to {Intra4x4}, and 

{Inter8x8} to {Intra16x16}. ET operates only after mean J has been calculated for I- and 

P- macroblocks. Thus, for the studied GOP structure, the first two frames are processed 

with the conventional MD algorithm.  

The complete Fast MD algorithm is shown in Figure 5. 

 

3.3 Results 
The performance of the proposed fast MD algorithm was compared with that of the 

reference JM9.5 encoder [JM9.5]. QCIF and CIF video sequences (300 frames each) with 

different degrees of motion and spatial complexity were encoded at 30 fps using the test 

configurations given in Table II.  

Table II. Test Configurations Used in Experiments 

Encoding parameter Config. A Config. B 

GOP structure IPPP IBBP 
Number of ref. frames 1 5 

RDO Off on 
Entropy coder CABAC 

QP 28, 32, 36 and 40 
 

Bit rate change ∆BR, PSNR drop ∆PSNR and total encoding time change ∆t were 

measured and averaged across QP settings. The results are provided in Tables III and IV. 

The minus sign indicates an improvement for the new method. 



                (10) 

                                     (11) 

                                        (12) 

RD curves for various video sequences are shown in Figure 6. The solid line shows 

the RD curve of the proposed fast MD algorithm, while the dashed line shows the RD 

curve produced by the reference encoder. 

Table III. Experimental Results for Configuration A 

 
Table IV. Experimental Results for Configuration B 

 

 
(a) 

 
(b) 

Fig. 6. RD curves for video sequences encoded by the algorithm. (a) Table tennis, QCIF and (b) Mobile, CIF 
both test config. B. 

 

Video sequence ∆BR, % ∆PSNR, 
 dB ∆t, % 

 
metric 

Table tennis, QCIF 2.52 0.25 –60.1 5.77 
News, QCIF 1.54 0.21 –65.7 4.27 

Container, QCIF 2.21 0.22 –71.3 5.07 
Akiyo, QCIF –0.26 0.18 –72.6 2.08 

Hall, CIF –2.06 0.13 –60.2 -0.37 
Paris, CIF 0.72 0.12 –58.4 2.28 

Mean 0.98 0.18 –64.71 3.18 

Video sequence ∆BR, % ∆PSNR, 
 dB ∆t, % 

 
metric 

News, QCIF 1.33 0.24 –62.3 4.45 
Hall, QCIF –0.99 0.10 –66.0 0.31 

Akiyo, QCIF –2.11 0.09 –70.0 -0.94 
Mobile, CIF 0.07 0.25 –56.8 3.32 
Paris, CIF 2.17 0.23 –66.3 5.16 

Mean 0.93 0.18 –64.28 2.46 



The accuracy of the class decision metrics was assessed for configuration B. Class 

decisions (except Classes A and B since they include all VBS modes) were compared 

with the final mode selected for the same MB by the reference encoder. The results are 

shown in Table V. 

Table V. Accuracy of the Class Decision Metrics, % 

Video sequence Class C Class D Class E 

News, QCIF 96.4 82.7 96.9 
Hall, QCIF 95.8 88.3 92.4 

Akiyo, QCIF 94.8 97.4 99.1 
Mobile, CIF 96.9 57.0 81.2 
Paris, CIF 95.1 87.7 92.6 

Mean 95.8 85.62 92.44 
 
 
 
3.4 Discussion 
It can be seen from the results that the proposed algorithm provides significant 

complexity reduction with minimal coding efficiency loss. The highest W metric is 5.77 

for the Tennis video sequence, while W for the original JM encoder from the Pareto curve 

is about 10. The RD curves of the fast MD algorithm are almost the same as those 

produced by the reference coder. 

For both encoding configurations, total encoding time is reduced by roughly 60–73% 

depending on the video sequence (except for Mobile at 56%). The highly textured 

sequence Mobile and the high motion sequence Tennis have greatest ∆PSNR and least ∆t, 

as was expected. Visual examination of all decoded video sequences revealed no 

anomalies or blocking artefacts.   

