
Dynamic Current Modeling at the Instruction Level

Abstract—Estimation of processor current consumption is important for
the design of low power systems. This paper proposes a novel method for
estimating the dynamic current consumption of a processor. The method
models dynamic current as the output of a linear system excited by a
signal comprised of the total current due to each instruction. System
identification is performed by cross-correlation of a pseudo-random
stimulus with the measured current. The method was applied to the
Texas Instruments TMS320VC5510 DSP and was found to provide an
average correlation of 93% between estimated and measured dynamic
current across a range of benchmarks.

I. INTRODUCTION

Power consumption has become an important issue in embedded
system design. As a consequence power aware techniques have
been applied at every stage in the design cycle: technology, circuit,
logic, architecture, system and software. Traditionally, all efforts were
focused on hardware design while software was ignored from the
power perspective. While the underlying hardware is the source of
power dissipation, the program executing on the architecture needs
to be taken into account since the machine is under its control.

The impact of software on power consumption is particularly evident
for complex architectures, such as DSP processors. Modern DSP
processors offer the programmer a high degree of parallelism. This
leads to a high variation in power consumption between instructions
which exercise the maximum number of parallel functional units and
those which exercise only one. For these processors, power cannot
be accuracy predicted from cycle count alone.

Instruction-level power models estimate the current consumption of a
processor by analysis of the instructions to be executed. This is con-
siderably more time and cost efficient that using electronic equipment
to directly measure power consumption. However, at present, almost
all instruction-level models estimate mean power consumption over a
long time windows, typically hundreds or thousands of instructions in
duration. Although useful for some applications, this is not sufficient
for others for which current would ideally be estimated on a cycle-
by-cycle basis.

Estimation of dynamic current is important for several applications.
Knowledge of the dynamic current consumption of an application can
assist programmers in optimizing software for power consumption.
Recent work on iterative compilation and compile-space exploration
has shown the utility of accurate power estimation within an auto-
mated design flow [1]. Battery life can be extended by smoothing the
current peaks which occur in mobile devices [2]. It has been shown
that encryption systems may be cracked by current analysis attacks.
These attacks could be prevented by re-ordering instructions such
that the current consumption of the processor is constant [3].

In this paper, a new instruction-level model for dynamic current
consumption estimation is presented. A method for identification
of the model is described. The model and method are applied to
a commercial DSP processor. The results of the estimation technique
are presented and compared with meaasurements.

The rest of the paper is organized as follows: section II reviews related

work already published in the literature; section III introduces the
dynamic current model. Section IV explains the identification method.
Section V describes the application of the model and method to the
target processor. Results are given in section VI. Conclusions and
future work are provided in section VII.

II. RELATED WORK

The power consumption of processors has been modelled at the hard-
ware and instruction levels. Hardware-level power models calculate
power and energy consumption from detailed descriptions of the
hardware, such as circuit, gate, register transfer and system models.
Hardware-level models are slow to simulate and so are impractical
for estimation of the power consumption of entire processors. These
models often cannot be applied due to the lack of circuit and gate
level information [4]. Instruction-level power models deal only with
instructions and functional units from the software point of view
without detailed knowledge of the underlying circuit architecture. In
this context, the term ’instruction’ corresponds to the combination of
factors such as operation code, addressing mode, operand formats and
processor resources which determine execution. Several instruction-
level power estimation models have been proposed. These can be
classified into two main types - Instrucion Level Power Analysis
(ILPA) and Functional Level Power Analysis (FLPA).

The ILPA model, introduced by Tiwari et al. [4][5][6], states that the
energy consumption of a program can be computed by summing up
the energy cost associated with each instruction plus the incremental
inter-instruction cost associated with switching between consecutive
pairs of instructions. In order to populate the model, the current
consumption of each instruction, and of each instruction combination,
must be measured for the target processor. This method has a small
margin of error, typically 2 to 4 percent for simple processors.
Tiwari’s methodology has been succesfully applied to the Motorola
DSP56K [7], ARM7 [8], M3DSP [9] , Hitachi SH-4 [10], i960 [11]
and Motorola 68HC11 [12], among others.

