
SYSCORE: A Coarse Grained Reconfigurable Array Architecture for Low
Energy Biosignal Processing

Removed for Blind Review

Abstract—The promise of 24/7 patient monitoring and
online diagnosis using wearable and implantable biomed-
ical devices has engendered significant research interest
in the development of low power biosignal processing
platforms. Herein, a novel Coarse Grained Reconfigurable
Array (CGRA) architecture is presented for low power,
real time processing of biomedical signals. The proposed
architecture differs from previously proposed CGRAs in
that it is designed for low power, rather than for high
performance. The proposed architecture was implemented
in a software modeler and simulator and in Verilog.
The architecture was shown to provide savings in energy
consumption of up to 99% and speed up of up to 64
times compared to a conventional DSP processor for typical
biosignal processing functions.

Keywords-coarse grained reconfigurable architecture,
systolic, low energy, biosignal

I. INTRODUCTION

Biosignals, for example the Electroencephalogram
(EEG), Electromyogram (EMG), Electrocardiogram
(ECG) and Magnetoencephalogram (MEG), are used
by clinicians for diagnosis of medical conditions and
diseases. Current wearable devices, for example the
EEG halter monitor, allow recording of biosignals but
do not provide real time analysis of the data. All pro-
cessing and analysis occurs offline, after the device has
been returned to the clinician. These devices typically
have battery lives of 2-3 days.
At present, there is significant research and commer-

cial interest in developing wearable and implantable
biomedical devices which can perform online, contin-
uous biosignal processing allowing for automated real
time symptom detection and diagnosis [1]. Real time
analysis for important for many conditions, includ-
ing, for example, seizure detection in subjects with
epilepsy. Although sampled at a comparatively low
rate (hundreds of Hz), the multi-channel nature of
biosignals (possibly tens of channels) and the difficulty
of the detection and classification problem make signal
analysis task computationally expensive [2]. In addi-
tion, most wearable and implant applications require
that devices are compact and have battery lifetimes
of weeks or even months [1]. Previous work has
shown that, for most biosignal processing applications,
on-chip processing consumes significantly less energy

than wireless transmission for the purposes of server-
based processing [1]. These application requirements
have led to research interest in low power on-chip
biosignal processing.
General purpose processors cannot meet the high

performance and low power requirements of biosignal
processing applications at the same time [1]. Custom
hard-wired Application Specific Integrated Circuits
(ASICs) can achieve the performance and power con-
sumption requirements. However, ASIC solutions lack
flexibility. Designing a different ASIC for every medical
condition is not cost effective given the low production
volumes. Hence, a flexible low-power processor plat-
form that can support a wide range of applications
within the biosignal processing domain is required is
required.
Herein, we propose a novel Coarse Grained

Reconfigurable Array (CGRA) architecture, named
SYSCORE, for low-power on-chip biosignal process-
ing. A Coarse Grained Reconfigurable Array (CGRA)
architecture consists of a grid of interconnected recon-
figurable processing units which can perform logical
or arithmetic operations. Unlike Field Programming
Gate Arrays (FPGAs), the processing units are reconfig-
urable at the operation level rather than at the bit-level.
This significantly reduces power consumption related
to FPGAs while maintaining flexibility and increasing
performance [3]. A host processor performs decision
and control while computationally expensive tasks are
offloaded to the CGRA.
The SYSCORE architecture is specifically designed

for low-power biosignal processing and so differs from
previous CGRA architectures in a number of ways.
Firstly, the architecture is systolic in that, for regular
biosignal processing algorithms, functional unit in-
put and output data is pumped simultaneously and
synchronously between nearest neighbor processing
units arranged in an n-dimensional pipeline manner.
Hard-wired systolic architectures are popular for DSP
applications since they afford high throughput and
data reuse [4]. In contrast to hard-wired arrays, the
systolic CGRA approach allows flexibility, supporting
a range of DSP algorithms. Secondly, the architecture
supports mapping of irregular algorithms, such as the
Fast Fourier Transform (FFT), by means of a novel

Patel, K., McGettrick, S. and Bleakley, C.J.

interconnection unit, Roundabout Interconnect (RAI),
wherein non-nearest neighbor data transfer is sup-
ported without the area and power cost of a dense
interconnect. Thirdly, in order to reduce power con-
sumption, the SYSCORE architecture uses a minimal
number of resources in each functional unit, 24-bit
fixed-point with 2 operational units and 4 data reg-
isters. Overall, the architecture provides significant
energy saving by eliminating the fetch-decode steps of
traditional processors (by means of reconfiguration),
by significantly reducing the number of intermediate
data RAM accesses (by means of systolic data reuse),
by reduced logic switching (by means of compact
functional units) and by voltage scaling (by means of
parallelism). To the authors’ knowledge no previous
paper has studied the used of CGRAs for biosignal
processing applications.
The remainder of the paper is structured as follows.