On low motion sequences (i.e. Akiyo, Hall) the bit rate is reduced since the algorithm 

produces a slightly higher SKIP rate than the original coder. The quality degradation of 

0.1–0.25 dB is reasonable.  

The evaluation of the accuracy of the Class Decisions indicates that the metrics are 

accurate. Lower accuracy is achieved for the Intra decision (class D), especially for the 

Mobile sequence. Improvement might be achieved by altering the threshold criterion, 

possibly by means of an adaptive threshold. 

The proposed algorithm at the 35% complexity point provides a W metric similar to 

standard JM operating at 68% of its full encoding complexity (as defined in Section 3.1). 

Alternatively, at the complexity point of 38%, standard JM produces W=15.81, in 

contrast to W=3.18 achieved by the proposed method. 



 

4. DYNAMIC COMPLEXITY CONTROL 
As discussed previously, low complexity H.264 encoding algorithms are aimed at 

reducing total complexity rather than at meeting a fixed frame rate constraint. Frame 

encoding time can vary substantially, e.g. between a low motion, mainly Class E, frame 

and a high motion, mainly Class A, frame. In this section, we propose a Dynamic 

Complexity Control algorithm that adjusts class decisions so that encoding meets a fixed 

frame encoding time constraint. As will be seen, the classification-based MD algorithm 

described above lends itself particularly well to solution of the DCC problem. 

 

4.1 Analysis 
Figure 7 and Table VI show how MD time varies from frame to frame for a high 

motion sequence, Carphone, and a low motion sequence, Akiyo, when using the fast MD 

algorithm described in the previous section.  

 
Fig. 7. MD time per frame using Fast MD for Carphone and Akiyo, QCIF. 

 
Table VI: MD time per frame for fast MD with ET 

MD time per frame, sec 
Video sequence 

min Max mean  

Carphone, QCIF 0.016 0.158 0.058 9.87 
Akiyo, QCIF 0.004 0.094 0.028 23.5 

 

The problem of maintaining a constant frame encoding time for real-time applications 

can be formulated as: Set the parameters of the fast MD algorithm such that the frame 

encoding time deadline is met and coding efficiency loss is minimized, i.e. 



 Set {Pi} such that  and W is minimum    (13) 

where Pi are the encoding control parameters, Tactual is the actual frame encoding time and 

Tframe_limit is the frame encoding time limit which depends on the frame rate. 

Three solutions to the complexity control problem were considered – Static 

Complexity Scaling, Truncated Time Scheduling and Scene Complexity Estimation. 

In Static Complexity Scaling, the encoding parameters are set such that the encoding 

time for the most computationally complex frame is less than the frame limit. This 

approach guarantees that the real-time constraint is met. However, coding efficiency is 

sub-optimal since the same control parameters are used for all MBs in the sequence, 

regardless of scene complexity. When coupled with a fast MD algorithm, such as that 

described above, the approach leads to unused processing time in the case of easy-to-code 

frames, e.g. those with low motion activity. Table VII shows the unused processing time 

for various sequences using Static Complexity Scaling based on the Carphone sequence. 

Table VII. Unused Processing Time, % for Several QCIF Video Sequences 

Video sequence Unused processing 
time, % 

Carphone, QCIF 24.35 
News, QCIF 29.02 
Akiyo, QCIF 28.37 

 

In Truncated Time Scheduling, encoding proceeds using a low complexity coding 

scheme and the control parameters are set so that, on average, the encoding process meets 

the frame deadline. If the frame deadline is exceeded, coding is truncated by simply 

SKIPing the remaining MBs. This leads to less unused time but produces regions 

(bottom-right) with high distortion when coding high motion frames.  

The method adopted in this paper, uses complexity control based on Scene 

Complexity Estimation. In this approach, the frame is pre-processed to obtain an estimate 

of the frame encoding time based on scene complexity (Frame Complexity Prediction). 

The individual MB encoding control parameters are then selected such that the estimated 

frame encoding time meets the deadline and the time budget is distributed between the 

MBs such that coding efficiency is maximized. A one-frame buffer is used to allow for 

inaccuracies in encoding time estimation.  