Measuring instruction and inter-instruction power consumption for
the entire instruction set can require considerable effort as the number
of measurements is directly related to the complexity of the processor
architecture (for example, the DSP 56K requires 1176 measurements
[7]). Simplifications to the measurement process have been proposed.
The NOP model [7] proposes that the inter-instruction effect is
only measured relative to the NOP instruction (proportional to N )
rather than for every possible pair of instructions (proportional to
N2). Sinha and Chandrakasan [10] simplify the model to first order,
relating current consumption to operating frequency and voltage
only. They achieved around 8% error on a StrongARM processor.
Russell et al. [11] also used a first order model for the Intel i960
processor achieving an 8% error. It is worth noting that this sort of
simplification is only valid for Reduced Instruction Set Computers
(RISC) which display little instruction-to-instruction variation in
power consumption. This model applied to the TMS320VC5510 DSP,
considered herein, could lead to an error of up to ±26.5% and for
the Motorola 56K an error of around 20% [8]. A second order model
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includes a logical partitioning of the instruction set into "instruction
classes". This reduces the estimation error for the StrongARM to 4%
[10].

To avoid the large number of measurements and complex modeling
of functional unit activity required for ILPA, FLPA models have
been proposed. These models rely on sets of parameters describing
the underlying activity of the processor. These parameters must be
derived for every program analysed. A number of architectures have
been modelled using FLPA. In particular, those with large numbers of
functional units operating in parallel, such as Very Long Instruction
Word (VLIW) processors. Gebotys et al. [13] propose use of six
parameters that were found to be power sensitive. They reported
achieving an error of less than 2% for a subset of the ISA of an
older TMS320C5x processor. Julien et al. [14] used another set of
parameters for the Texas Instruments TMS320C6201 obtaining an
error of 4%.

ILPA and FLPA models are not intended to model the dynamic
variation of the processor current consumption. The models attribute a
total current consumption to each instruction or instruction parameter
and do not model when the current is actually drawn. As such, ILPA
and FLPA are effective in deriving the long term mean current but
do not attempt to estimate the cycle-to-cycle current variation.

In [15] the problem of modeling the dynamic current trace is
addressed. The model is based on a gamma function. This func-
tion is used to approximate the dynamic current consumption due
to execution of an individual instruction. Results for the SC140
DSP processor core show an average error of less than 2.2%, and
an average correlation coefficient of 98% between estimated and
measured current traces. Although good results are reported, the
gamma function is not general enought to describe instruction current
consumption profiles for all processors. The basic current shape for
the SC140 architecture was well described by gamma functions but,
as will be shown, other processors have different dynamic current
consumption profiles.

III. DYNAMIC MODEL

The Tiwari instruction-level model estimates the mean current con-
sumed by a segment of code by summing the current consumption
due to each instruction and due to inter-instruction effects [4]. Typi-
cally, the Tiwari model estimates the mean current consumption over
several thousand clock cycles. The instruction and inter-instruction
current consumptions are determined experimentally by putting the
instructions in infinite loops and measuring the current. Based on
this, the mean energy consumption of a program is expressed in the
form:

Ep =
i

(BiNi) +
i,j

(Oi,jNi,j) +
k

Ek (1)

where Bi is the base cost of instruction i, Ni is the number of
occurrences of instruction i, Oi,j is the circuit state overhead for
the instruction pair i, j, Ni,j accounts for number of successive
appearances of instruction i and j and Ek is the energy costs
dissipated to other effects.

The Tiwari model does not capture the dynamic current consumption
of the processor. This paper proposes a new dynamic model that
estimates the current drawn by the processor in every clock cycle.

We model the dynamic current consumption of a processor as the
output of a linear system excited by a input signal consisting of the
total current consumption due to each instruction including the inter-
instruction effect. Thus the estimated instantaneous current ye[n] can
be calculated as the convolution of the discrete input signal, xd[n],
with the system impulse reponse hi[n]:

ye[n] =
N

k=0

hi[k]xd[n − k] (2)

The input signal xd[n] can be derived by applying the conventional
static Tiwari model to each individual instruction in the execution
trace. As will be shown in the next section, the system impulse
response hi[n] can be determined using system identification tech-
niques. The model is depicted in Fig. 1.

Figure 1: System model.