Section II presents a discussions of previous biosig-
nal processing platforms and CGRA architectures. A
description of the proposed architecture is given in
Section III. In Section V, the power management in
proposed architecture is described. Section VI presents
results. Finally, the paper is concluded in Section VII.

II. RELATED WORK

A. Architectures for Biosignal Processing Applications

Previous work on processor platforms for biosignal
processing has focused on multi-core and ASIC archi-
tectures.
Multicore architectures allow parallel processing of

multichannel data. The authors of [5] presented a mul-
tiprocessor system-on-chip for real-time human heart
monitoring and analysis. An architecture with 12 DSP
processors was proposed to process 12 channel ECG
data. Since the DSP cores run concurrently, the archi-
tecture implements a semaphore and interrupt system
for communication and resource sharing. The HiBRID-
SoC [6] consists of three adaptable programmable cores
integrated using an AMBA AHB bus. Each core is opti-
mized for a particular application set. The architecture
is not area efficient if only a single core is used for
a particular applications. Multi-core architectures pro-
vide performances increases over single core architec-
tures but do not typically provide energy consumption
reductions, other than by voltage scaling. In fact, the
resource sharing and communication overhead is often
significant in terms of power consumption and area.
ASIC designs can achieve high performance with

low power consumption. The authors of [7] presented
an ASIC for heart rate variability parameter monitor-
ing and assessment. The ASIC was used in conjunction
with a microcontroller. Application specific tasks were
offloaded on the ASIC in which separate a separate

hardware blocks were dedicated to specific functions.
The ASIC reduced power consumption by the factor
of 7 compared to a standalone microcontroller. An
energy-efficient ASIC for ultra low power wireless
sensor nodes was presented in [8]. The ASIC was
designed to perform the main functions of a proposed
wireless Body Area Network sensor node. The main
disadvantage of ASICs is that they lack flexibility, so
targeting other low volume biomedical applications is
not cost effective since ASIC redesign is a lengthy and
costly process.

B. CGRA architectures

To the authors’ knowledge, only one previous pub-
lication has investigated the power consumption of a
CGRA architecture. In [9], the authors reported the
power consumption of a CGRA but didn’t propose,
discuss or prove the effectiveness of particular power
saving techniques. Most previous work on CGRAs
has focused on increasing performance. An array level
comparison and an architecture level comparison of
SYSCORE with 12 previous CGRA architectures are
presented in Tables I and II, respectively.
CGRAs have previously been proposed for multime-

dia, embedded and DSP applications. Biosignal pro-
cessing applications are typically based on DSP algo-
rithms. CGRAs for embedded applications (AMBER)
do not support this functionality. Multimedia CGRA
architectures (Morphosys, REMARC, ADRES, CGRA
Express, PACT XPP) primarily provide support for
vectorize-able two-dimensional image and video pro-
cessing algorithms. Biosignal processing algorithms are
typically one-dimensional, but multi-channel. Hence
a DSP specific CGRA architecture offers the energy-
delay product for biosignal processing applications.
Minimum energy is achieved by means a fixed-point
architecture rather than a floating-point architecture
(REMARC, PolySA). For accurate EEG analysis, a fixed
bit-width of minimum 12-bits for IO and 24-bits for in-
ternal processing is required [1]. Certainly architectures
with less than 16-bits are insufficient (PipeRench).
Single Instruction, Multiple Data (SIMD) architec-

tures (Morphosys, REMARC, ADRES, CGRA Express,
PACT XPP) require that all processing units execute
the same operation. This is efficient for algorithms
which can be vectorized, for example in multimedia
algorithms, but is inefficient when processing steps
can be concatenated, as in biosignal processing algo-
rithms. VLIW architectures (Montium) include pro-
cessing units which can perform a large number of
operations in parallel. This is an unnecessary overhead
in systolic architectures as address calculation is not
needed since intermediate RAM accesses are elimi-
nated. Uniquely, SmartCell can execute operations in

