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ABSTRACT 
The H.264 video encoding standard can achieve high coding 
efficiency at the expense of high computational complexity. 
Typically, real-time software implementation requires omission of 
most optional encoding tools leading to significantly reduced 
coding efficiency. This paper proposes a novel method for real-
time H.264 encoding based on dynamic control of the encoding 
parameters to meet real-time constraints while minimizing coding 
efficiency loss. Experimental results show that the method 
provides up to 19% lower bit rate than conventional real-time 
encoding using fixed parameters with the same visual quality. The 
method allows real-time 30fps QCIF encoding on a Pentium IV 
with similar coding efficiency to full search baseline profile 
encoding. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: real-
time and embedded systems.  

General Terms 
Algorithms, Design.  

Keywords 
H.264, fast mode decision, complexity scaling, real-time video 
encoding. 

 

1. INTRODUCTION 
The H.264 standard [9] developed by the Joint Video Team (JVT) 
provides better coding efficiency than MPEG-4 and H.263 at low 
bit rates [17] but at the cost of significantly increased 
computational complexity. This makes it difficult to use software 
implementations of the encoder in practical real-time multimedia 
applications. Videophone conferencing, for example, requires 
every frame be encoded within 1/30 of a second to maintain a 

high quality frame rate and to provide low end-to-end delay. 

A large number of algorithms have been proposed by researchers 
to reduce H.264 computational complexity. These algorithms are 
focused on new methods to reduce the complexity of the most 
computationally complex components of the video encoder, i.e., 
Motion Estimation (ME), Mode Decision (MD) and Discrete 
Cosine Transform (DCT) coding. In almost all cases, these 
algorithms are aimed at reducing total encoding time, rather than 
in meeting real-time constraints. 

As in other video coding standards, H.264/AVC exploits the 
spatial, temporal and statistical redundancies of the source video. 
Since the amount of redundancy varies between frames, the 
computational complexity of, for example, mode decision can 
vary significantly between consequent frames. This effect is 
particularly important when using ‘fast’ encoding schemes in 
which MD and ME search are terminated early. Utilization of 
encoding tools such as Variable Block Sizes in MD, B-frames and 
multiple reference frames in ME can further increase variation in 
the processor workload and therefore create much greater 
variation in frame encoding complexity. 

To the authors’ knowledge, few papers consider the problem of 
dynamic complexity scaling in real-time H.264 video encoding, 
including utilization of frame buffers and maintaining constant 
processor workload. In contrast, most software solutions simply 
reduce the MD and ME search size globally, so as to meet real-
time constraints in the worst case. This leads to significant 
reduction in coding efficiency. 

The problem of real-time video encoding with dynamically 
varying computational complexity has a lot of similarities with  
the real-time rate-control problem [8]. That is, maintaining 
constant frame complexity in real-time encoding is similar to 
maintaining constant bit rate. Thus, this paper investigates the use 
of rate-control (RC) techniques for complexity control in real-
time video encoding. The mode decision algorithm with 
dynamically variable complexity, proposed in this paper, is based 
on a MD class fast search algorithm and operates in real-time on 
an average Pentium IV PC. The technique for dynamic 
complexity scaling, proposed in the paper, is general and can be 
applied across a range of similar algorithms, such as [3]. 

The paper is organized as follows. Section 2 reviews related work 
in the field. Section 3 provides an analysis of frame complexity 
prediction methods and proposes a complexity prediction model. 
The proposed MD algorithm with dynamic complexity scaling is 
described in Section 4. Experimental results are presented in 
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Section 5 and discussed in Section 6. Finally, Section 7 concludes 
the paper. 

 

2. RELATED WORK 
Since the H.264 standard was adopted and its complexity was 
studied and analyzed [5][17], various methods had been  proposed 
to reduce its computational complexity. In H.264, the most 
computationally complex components are Mode Decision and 
Motion Estimation [7].  Generally speaking, work done by 
researchers in the field can be divided into two categories.  

Algorithms in the first category, such as [3][6][11-14][16] allow 
for complexity reduction of the total execution time of H.264.  
Some of these methods allow for several fixed complexity 
settings. 