Our model assumes that:

• The system is Linear-Time Invariant (LTI). For the current
and voltage ranges in question, the passive components in the
processor power supply system behave in a linear fashion. The
only non-linear effect arises from the DC-DC voltage regulator.
Voltage regulators have a reference voltage and a feedback loop
[16] which introduce some non-linear behaviour. However, as
will be shown, this non-linear effect does not significantly reduce
the accuracy of the model.

• The dynamic current profile for all instructions is the same.
Clearly, different instructions draw different proportions of their
total current consumption in different stages of the processor
pipeline. For example, some instructions require memory ac-
cesses while others do not. Since the impulse response of the
system is significantly longer than the depth of the processor
pipeline, the error introduced by ignoring pipeline effects is
small.

• The static model is accurate. For complex instruction set ar-
chitectures, such as the one consider herein, it is not feasible
to characterize the entire instruction set. In this work, un-
characterized instructions are matched to functionally similar
characterized instructions and the total current consumption is
assumed to be equal. This is a source of error and is an
item for future work. The static model does not consider the
data dependency of current consumption. Experiments were
conducted across a range of instructions operating on data at
varying Hamming distances. For practical DSP routines, the
mean data dependency error was found to be 1.5% of total
current per instruction. The static model does not cover accesses
to different memories banks. Current estimation was conducted
on the basis that source code and data is placed in SARAM and
DARAM respectively. Different memory configuration may give
rise to an error of up to 12% in total current estimation for a
single instruction.

The model presented in this paper differs from that used by Muresan



[15] in the basic function employed to describe the instantaneous
current consumption due to instruction execution. The Muresan
model uses a mathematical function, gamma, to approximate the
current trace due to execution of a single instruction. In contrast, our
model uses an generalized impulse response. The gamma function is
defined as:

g(t;n, λ) =
λ(λt)n

n!
e−λt (3)

where t is the time variable of the instruction current trace, and
parameters λ and n are determined by fitting the gamma function
to the measured current trace. Unfortunately, the gamma funtion
is not sufficient to accurately represent all possible current traces.
For example, the current trace obtained for our target processor is
not well modelled by a gamma function. Fig. 2 represents both the
fitted gamma function, and the captured current trace resulting from
execution of a dual MAC instruction. It can be seen that the gamma
function describes just the first part (50.1%) of the measured trace.
The remainder of the trace is not modelled (49.1%). This leads to a
significant reduction in the accuracy of dynamic current estimation.

Figure 2: Difference between the gamma model and the actual dual MAC
current consumption.

IV. SYSTEM IDENTIFICATION

In order to apply our dynamic model, it is necessary to estimate the
impule response of the system. In general, system identification is di-
vided into parametric and non-parametric methods [17]. In parametric
methods, a system model is assumed and identification is oriented to-
wards extraction of the model parameters. In non-parametric methods,
no assumption is made about the system model and identification
is used to directly compute the system response. Non-parametric
methods include: correlation analysis, transient-response analysis, and
frequency response analysis [17], [18].

In this paper, system identification is carried out by means of cross-
correlation analysis. Consider the cross-correlation, Rxy[l], of the
system input and output signals, x[n] and y[n] respectively:

Rxy [l] =
+M

n=−M

x[n]y[n − l] =

+M

n=−M

h[n]Rxx[l − n]

where Rxx[l] is the auto-correlation of the input signal.

In the case that the auto-correlation of the input signal tends to a
Dirac impulse function δ[l], then the cross-correlation of the input
and output signals tends to the impulse response of the system h[l]:

Rxx[l] = δ[l] −→ Rxy[l] = h[l] (4)

During system identification, the input signal is controlled by modify-
ing the program to be executed. The static current model is utilized
to determine the input signal. The corresponding system output is
measured using a current probe. The program to be executed is
specially designed so that the auto-correlation of its static current
is a Dirac impulse. Maximal length sequences are used for this
purpose. Pseudo-random binary sequences may be generated using
Linear Feedback Shift Registers (LFSRs). A maximal length LFSR
sequence (m-sequence) has the property that that its period is equal to
2m − 1 where m is the number of bits in the LFSR [17]. Its circular
auto-correction Rmm(l) is given by:

Rmm[l] =
1, if l = k(2m−1),

−1

2m
−1

, if l ̸= k(2m−1).