Table I
COMPARISON OF DIFFERENT ARCHITECTURES AT ARRAY LEVEL

Architecture Number
format

Configuration
granularity

Reconfiguration Configuration
scheme

Processing
model

On
chip
mem-
ory/
buffer

Power
Man-
age-
ment

Application
domain

Morphosys[10] Fixed Coarse
grained

Dynamic Row/column
wise broadcast

SIMD Yes No Multimedia

Montium[11] Fixed Coarse
grained

Dynamic Using configura-
tion unit via NoC

VLIW Yes No DSP

PipeRench[12] - Mixed Dynamic In pipeline fash-
ion

Pipelined
datapath

Yes No DSP

REMARC[13] Floating Array of nano
processors

Static Using nano
instruction
received by global
control unit

SIMD Yes No Multimedia

RaPiD[14] Fixed Coarse
grained

Static, 27%
dynamic

Using control
signals which
flow through
control bus

Linear
pipeline

Yes No DSP

ADRES[15] - Coarse
grained

Dynamic Row/column
wise broadcast

SIMD Yes No DSP and
multimedia

CGRA
Express[16]

- Coarse
grained

Dynamic Row/column
wise broadcast

SIMD Yes No Multimedia

PPA[17] Fixed Coarse
grained

Dynamic Row/column
wise broadcast

Pipelined Yes No Multimedia

AMBER[18] Fixed Coarse
grained

Dynamic Cross bar
switches based
routing network

Custom
ASIP

Yes No Embedded

PACT XPP[19] Fixed Coarse
grained

Dynamic Row broadcast SIMD Yes No Multimedia,
DSP

PolySA[20] Floating
point

Fine grained Most of
Static,Partially
Dynamic

Control signal
lines

Linear
systolic

Yes No Filtering

SmartCell[9] Fixed Coarse
grained

Dynamic Instruction mem-
ory and SPI struc-
ture

SIMD/
MIMD/
Systolic

Yes No Stream pro-
cessing

SYSCORE Fixed Coarse
grained

Dynamic Column wise
broadcast,
coeffcient storing
in parallel

Systolic No Yes Biomedical

Table II
COMPARISON OF DIFFERENT ARCHITECTURES AT FUNCTIONAL UNIT LEVEL

Architecture Bitwidth Configuration Supported operations Operations Data Data
bitwidth per cycle passing bypassing

Morphosys 28 32 General ALU operations, MAC, absolute
difference, conditional ADD/SUB

1 No No

Montium 16 16 General ALU operations 5 No No
PipeRench 8 80 General ALU operations 1 Yes No
REMARC 16 32 ADD,SUB, shift,all logical operations (30) 1 Yes No
RaPiD 16 100 General ALU operations 1 Yes No
ADRES 32 53 General ALU (20) Operations including

branch operations
1 - No

CGRA Express 32 55 20 Operations including branch operations 1 Yes Yes
PPA 32 - ADD, SUB, MUL and other common oper-

ations
1 Yes No

AMBER 32 32 Logical operations or ADD/ SUB/ COM-
PARE or SHIFT

1 No No

PACT XPP 32 - General ALU operations 1 No No
PolySA 32 4 ADD, MUL, DIV 1 No No
SmartCell 16 64 General ALU operations, MAC, abs sum 3 No Yes
SYSCORE 24 22 MUL, ADD, SUB, MUL-ADD, MUL-SUB,

MAC, NOP
3 Yes Yes

SIMD, MIMD (Multiple Instruction, Multiple Data) or
systolic fashion due to the inclusion of dense intercon-
nections and instruction memory. However, the rich
interconnect and associated instruction memory con-
sume 53% of the total power, which is not appropriate
for low power applications.

Two previous proposals claim to operate in a systolic
fashion - PolySA and SmartCell. Neither are designed
for low power. PolySA is floating-point and SmartCell
is rich in interconnect logic. SYSCORE also differs
from these architectures in that its functional units
have the capability of passing input data in parallel
with outputting the results of the computation. This
feature greatly facilitates systolic mapping of the ap-
plications (see later). Previously proposed architectures
(e.g. RaPiD, PPA) are capable of passing data to nearest
neighbor processing units but cannot pass input data
and output data in parallel with operation execution.