Frame Complexity Prediction estimates frame encoding time Tpredicted, based on some 

measure of scene complexity, Sframe: 

   

€ 

Tpredicted = f S frame( )        (14) 



In the previous section, a number of visual complexity metrics were proposed and 

their performance assessed for Class Decision. In order to reduce computational 

complexity, we investigated the use of these Class Decisions as scene complexity 

metrics.    

Experiments with various video sequences indicate that for the fast MD algorithm 

described above, encoding time for a MB can vary by a factor of up to 44 - 55 within a 

single sequence. The degree of variation in encoding time is reduced significantly when 

the measurements are classified according to the Class Decision, see Table VIII. Hence, it 

is proposed to predict the frame encoding time as a weighted sum of the number of MBs 

in each class:  

   

€ 

Tpredicted = niti + t0
i=1

5

∑           (15) 

where ni is the number of MBs in class i, ti is the mean encoding time for MBs assigned 

to class i and t0 is a constant time overhead.  

Table VIII. MD Time for Different MB Classes for Fast MD with ET 

MB class Video 
sequence 

MD time per MB, 
msec A B C D E 
Min 0.45 0.18 0.27 0.07 0.07 
Max 3.74 3.45 3.87 0.41 0.41 

Carphone, 
QCIF 

max/min 8.31 19.16 14.33 5.61 5.61 
Min 1.03 0.23 0.23 0.10 0.07 
Max 3.00 3.03 3.14 0.36 0.98 Akiyo, QCIF 

max/min 2.89 13.12 13.62 3.49 13.44 
 

Several strategies for adaptive calculation of ti over the previous N frames were 

investigated: 

1. Mean encoding time for all MBs in class i 

2. Mean encoding time for all MBs in class i which were not involved in promotion or 

demotion (see later)  

3. Mean encoding time for all MBs in class i which were not Early Terminated 
The proposed models were assessed across a range of QCIF video sequences  

(Carphone, Hall and Akiyo) under configuration A. In the experiments, values of 
N=1, 5 and 10 were tested. The best results were achieved for N=5, as shown in 
Table IX where Tpredicted is the predicted frame encoding time and Tactual is the 
measured frame encoding time. 



Table IX. Experimental Results of Adaptive Frame Prediction Model Estimation 

Prediction error, % Video 
sequence Method 

min max average 

Pearson correlation r  
between Tpredicted and 

Tactual  

1 0.02 33.04 6.95 0.751 
2 0.13 33.75 7.73 0.771 Carphone 
3 8.21 85.61 23.35 0.496 
1 0.02 46.70 3.95 0.949 
2 0.21 43.90 5.46 0.967 Hall 
3 4.18 88.62 22.94 0.625 
1 0.01 28.8 2.31 0.969 
2 0.02 29.13 3.42 0.983 Akiyo 
3 2.67 66.93 14.41 0.768 

 

From the experimental results it can be clearly seen that strategy 3 is very inaccurate. 

The other two methods provide accurate prediction with an average difference between 

predicted and actual times of about 7%. Since strategy 2 has a higher Pearson correlation 

coefficient, it was chosen for implementation in the main DCC algorithm.   

We propose to apply complexity control by adjusting the Class Decisions made by the 

Fast MD algorithm. Computational complexity is reduced by demoting MBs to lower 

class, e.g. from Class A to B. Alternatively, computation complexity is increased by 

promoting MBs to higher class, e.g. from Class E to D. This approach maintains a single 

framework for low complexity coding, encoding time prediction and for complexity 

control. In addition, the classes are known to be on the Pareto curve and so are optimal in 

terms of coding efficiency. Thus, on average, promotion improves RD performance 

while, on average, demotion reduces RD performance by the least amount possible given 

the required reduction in computational complexity. 

 

4.2 Dynamic Complexity Control Algorithm 
The overall DCC algorithm proceeds as follows:  

1. The frame is processed, making Class Decisions for all MBs according to the 

previous Fast MD algorithm. 