As well as having an impulsive circular auto-correlation, m-sequences
also have the advantage that they are two valued. Thus the desired
input can be generated by executing a stimulus program utilizing just
two statically characterized instructions.

A further advantage of this system identification method is that no
electrical parameters of the processor chip or printed circuit board
need to be determined. This allows dynamic models to be derived by
third-parties, not just the chip manufacturer.

V. METHOD

A. Measurement framework

The target DSP processor used for the study is a Texas Instruments
TMS320VC5510, with variable core voltage (0.9-1.6 V) and oper-
ating frequency of up to 200 MHz. It incorporates several special
architectural features pertinant to the study. Among them, there are
low power capabilities, parallel features, on-chip Single Access RAM
(SARAM) and Double Access RAM (DARAM), two independent 40
bit MAC units and one 40 bit ALU [19].

The physical measurement methodology was applied using the C5510
Development Software Kit [20], with a 1.6 V core voltage and
24 MHz operating frequency connected to a PC running TI Code
Composer Studio (CCS) version 2.56. CCS was used to download and
run the test programs. External software routines were used to trigger
measurements using a digital storage scope. The current drawn was
measured with a non intrusive 0.1 mA resolution current probe. The
probe bandwidth is around 50 MHz, enough for these experiments.



In order to avoid noise, each measurement was averaged over 128
instances. The measurements are completely repeatable.

B. Identification procedure

The cross-correlation method requires that the input signal meets
certain requirements. Firstly, the inputs must be discrete and have a
finite number of levels as they must be generated from instructions.
Secondly, the auto-correlation of the input signal must be close to an
ideal impulse. Thirdly, the inputs must be zero mean in order for the
auto-correlation to be delta shaped. Fourthly inputs must concentrate
as much energy as possible in the bandwidth of the system to be
identified.

The first three requirements were met by using maximal length LF-
SRs to generate the stimulus. The binary LFSR outputs were mapped
to a low consumption NOP instruction and a high consumption MPY
instruction. The mean was subtracted to shape the auto-correlation as
an impulse. These signals along with their auto-correlation functions
are illustrated in Fig 3.

Figure 3: Input Generation: (a) Actual input signal and (b) its auto-
correlation. (c) Zero mean input signal and (d) its auto-correlation

The fourth requirement is related to the system bandwidth. Efficient
input spectrums for identification have most energy concentrated
within the bandwidth of the system. The bandwith of an LFSR
derived input signal can be controlled by altering the duration of
the LFSR period. In our experiments, this was achieved by adjusting
Xc, the number of processor clock cycles per LFSR output. This
leads to a input signal length of L cycles where:

L = (2m − 1)Xc (5)

For a clock frequency of Fs, this time scaling increases energy in
the frequency range from 0 to Fs/Xc.

Several experiments were conducted to estimate the bandwidth of
the system. These experiments were performed at a processor clock
frequency of 24 MHz. Input signals were applied to the system
with Xc factors varying from 1 to 20. For each experiment, both
the input and output spectrum were analysed along with the system
identification results. 95% of the energy system was found to be
within the range 0-2 MHz. Xc equal to 10 increases the energy in

the range of 0-2 MHz and was found to provide the most accurate
identification.

Fig. 4 (a) shows the input and output magnitude spectrums for Xc=1.
The output spectrum magnitude is -20 dB for frequencies greater
than 2 MHz. Fig. 4 (d) shows the spectrum of the input signal
generated withXc=10. This signal has more energy within the system
bandwidth, providing more accurate system identification. Due to the
time scaling process, certain harmonic frequency components are not
present in this input signal. Since these components are outside the
system bandwith, this does not signifcantly reduce the accuracy of
the identification process.

The period of the input signal must be longer than the impulse
response of the system and less than the storage capacity of the
digital oscilloscope. In our case, Xc and m were chosen to be 10
and 7 respectively, resulting in L=1270. Fig. 4 (b) plots the circular
auto-correlations of length 1280 and 1270 input signals, illustrating
the low noise property of the latter.

Figure 4: Input Generation: (a) Input and output spectrums with Xc=1;
(b) Auto-correlation for LFSR signals of 1280 and 1270 length; (c) Input
spectrum with Xc=1; (d) input spectrum with Xc=10 and 1270 length.