Due to it’s data access pattern, the Fast Fourier
Transform (FFT) cannot be easily mapped to a systolic
architecture. Hence more complex interconnect must
be provided to allow for efficient computation of the
FFT. This support is provided in some CGRAs, such
as PolySA, Montium. However this requires dense
interconnections which increases chip area and power.
The SYSCORE architecture uses a reconfigurable RAI
scheme to provide interconnect flexibility at low over-
head.

Most previous CGRA functional units are large in
terms of area. For example, REMARC using a float-
ing point number format and AMBER contains 64
registers. Based on publicly available information, we
estimate that the functional units of all previous archi-
tectures are more than double that of SYSCORE except
for PACT XPP and PolySA which are 20% and 50%
larger, respectively.

III. PROPOSED ARCHITECTURE

A. Overview

A 8x4 SYSCORE architecture is shown in Figure
1. There are two main elements: Configurable Func-
tion Units (CFUs) and RoundAbout Interconnect (RAI)
units. The designer can use as many units as desired,
according to the application performance targets and
area constraints. Two Direct Memory Access (DMA)
units inject data into the architecture from the West
and North and one DMA units collects data from the
architecture. A column of RAI elements is inserted after
every second column of CFUs to facilitate FFT compu-
tation. Array configuration and DMA operations are
controlled by the host processor.

I
n

p
u

t

D

M
A

Input DMA

O
u

t
p

u
t

D

M
A

Figure 1. A SYSCORE block of 8x4

B. CFU Design

Figure 2 shows the architecture of a CFU. The CFU
has 4 input ports (In0-In3) and 3 output ports (Out0-
Out2). It has a Computation Unit (CU) that can per-
form computational operations. The CU differs from a
conventional ALU/MAC in terms of the Set of Opera-
tions (SoOs) it can support. The CU can perform Addi-
tion (ADD), Subtraction (SUB), Multiplication (MUL),
Multiply Accumulation (MAC), Multiply-Addition
(MUL-ADD) and Multiply-Subtraction (MUL-SUB).
These last operations, MUL-ADD and MUL-SUB, are
more useful than the traditional MAC operation for
systolic algorithms mapping [21]. Because of the feed-
back from CU reg to the CU, the CFU can be con-
figured to perform a MAC operation without extra
hardware cost. All the operations can be performed in
a single cycle. Two data can be passed in parallel with
the result computed by CU through 3 output ports.

Figure 2. CFU architecture

C. Registers

There are 2 General Purpose Registers (GPRs), 2 Co-
efficient Registers (CERs) and 1 CU register (CU reg)

in a CFU. GPRs are used to store input data from input
ports, CERs are used to store coefficients for functions
such as FIR and FFT. The CU reg is used to store
results from the CU unit. All data registers are 24 bits.

D. Configuration Register

Each CFU has one 32 bits configuration register
(Config reg). It stores the configuration passed via port
In2 when the Config en signal is high. Table III shows
the settings and purpose of different bit fields of the
configuration register. The size of the configuration is
22 bits, the remaining bits are left for future use.

Table III
CONFIGURATION REGISTER BITFIELDS

Bitfield Abbreviation Purpose Selection list
0 to 2 OP Operation

selection
ADD, SUB,
MUL, MUL-
ADD, MUL-
SUB

3 to 5 ALU0 ALU selection
line 0

In0-In3, 2 GPR

6 to 8 ALU1 ALU selection
line 1

In0-In3, 2 CER,
2 GPR

9 to 11 ALU2 ALU selection
line 2

In0-In3, 2
CER, 2 GPR,
ALU reg

12 to 13 REG0 sel Input selection
for GPR0

In0, In1

14 to 15 REG1 sel Input selection
for GPR1

In2, In3

16 to 17 OP0 sel Input selection
for Out0

ALU reg, 2
GPR

18 to 19 OP1 Sel Input selection
for Out1

ALU reg, 2
GPR

20 to 21 OP2 Sel Input selection
for Out2

ALU reg, 2
GPR

E. Control Signals

SYSCORE can operate in three different modes: con-
figuration mode, execution mode and flush mode. The
mode of operation is set using the following global
control signals:
1) Config en: When this signal is high, SYSCORE

operates in configuration mode. The data from port
In2 is stored in Config reg and the data from port In0
is stored in the CERs.
2) Flush en: When this signal is high, SYSCORE

operates in flush mode. In this mode, each CFU passes
data to the CFU in the east direction. This mode is used
to transfer results which are stored in CFUs which is
not directly accessible by DMA.
3) Coeff sel: This signal controls switching between

different CERs for input to the CU in both configura-
tion and execution modes.
4) Global en: This signal enables/disables voltage

supply to a row of CFUs to save power when the CFUs
are not in use. For simplicity of control, CFUs can be
turned off row wise, not individually.