2. The frame encoding time is estimated based on the Class Decisions. 

3. If the estimated frame encoding time exceeds the time quota for the frame, 

demotions are performed until the budget is met. Alternatively, if the estimated 

frame encoding time is less than the time quota for the frame, promotions are 

performed until the budget is met. 

4. Fast MD based coding is performed according to the revised Class Decisions. 



As can be seen in Figure 1, the gradient of the CHIM of the Pareto curve is less steep for 

more computationally complex classes. There is less coding efficiency loss in demoting 

higher complexity classes. Thus demotions proceed right-to-left and promotions proceed 

left-to-right as per the Pareto Curve. In some cases, it may not be necessary to demote all 

MBs within a given class. Since demotion probably means a bit rate and distortion 

increase, demotion should start with MBs that have lowest Jprev within the class. In this 

way, the most effectively coded MBs are demoted first, minimizing coding efficiency 

loss. Similarly, promotion with a class should start with the MBs that have highest J. 

 

 

 
Fig. 8. The Dynamic Complexity Control algorithm. 

 



A single frame buffer allows for inaccuracies in the frame encoding time estimation. 

The encoding time quota for each frame is calculated as: 

 

€ 

Tquota = Tframe_limit +min n ⋅Tframe_limit −Ttotal ,Tframe_lmit( )   (16) 

where n is the number of frames processed so far and Ttotal is the total encoding time so 

far. In order to synchronize the buffer, the last frame encoding time cannot exceed the 

frame encoding time limit. 

The final algorithm for Dynamic Complexity Control algorithm is shown in Figure 8.  

 
4.3 Results 

A real-time H.264 system combining fast MD and DCC and a system with Static 

Complexity Scaling (SCS) were implemented using JM and experimentally tested. 

Several QCIF video sequences of 300 frames each were encoded with an “IPPP” GOP 

structure. Reference encoding used all seven VBS, search range of 8, CABAC entropy 

coder and RDO off. In the experiments QP was set to 28.  The algorithm was tested under 

conditions, where the value of Tframe_limit was set to allow real-time encoding at 15, 20 and 

30fps on a reference 3GHz Pentium IV PC with 1GB RAM. No assembly level 

optimizations were applied. Encoding tools used for the Static Complexity Scaling 

implementation are given in Table X.  

The bit rate increase, quality degradation and metric obtained are compared to the 

results of non-real time full search JM (i.e. C=100% point on the Pareto curve) in Tables 

XI-XIII. 

In order to further assess the performance of the algorithm, the mean prediction error 

Terror and mean adjusted time Tadjust were calculated as percentages and are included in 

Table XIV. 

 

€ 

Terror,% =
100
Tseq

Tpredicted _ posterior i( ) −Tactual i( )
i=1

i=Nseq

∑            (17) 

 

€ 

Tadjust,% =
100
Tseq

Tpredicted _ prior i( ) −Tactual i( )
i=1

i=Nseq

∑    (18) 

where Tpredicted_posterior(i), Tpredicted_prior(i) and Tactual(i) are the predicted encoding time after 

promotion/demotion, the predicted encoding time before promotion/demotion and the 

actual encoding time for frame i, respectively. Nseq is the number of frames in the 

sequence and Tseq is the total encoding time for the sequence. Terror is a measure of the 

mean accuracy of the Frame Complexity Prediction method, lower is better. Tadjust is a 

measure of the mean encoding time adjustment made by the promotion/demotion method. 



Positive Tadjust indicates overall time savings, meaning more demotions than promotions. 

Negative values indicate available time, meaning more promotions than demotions. 