VI. RESULTS

The impulse response and transfer function obtained for the
TMS320VC5510 are plotted in Fig. 5. The impulse response is
truncated to 600 cycles since later samples are close to zero. This
also ensures that the filter has unit gain.

The dynamic current consumption of the processor was estimated and
measured for ten pseudo-random instruction sequences. The pseudo-
random sequences were comprised solely of characterized NOP and
MPY instructions. Fig. 6 shows the estimated and measured traces
for three of the sequences. The accuracy of the results was assessed
by calculation of the square of the correlation coefficient (CC2[%]),
the relative error of the mean current (RelMError[%]) and the root
mean square error (RMSError) [21] between the estimated and
measured vectors. An average CC2 of 91.11% was obtained while
the average RelMError and the average RMSError were 1.2%
and 0.338 mA (6.3%) respectively.

The dynamic current consumption was also estimated for five bench-
marks from the TI Signal and Image Libraries [22], [23]. These



Figure 5: (a) Estimated impulse response along with (b) its spectrum

Figure 6: Estimated and measured current consumption for: (a) periodic
pseudo-random sequence with Xc=10; (b) aperiodic pseudo-random sequence
with Xc=10; (c) aperiodic pseudo-random sequence with Xc=30.

benchmarks cover a range of DSP algorithms such as complex
Fast Fourier Transform (FFT), filtering, convolution, correlation and
math functions. The benchmarks exercise most the features of the
target DSP: software loops, zero-overhead loops, parallel and single
instructions. The benchmarks are briefly described in the following
list:

• Iir4. Computes a cascaded IIR filter of 16 biquad sections using
32-bit coefficients and 32-bit delay buffers. Each biquad section
is implemented using Direct-form II with 4 coefficients.

• Cfft. Computes a complex 512-points IFFT.
• IMG_jpeg_quantize. Performs the quantization step in im-
age/video compression.

• Log10. Computes log base 10 of a vector.
• Dct_idct. Comprises 2-D forward Discrete Cosine Transform
(FDCT), format conversion and Inverse Discrete Cosine Trans-
form (IDCT) for a 8x8 block.

For each benchmark, the estimated and measured current traces
were obtained and analyzed. Fig. 7 shows the current consumption
traces for the benchmarks and Table I gives the corresponding CC2,
RelMError and RMSError figures.

Table I: Benchmarks results.

Benchmark RelMError[%] RMSError[mA] CC2[%]
cfft 0.15 0.034 87.25
iir4 5.06 0.111 97.67
log10 3.07 0.080 94.93

img_jpeg_quantize 0.33 0.044 93.12
Dct_idct -1.68 0.073 93.31

Figure 7: Measured and estimated current consumption for benchmarks: (a)
cfft Kernel; (b) iir4; (c) log10; (d) img_jpeg_quantize; (e) Dct_idct

.

Almost all current estimates provide a CC2 in excess of 93.26%.
However, some variations in the current consumption were not well
captured. For instance, in the Dct_idct benchmark (Fig. 7 (e)), the
estimated trace does not exactly follow the measured trace between
cycles 500 and 1000. As was noted in section II, the static model
does not contain characterized current values for every instruction of
the instruction set. When an instruction is not characterized, errors
may be introduced in the signal xd[k]. Other potential sources of
errors are discussed in section IV. The RelMError results indicate
that the model also accurately estimates the mean current drawn by
the processor.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel instruction-level dynamic power model.
An identification method was described which allows the model to
be applied to third-party processors. The model and identification
method were applied to the Texas Instrument TMS320VC5510 DSP.



Results were presented and the accuracy of the model in estimating
dynamic current was assessed by comparison with measurements
across a range of DSP benchmarks. The results showed that the model
describes the dynamic behavior of the processor within an average
correlation of 93% and estimates mean current with an average error
of 2.05%.

For the processor under investigation, the method is more accurate
than previously published methods. The new method is more general
and so is applicable to a greater range of processors. The system
identification method is also more robust and easier to apply than
that described previously.

Future work includes extension of the static model to complex
instruction set architectures and modeling of dynamic frequency and
voltage scaling.
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