Output Input from
0 2-5
1 2-5
2 0-3
3 0-3
4 0-5
5 0-5

(a)

(b)

Figure 3. a) Conceptual diagram of RA interconnect and b) Input
port selection options for output ports

F. Interconnections

As shown in Figure 1, all CFUs are connected
to their nearest neighbor to the East and West. To
avoid dense interconnections, cross interconnections
are only introduced at odd numbered columns. Cross
interconnections are useful for performing non-systolic
functions, such as the FFT butterfly. Cross interconnect
functionality is provided by RAI elements that allow
data to pass from any Westerly CFU to any Easterly
CFU. The conceptual structure of a RAI element is
shown in Figure 3. Each RAI element has 6 input ports
(I0-I5), 6 output ports (O0-O6) and a 16 bit configu-
ration register. As in a CFU, the RAI element can be
reconfigured when SYSCORE is in the configuration
mode. The output ports of the RAI element can be
configured to take data from the input ports. Figure
3(a) shows the available output port options in RAI.
There are no global interconnections, except control
signals (as described in the previous section), which
saves chip area and reduces power consumption and
control overheads.

IV. MAPPING OF ALGORITHMS

Since no benchmark application suite is available for
biosignal processing, we selected a set of algorithms
from those generally used in biosignal processing
applications. The algorithms listed in Table IV were
manually mapped using a methodology that is based
on Synchronous Data Flow (SDF) and Control and
Data Flow (CDF) graphs. FIR filtering is a common
function in biosignal processing. Figure 4 shows the
SDF graph, the CDF graph and topology matrix for a
5 tap FIR filter. Once data is fetched, it is injected to
the input ports of CFUs using DMA and the partial
results are passed directly to the next CFU in the
following cycle, and so on, until the final result is

obtained. No intermediate RAM access are needed,
which significantly reduces power consumption. More
details on the algorithms mapping approach can be
found in [21].

Γ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −2 0 0 0 0
0 1 −2 0 0 0
0 0 1 −2 0 0
0 0 0 1 −2 0
0 0 0 0 1 −2
0 0 0 0 0 1
−1 −1 −1 −1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(a)

1 21 -2
3 41 -21 -2

5 6
1 -21 -2

41 2 3 65
1

7
Data input

-1 -1 -1 -1 -1 -1

(b)

Input Data Coefficient

Store data in output register

Execution
cycle

To next CFU

From output register
of previous CFU

(c)

Figure 4. a) FIR filter topology matrix; b) 5 taps FIR filter SDF graph
and c) FIR filter CDF graph for a single CFU

V. POWER MANAGEMENT

A. Dynamic Voltage and Frequency Scaling (DVFS)

DVFS can significantly reduce the power consump-
tion of processing architectures [22]. The power con-
sumption of an architecture is directly proportional to
the clock frequency (f) and the square of the supply
voltage (Vdd). Delay is proportional to 1/ f . Hence, the
inherent parallelism in SYSCORE can be traded for
reduced energy consumption by minimizing the clock
frequency and supply voltage. Section VI-D, shows
how energy varies with respect to Vdd for different
applications.

B. Turning off Unused CFUs

The Global en line allows unused CFUs to be dis-
connected from supply on a row-by-row basis. Energy
savings arising are clearly dependent on CFU utiliza-
tion.