The conventional mode decision technique can be significantly 
improved by so-called ‘early termination’ (ET) and ‘forward 
SKIP prediction’ techniques [6][11][13][14]. These techniques 
assume that some block modes can be eliminated from the mode 
search without loss and that correct SKIP decisions may be made 
at the start of the MD process. The key to the success of these 
techniques is utilization of fast and efficient decision metrics.  

Further Mode Decision complexity reduction involves more 
sophisticated approaches, such as [3][12], whereby all MBs in the 
frame are classified according to certain features of the video 
signal. Different MD search parameters are used for each class. 
For example, in [3], the authors propose Mode Group (MGs) 
classification that utilizes overlapped MGs based on a measure of 
the residual error with predefined empirical thresholds. The 
method provides 52% total complexity reduction, but only for P 
frames with Rate-Distortion Optimization (RDO) on. A feature-
based approach with a risk minimizing Mode Decision was 
proposed in [12], but it is less effective – only reducing total 
encoding time by 20-30%.  

In the second category, there are algorithms that are practical 
implementations of H.264 on particular hardware platforms, such 
as [4][15][18]. Unlike algorithms in the previous category, they 
are designed to operate under real-time conditions. The authors 
claim that they can provide a real-time video encoding on the 
selected hardware platform. For example, [18] discusses a real-
time H.264 implementation on a TMS320C6416 DSP.  

The authors do not concentrate only on the Mode Decision 
technique (or any other technique) by itself. Instead, they  
optimize different parts of the H.264 encoder to achieve the real-
time goal. In [15], for instance, several techniques such as Intra 
prediction optimization, SAD optimization for Motion Estimation 
and DCT optimization are proposed. The resultant encoder was 
tested for its performance on the Pocket PCs and Smart phones.  

These papers mainly discuss hardware-related issues of particular 
H.264 algorithm implementations (such as code optimizing 
techniques) and do not provide a deep discussion about how the 
proposed techniques can be utilized on other hardware platforms, 
if they can be utilized at all.  

Finally, none of these papers investigate the dynamic complexity 
scaling problem, i.e. maintaining defined complexity when the 
processor’s workload varies, or design of a real-time encoder 

working on a PC. We believe that the solution can be found 
among existing Rate Control techniques since the RC problem has 
many similarities with dynamic complexity scaling. 

 

3. ANALYSIS 
Rate control algorithms allocate a bit rate quota for encoding each 
video frame. The quota must be met with minimum loss in 
encoding efficiency. In the computational complexity control 
case, the problem can be formulated as: 

)min(),min( DR ∆∆    such that  actualT <  quotaT    (1) 

where ∆R is bit rate gain, ∆D is distortion, Tactual is the actual 
encoding time and Tquota is the time quota, which depends on frame 
rate. 

As for RC algorithms [8], complexity scaling can be applied to 
the frame layer or the macroblock layer. At the frame layer, 
complexity scaling is applied to all MBs in a given frame in the 
same way. Thus, a single complexity setting is used for the whole 
frame. At the macroblock layer, complexity scaling is applied to 
each MB in the frame individually and there is a complexity 
setting for each MB. The choice of layer depends on the variation 
in complexity between different MBs when encoded using the 
same parameters. 

3.1 Methods of Complexity Prediction 
Current studies of RC algorithms in [8] show that solutions can be 
divided into two categories: those that operate without a buffer, 
and those that use a scene-content complexity estimation 
approach and require a buffer. Based on this, we propose the 
following schemes for dynamic complexity control. 

In the first category, we consider fixed worst-case frame 
scheduling and truncated time scheduling. In  fixed worst-case 
scheduling the time quota quotaT  WC  is the maximum frame 
encoding time as measured for the most computationally complex 
frame (e.g. in a high motion video sequence): 

tframe_limi
WC

quota
WC TT =                          (2) 

The encoding parameters in worst-case scheduling are fixed such 
that the actual encoding time Tactual is less than quotaT  WC  in all 
cases. The unused processing time can be calculated as: 

)(
0

unused i

N

i

WC
quota

WC TTT ∑=
−=   (3)  

where N is the total number of frames in the video sequence and  
Ti is the actual processing time for the particular frame i. 

This approach has a large disadvantage: since the actual encoding 
time Tactual depends on the temporal-spatial complexity of the 
source video material, it is impossible to take advantage of the 
unused processing time for video frames requiring less than 
maximum computational complexity. 