  

Table X. H.264 Settings for SCS 

SCS 

H.264 settings 15  fps 
(C=64%) 

20 fps 
(C=47%) 

30 fps 
(C= 28%) 

VBS modes All VBS 
modes 

P16x16, P8x8,  
all Intra modes 

P16x16, all 
Intra modes 

Search range 6 4 1 
Hadamard transform on on off 

 

Table XI. ΔBit Rate, % for DCC and SCS Approaches 

DCC SCS 
Video sequence 

15fps 20fps 30fps 15fps 20fps 30fps 
Carphone 0.05 1.04 15.25 –0.30 3.68 14.25 

Table tennis 2.48 3.85 11.16 2.24 4.48 23.52 
Coastguard 0.26 0.87 6.48 2.46 3.48 15.71 

News 0.84 0.76 5.90 4.07 5.59 20.89 
Salesman –0.5 -1.50 5.60 3.84 5.67 22.55 

Grandmother –1.23 -3.08 -1.82 –1.09 0.95 12.96 
Mother&Daughter –0.7 -1.00 1.68 –2.07 –0.13 11.69 

Hall 0.03 -1.73 -4.41 5.72 6.54 17.98 
Akiyo –1.15 -1.80 -1.85 0.76 2.96 18.9 
Mean 0.008 -0.287 4.22 1.73 3.69 17.6 

 
Table XII: ΔPSNR, dB for DCC and SCS Approaches 

DCC SCS 
Video sequence 

15fps 20fps 30fps 15fps 20fps 30fps 
Carphone 0.11 0.28 0.49 0.20 0.22 0.53 

Table tennis 0.24 0.24 0.46 0.10 0.12 0.37 
Coastguard 0.06 0.08 0.13 0.06 0.08 0.20 

News 0.09 0.12 0.38 0.18 0.21 0.46 
Salesman 0.03 0.07 0.24 0.13 0.15 0.30 

Grandmother 0.02 0.19 0.18 0.08 0.10 0.26 
Mother&Daughter 0.06 0.17 0.32 0.17 0.20 0.50 

Hall 0.01 0.03 0.20 0.12 0.20 0.30 
Akiyo 0.01 0.02 0.16 0.15 0.16 0.35 
mean 0.07 0.13 0.28 0.13 0.16 0.36 



Table XIII: Coding Efficiency Loss W for DCC and SCS (also, percentage difference 

in coding efficiency loss of DCC relative to SCS at the same frame rate negative values 

indicate improvement using DCC) 

DCC SCS 
Video sequence 

15fps 20fps 30fps 15fps 20fps 30fps 
Carphone 1.48 4.78 21.61 2.9 6.54 21.14 

Table tennis 5.6 6.97 17.14 3.54 6.04 28.33 
Coastguard 1.03 1.91 8.17 3.24 4.52 18.31 

News 2.01 2.32 10.85 6.41 8.32 26.87 
Salesman –0.11 –0.59 8.75 5.53 7.62 26.45 

Grandmother –0.97 –0.61 0.52 -0.05 2.25 16.34 
Mother&Daughter 0.08 1.20 5.84 0.14 2.47 18.19 

Hall 0.15 -1.34 -1.81 7.28 9.14 21.88 
Akiyo –1.16 –1.54 0.23 2.71 5.04 23.45 
mean 1.72 2.64 7.92 3.52 5.77 22.32 

difference (%) -51% -54% -65% -  - - 
 

Table XIV: Mean Prediction Error and Mean Adjusted Time, 30 fps DCC 

Video sequence Terror, % Tadjust, % 

Carphone 3.39 74.95 
Table tennis 5.55 50.59 
Coastguard 3.88 98.27 

News 5.88 21.11 
Salesman 6.28 18.04 

Grandmother 2.56 13.74 
Mother&Daughter 3.13 17.00 

Hall 6.40 5.75 
Akiyo 3.64 -2.92 

 

5.4 Discussion 
Firstly, we should consider that full, conventional JM encoding (C=100%, as defined 

in Section 3.1.1) can only achieve 9 fps in real-time on the reference PC.  

As described previously, the computational complexity of the conventional encoder 

can be decreased by statically reducing the search size using SCS. For a frame rate of 15 

fps, the encoding parameters much be scaled such that C=64%, see Table X. To achieve 

20 fps, C must be 47% and for 30 fps, C must be 25%. As can be seen from Tables XI 

and XII (SCS), 15 fps and 20 fps are achieved with relatively small increases in bit rate 

and distortion. However, the increases become large in the case of 30 fps. There is a 

mean increase in bit rate of 17.6% and a mean increase in distortion of 0.35 dB, both 

relative to full, conventional JM encoding. For Table Tennis, the bit rate increase is 



particularly bad, 23.5%. For News, distortion rises by a very noticeable 0.46 dB. Overall, 

Table Tennis has worst coding efficiency loss of W=28.3 (Table XIII). 