VI. RESULTS

A. Implementation

An 8x8 SYSCORE array was built use two array
blocks, each as shown in Figure 1. The architecture was

implemented and application mapping was performed
using a software model and simulator called RaCAMS
[23]. RaCAMS was used to obtain performance results.
Simulation outputs were verified by comparison with
Matlab. The hardware architecture was implemented
in Verilog and the algorithms were mapped using
SystemVerilog. The Synopsys tool chain was used for
synthesis, RTL simulation, gate-level simulation and
power estimation. A 90nm CMOS technology library
was used. The area of SYSCORE was 7750 cells and
operating frequency was 100 MHz. Because of the
differences in technology libraries, it was not possible
to directly compare SYSCORE’s hardware metrics with
those reported for previously proposed architectures.
So, for comparison purposes, a hypothetical DSP pro-
cessor was implemented. The processor architecture
had 1 MAC unit, 24 registers, a fetch and decode unit,
Program RAM and Data RAM. The ISA of this DSP can
execute the instructions that a typical DSP processor
can execute.

B. Performance and Energy Consumption

The performance and energy consumption compari-
son between SYSCORE and the DSP is shown in Table
IV. The clock frequency of SYSCORE and the DSP
are assumed to be equal. Reconfiguration time and
energy are included in the CGRA figures. DVFS was
not taken into consideration in the analysis. It can be
seen that SYSCORE architecture gives up to 99% of
energy savings and provides speed up factor of 64
depending on the algorithm.

C. RAM Data Reuse (RDR)

When DVFS is not used, the majority of the power
saving in the CGRA case is due to reduction in the
number of RAM accesses. Figure 5 shows a comparison
of RAM Data Reuse (RDR) between DSP processor and
SYSCORE architecture. RDR is given by:

RDR =

Number of unique RAM addresses accessed

Number of RAM accesses
(1)

A RDR value close to 1 indicates that RAM locations
are only accessed once. A value close to 0 indicates that
same RAM locations are accessed many times.
It is clear from the results that data reuse of

SYSCORE architectures is considerably higher than
that of DSP processor.

D. Dynamic Voltage and Frequency Scaling

Figure 6 shows energy saving by reducing the volt-
age for the different algorithms.

Table IV
DSP AND SYSCORE PERFORMANCE AND ENERGY CONSUMPTION COMPARISON

Algorithm Type Iterations Cycles Energy (µJoules) Speed up Energy
DSP SYSCORE DSP SYSCORE factor savings (%)

FIR 63 10000 640000 10000 18 4 64 79
Matrix
multipli-
cation

4x4 10000 640000 150000 41 28 4 30

Wavelet
transform

db2 10000 80000 10000 3 1 8 55

DFT 8 Point 10000 610000 10000 996 8 61 99
FFT 8

point,radix-
2

10000 96000 8000 29 54 12 46

!
"
!

Figure 5. RDR comparison of some biosignal algorithms

Figure 6. DVFS in SYSCORE

VII. CONCLUSION

Biosignal processing in wearable and implanted de-
vices requires very low energy, medium performance
DSP processing platforms. A novel CGRA architecture,
SYSCORE, is proposed herein for these applications.
The architecture allows systolic mapping of DSP al-
gorithms to reduce memory accesses and so reduce
power consumption. RAI interconnect elements were
introduced to increase the flexibility in the architec-
ture in supporting algorithms which cannot be eas-
ily mapped systollicaly. A number of power savings
techniques were studied to further reduce the energy

consumption.The SYSCORE architecture gives up to
99% of energy savings and up to 64 times speed up
compared to a conventional DSP processor architec-
ture implemented using the same technology. Planned
future work includes assessment of the architecture for
a wearable biomedical monitoring application.

ACKNOWLEDGMENT

Removed for blind review

REFERENCES

[1] “Removed for blind review.”

[2] H. Sackman, Biomedical information technology: global so-
cial responsibilities for the democratic information age. Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA,
1997.

[3] R. Hartenstein, “Coarse grain reconfigurable architec-
ture (embedded tutorial),” in Proceedings of the 2001
conference on Asia South Pacific design automation. ACM
New York, NY, USA, 2001, pp. 564–570.

[4] K. Johnson, A. Hurson, and B. Shirazi, “General-
purpose systolic arrays,” Computer, vol. 26, no. 11, pp.
20–31, 1993.

[5] I. Al Khatib, D. Bertozzi, F. Poletti, L. Benini, A. Jantsch,
M. Bechara, H. Khalifeh, M. Hajjar, R. Nabiev, and
S. Jonsson, “Mpsoc ecg biochip: a multiprocessor
system-on-chip for real-time human heart monitoring
and analysis,” in CF ’06: Proceedings of the 3rd conference
on Computing frontiers. New York, NY, USA: ACM,
2006, pp. 21–28.