Truncated time scheduling assumes that the encoding parameters 
can be adjusted dynamically to ensure that the encoding time 
Tactual is less than Tquota. All MBs in the frame are processed with 
fixed encoding complexity settings as in worst case scheduling, 



but if the quota is exceeded then the rest of the MBs are skipped.  
The advantage of this approach is that it allows a reduction in the 
unused processing time compared to worst case: WC

unused
TRUNC

unused TT < . 
Thus, higher encoding settings than in worst-case scheduling may 
be used, leading to greater average coding efficiency. The 
disadvantage is that the number of skipped MBs in some frames 
leads to high visual quality degradation for fast changing frames. 

In the second category, we propose a scheduling scheme based on  
scene complexity estimation.  In this case the MB encoding 
parameters are adjusted such that the predicted encoding time is 
on average equal to the time quota. The encoding time is 
predicted based on an estimate of scene complexity: 

)( framepredicted CfT =                   (4) 

where Tpredicted is the predicted frame encoding time (or predicted 
Tactual) and Cframe is the estimated scene frame complexity. A study 
of previous RC algorithms [8] reveals that scene complexity can 
be estimated in a number of ways, e.g., by frame energy, number 
of allocated bits and by utilization of visual metrics like PSNR, 
MAD or SAD. The function f can be calculated adaptively, based 
on the Cframe , Tpredicted and Tactual obtained for the previous frames. 

This scene complexity estimation approach is combined with a 
complexity control scheme that adjusts complexity dynamically. 
This ensures that Tactual ≈ Tquota and minimizes unused processing 
time. The disadvantage here is that large variations in Cframe 
produce large variations in Tpredicted and may eventually result in 
the predicted time exceeding the time quota.  

A frame buffer allows for errors in prediction – excess coding 
time in one frame is simply subtracted from the quota in the next. 
The buffer size must be small for low delay applications, where a 
higher frame rate is desirable (i.e. 30 fps) and can be larger for 
applications that allow greater delay [8]. Small buffer sizes may 
result in buffer overflow for large errors in Tpredicted. In order to 
avoid this, an efficient MB complexity scaling scheme is required 
in addition to accurate scene complexity prediction. 

It can be concluded that of all of these schemes, scene complexity 
estimation is the most advantageous as it provides maximum 
flexibility in minimizing coding efficiency loss.   Hence, scene 
complexity estimation is applied in this work and compared with 
the worst case scheduling. 

3.2 Proposed Model 
Experiments with various video sequences indicate that when a 
fast Mode Decision algorithm is used, the encoding time for each 
MB varies greatly. In fact, frame encoding time can be 
determined from the distribution of Mode Decision classes (or 
MD classes) across all MBs in the frame. Thus, the predicted 
encoding time for the current frame TFastMD_predicted can be estimated 
as: 
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iipredictedFastMD TtnT ,       constti =  (5) 

where in is the number of MBs that belong to MD class i and it  

is the average encoding time for that MD class. For this model it  

can be determined experimentally across several high and low 
motion QCIF video sequences.  

For fast Mode Decision algorithms that employ early termination 
schemes such as [6], it  calculated per MB for the same MD class 
can vary greatly, depending on the stage of the MD process at 
which early termination occurred. To extend the complexity 
prediction model to these cases, a scheme for adaptive calculation 
of it is proposed.  

The adaptive scheme involves storing the encoding time statistics 
for previously encoded frames and re-calculating it  for all MD 

classes every Nth frame. The following methods of updating it  
were assessed experimentally for the proposed model as in Eq. (5) 
with N = 5: 

1. Use the mean time for each MD class, calculated across 
all MBs in the previous frames: 

},...,,{ 110 −= Ni TTTmeant   (6) 

This method is the simplest and most straight-forward 
solution. 

2. Use mean time for MBs that did not have their class 
changed as a part of a scaling algorithm (i.e. were not 
demoted, see below): 

},...,{ 1__0__ −= Ndemotednotdemotednoti TTmeant     (7) 

As demotion happens for MBs with the lowest previous 
J (see Eq. (9)) within a class and since lower J values 
indicate higher scene complexity, then demoted MBs 
are harder to encode. 