 The proposed DCC algorithm allows complexity to be scaled dynamically for each 

individual MB such that coding efficiency is maintained while meeting the real-time 

constraint. At 15 fps, DCC shows almost no loss in coding efficiency, on average, 

relative to the full, conventional encoder, W=1.72, see Tables XI-XIII (DCC). This is 

roughly half of the average coding efficiency loss in the SCS case for 15 fps. As the 

frame rate increases to 20 fps, the high motion sequences cannot be encoded in the 

available time without large numbers of MB demotions. This causes the coding 

efficiency to deteriorate for Carphone, Table Tennis and Coastguard, see Table XIII 

(DCC). Nevertheless the average coding loss across all sequences, W=2.54, is less than 

half that of the SCS method, W=5.77. At 30 fps, DCC demands a large number of MB 

demotions for all sequences, except Akiyo. This can be seen in Table XIV, where Tadjust is 

positive for all except Akiyo. Akiyo has such low motion that it still has more MB 

promotions than demotions (negative Tadjust). This increase in demotions, causes average 

bit rate and distortion to increase further, see Tables XI and XII (DCC). As would be 

expected, the increase is greater for the higher motion sequences. Since Akiyo and Hall 

have so few MB demotions, their bit rate and distortion are almost unchanged relative to 

full, conventional JM encoding, even though the system is operating at more than 3 times 

the frame rate, Tables XI and XII. Overall, at 30 fps, the mean coding efficiency loss of 

DCC, relative to conventional JM encoding and averaged across all sequence, is almost a 

third of that for SCS, i.e. W=7.9 as opposed to W=22.3, a 65% improvement.  

Table XIV shows that the mean error in the MB encoding time prediction is less than 

7% in all cases at 30 fps. There were no cases of buffer overrun in any of the tests. 

Visual examination of all decoded video sequences revealed no anomalies or blocking 

artefacts. Frame rate can be increased to 40 fps using DCC. However, RD loss is large 

since almost all MBs are demoted to Class E, instant SKIP, due to the lack of encoding 

time. SCS cannot achieve this frame rate without modification of the encoder.  

 

6. CONCLUSION 
The problem of real-time H.264 video encoding in software with high coding 

efficiency was investigated. A fast Mode Decision encoding method based on Pareto 

optimal MB classification was proposed for reducing the total complexity of H.264 video 

encoding. A Class Decision algorithm was used together with a Rate-Distortion cost 

metric for ET and Forward SKIP Prediction. A novel Dynamic Complexity Control 



algorithm was proposed. Three methods for frame encoding time prediction were 

proposed and assessed. An MB Class promotion/demotion scheme was proposed for 

RDC optimal complexity adjustment. 

The complete real-time encoding algorithm incorporating the fast MD and DCC 

methods was implemented and experimentally assessed. The performance of the 

algorithm was compared with that of full, conventional H.264 encoding and that of Static 

Complexity Scaling, an alternative method for reducing encoder complexity. At 20 fps, 

the average coding efficiency of the proposed algorithm was found to be similar to that of 

full, conventional encoding operating at 9 fps (-0.3% bit rate increase and 0.13 dB PSNR 

loss). The proposed algorithm was found to provide lower average bit rate and distortion 

than SCS at all frame rates studied (15, 20 and 30 fps). As frame rate was increased from 

15 to 30 fps, the coding efficiency of the proposed algorithm deteriorated less quickly 

than that of SCS. At 30 fps, the coding efficiency loss of the proposed algorithm was 

65% less than that of SCS.  

  Future work includes improving the J prediction model for skipped MBs, and 

improving the class demotion/promotion scheme by adding criteria that would prohibit 

the algorithm from generating too many SKIP and Intra decisions when the processing 

capabilities of the CPU are limited. 
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