[6] H. Stolberg, M. Berekovic, L. Friebe, S. Moch, S. Fl
”ugel, X. Mao, M. Kulaczewski, H. Klußmann, and
P. Pirsch, “HiBRID-SoC: a multi-core system-on-chip
architecture for multimedia signal processing applica-
tions,” 2003.

[7] W. Massagram, N. Hafner, M. Chen, L. Macchiarulo,
V. M. Lubecke, and O. Boric-Lubecke, “Digital heart-
rate variability parameter monitoring and assessment
asic,” Biomedical Circuits and Systems, IEEE Transactions
on, vol. 4, no. 1, pp. 19–26, Feb. 2010.

[8] X. Zhang, H. Jiang, L. Zhang, C. Zhang, Z. Wang, and
X. Chen, “An energy-efficient asic for wireless body
sensor networks in medical applications,” Biomedical
Circuits and Systems, IEEE Transactions on, vol. 4, no. 1,
pp. 11–18, Feb. 2010.

[9] C. Liang and X. Huang, “SmartCell: A power-efficient
reconfigurable architecture for data streaming applica-
tions,” in Signal Processing Systems, 2008. SiPS 2008. IEEE
Workshop on. IEEE, 2008, pp. 257–262.

[10] H. Parizi, A. Niktash, N. Bagherzadeh, and F. Kurdahi,
“MorphoSys: A Coarse Grain Reconfigurable Architec-
ture for Multimedia Applications,” Memory, vol. 1024,
p. 16.

[11] P. Heysters, G. Smit, and E. Molenkamp, “Montium-
balancing between energy-efficiency, flexibility and per-
formance,” 2003.

[12] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. Taylor, “Piperench: A reconfigurable architecture
and compiler,” Computer, vol. 33, no. 4, pp. 70–77, 2002.

[13] T. Miyamori and K. Olukotun, “REMARC: Reconfig-
urable Multimedia Array Coprocessor,” in IEICE Trans-
actions on Information and Systems E82-D, 1998, pp. 389–
397.

[14] C. Ebeling, C. Ebeling, D. C. Cronquist, D. C. Cronquist,
P. Franklin, P. Franklin, C. Fisher, and C. Fisher, “Rapid
- a configurable computing architecture for compute-
intensive applications,” 1996.

[15] B. Mei, S. Vernalde, D. Verkest, H. De Man, and
R. Lauwereins, “ADRES: An architecture with tightly
coupled VLIW processor and coarse-grained reconfig-
urable matrix,” Lecture notes in computer science, pp. 61–
70, 2003.

[16] Y. Park, H. Park, and S. Mahlke, “CGRA express: ac-
celerating execution using dynamic operation fusion,”
in CASES ’09: Proceedings of the 2009 international confer-
ence on Compilers, architecture, and synthesis for embedded
systems. New York, NY, USA: ACM, 2009, pp. 271–280.

[17] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline
array: a flexible multicore accelerator with virtualized
execution for mobile multimedia applications,” in Pro-
ceedings of the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture. ACM, 2009, pp. 370–380.

[18] F. Mehdipour, H. Honda, H. Kataoka, K. Inoue,
I. Kataeva, K. Murakami, H. Akaike, and A. Fujimaki,
“Mapping scientific applications on a large-scale data-
path accelerator implemented by single-flux quantum
(SFQ) circuits,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, 2010, pp. 993 –996.

[19] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach,
and M. Weinhardt, “PACT XPP:A self-reconfigurable
data processing architecture,” the Journal of Supercom-
puting, vol. 26, no. 2, pp. 167–184, 2003.

[20] A. Sudarsanam, R. Barnes, J. Carver, R. Kallam, and
A. Dasu, “Dynamically reconfigurable systolic array
accelerators: A case study with extended Kalman filter
and discrete wavelet transform algorithms,” Computers
Digital Techniques, IET, vol. 4, no. 2, pp. 126 –142, 2010.

[21] “Removed for blind review.”

[22] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner, “Theo-
retical and practical limits of dynamic voltage scaling,”
in Proceedings of the 41st Annual Design Automation Con-
ference. ACM, 2004, p. 873.

[23] “Removed for blind review.”