3. Use the maximum time measured for each MD class 
calculated across all N frames for MBs that were not 
early terminated: 

},...,max{ 1_0_ −= NnotETnotETi TTt      (8) 

Since early termination significantly reduces MD time, 
calculation of TFastMD_predicted excludes early terminated 
MBs in order to provide a consistent estimate. 

The experimental results are provided in Table 1. From the 
experimental results, it can be clearly seen that ‘Maximum it ’ is 
very inaccurate. The other two methods provide accurate 
prediction with an average difference between predicted and 
actual times of about 7%. Since the ‘mean not demoted’ method 
has a higher Pearson correlation coefficient, it is deemed to 
provide the most accurate prediction for fast MD with early 
termination, so the final frame complexity prediction model 
chosen adopts Eq. (5) with adaptive it calculation as in Eq. (7). 

Once frame complexity is predicted, macroblock layer complexity 
scaling can be performed. The goal is the adjustment of 
computational complexity for each MB in the frame in order that 
the time quota is met and coding efficiency degradation is 
minimized. 

 



Table 1.   Estimation of adaptive frame prediction models 

Prediction error, % 

Video 
sequence 

M
et

ho
d 

min max avg. 

Pearson 
correlation 

between 
predicted 
and actual 
MD time 

1 0.02 33.04 6.95 0.751 
2 0.13 33.75 7.73 0.771 

Carphone, 
QCIF 

3 8.21 85.61 23.35 0.496 
1 0.02 46.70 3.95 0.949 
2 0.21 43.90 5.46 0.967 Hall, 

QCIF 
3 4.18 88.62 22.94 0.625 
1 0.01 28.8 2.31 0.969 
2 0.02 29.13 3.42 0.983 Akiyo, 

QCIF 
3 2.67 66.93 14.41 0.768 

 

Since reducing complexity effects both bit rate and distortion, the 
need arises to unify both quantities into a single metric which is 
representative of the overall coding efficiency. At present, the 
rate-distortion model is adopted in H.264 Mode Decision [9] for 
making optimal decisions where both bit rate and distortion are 
important: 

min { J },    where  RDJ ⋅+= λ   (9) 

where D is a distortion measure (usually Sum of Absolute 
Differences) and R represents bit rate. During video encoding, the 
Lagrange rate-distortion function J is minimized for a particular 
value of the Lagrange multiplier, λ. 

Based on this, we introduce a coding efficiency metric, W, which 
is dependent on visual quality loss, ∆D, and bit rate increase, ∆R, 
relative to that achieved by the full complexity encoder. We 
define W as: 

 DRW ∆+∆= µ             (10) 

where ∆R is a percentage, ∆D is PSNR in dB and µ is a constant 
relating bit rate loss and distortion increase. Thus, for any given 
computation complexity point Ci, the most efficient encoder can 
be identified as the one providing minimum W. 

The constant µ can be interpreted as the percentage increase in bit 
rate equivalent to a 1 dB loss in PSNR. Previous work [1] 
determined that, for the frame sizes under investigation, a 10% 
decrease in bit rate is roughly equivalent to a loss of 0.5 dB in 
PSNR. In our work, µ was determined experimentally [7] and was 
set to 13.  

Assuming, that the encoder parameter configurations form a 
discrete set, the problem of selecting the optimal encoder 
configuration for any given complexity point can be solved by 
Pareto analysis [2]. In this work, the efficiency of the encoder was 
assessed across a range of parameter configurations. These results 
were a projected on to a graph relating coding efficiency to 
computational complexity. The optimum encoder parameters 
were then identified as those points (Ci, Wi) which form the 
Convex Hull of the Individual Minima (CHIM) on the Pareto 
curve, shown as the blue line in Figure 1. Parameter 
configurations corresponding to points inside the CHIM are sub-

optimal. In this work, the MD classes only contain parameter 
configurations which are on the CHIM. 

The low complexity encoding algorithm considered in this work 
allocates an MD class to each MB based on an analysis of the 
MB’s statistical properties. MBs likely to have low motion are 
allocated to an MD class with a narrow search range in ME. This 
reduces encoding time without loss of coding efficiency. MD 
class allocation based on MB statistics is used for initial frame 
encoding time prediction. If the prediction exceeds the quota, then 
some macroblocks must have their MD classes demoted to reduce 
total encoding time. In contrast, if the prediction time is less than 
the quota, then some MBs may have their MD classes promoted 
to improve coding efficiency. 

Scaling complexity down for a particular MB is referred to as MD 
class demotion. For example, a macroblock initially allocated to 
class B can be demoted to class C. This reduces computational 
complexity by ∆C and reduces coding efficiency by ∆W, as 
defined in Eq. (10). For a given reduction in computational 
complexity of ∆C, it is clear that the best demotion class is on the 
convex hull of the Pareto curve. 
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Figure 1. MB demotion example 

It can be observed in Figure 1 that the gradient 
C
W
∆
∆

of the 

convex hull of the Pareto curve is lower between more 

computational complex MD classes (i.e.
BC

BC

AB

AB

C
W

C
W

∆
∆

<
∆
∆

).  

That is, there is less coding efficiency loss for a given reduction 
in computational complexity. Hence, demotion should start with 
macroblocks that are in the more computationally complex MD 
classes.  

In some cases, it may not be necessary to demote all MBs within 
a given class. Since demotion generally leads to a bit rate and 
distortion increase, demotion should start with MBs that have 
lowest previous J within the class. In this way, the most 
effectively coded MBs are demoted first, minimizing coding 
efficiency loss. 



Scaling complexity up for a particular MB is referred to as MD 
class promotion. For example, a macroblock initially allocated to 
class C can be promoted to class B. This may improve MB coding 
efficiency, but also increases computational complexity. 
Promotion should start with the macroblocks that are allocated to 
less computationally complex MD classes, i.e. class E or D, and 
continues until the highest complexity class is reached (class A). 
Since promotion generally reduces bit rate and distortion, it 
should start with the MBs that have highest previous J within the 
given class, thus the less effectively coded MBs are promoted 
first. 

The proposed frame complexity estimation model was tested and 
optimized for IPPP GOP structure. For B-frames the average 
encoding time it  for each MD class is generally higher than for 
P-frames due to increased computational complexity. To 
overcome this, it is proposed to utilize different sets of it  values 

for P- and B-frames, i.e. }...,{ 10
P

i
PP ttt and }...,{ 10

B
i

BB ttt . 

Alternatively, a scaling coefficient γ can be applied for P
it values 

when dealing with B-frames. The particular value for γ is 
determined experimentally. 

 

4. ALGORITHM 
The fast Mode Decision algorithm used in these experiments is 
shown in Figure 2. It consists of two parts: MD class selection 
and fast Mode Decision with Early Termination.  

The MD class selection algorithm chooses the macroblock class 
based on three metrics: FD [16], Jprev and SAD8x8 [6].  The Mode 
Decision algorithm with Early Termination utilizes J values from 
the previous frame (i.e. Jprev) in order to omit unnecessarily MD 
computations [6].  
As is typical of most fast MD algorithms, algorithm’s 
computational complexity is dependent on frame content.  In 
order to achieve good coding efficiency, frames with high motion 
typically require more processing than frames with low motion. 
The algorithm for real-time dynamic complexity scaling in the 
H.264 encoder is shown in Figure 3. The algorithm uses a one-
frame buffer. The time quota Tquota is re-calculated after each 
frame is processed as: 

)   ,min( tframe_limitframe_limitframe_limi TTTNTT totalquota −⋅+=    (11) 

In order to synchronize the buffer, the last frame encoding time  
Tlast_frame cannot exceed the frame encoding time limit Tframe_limit. The 
value of Tframe_limit is selected in order to allow real-time encoding 
at the desired frame rate. 

 

5. EXPERIMENTAL RESULTS 
The MD algorithm for real-time complexity scaling was 
implemented in the JM [10] reference encoder and experimentally 
tested.   No assembly language or other manual optimizations 
were applied. Several QCIF video sequences of 300 frames each 
were encoded with an “IPPP” GOP structure. Reference encoding 
used all seven VBS modes, CABAC entropy coder and RDO off.   
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Figure 2.   Fast MD algorithm with MD classes 

In the experiments, QP was set to 28.  The algorithm was tested 
under conditions, where the value of Tframe_limit was set to allow 
real-time encoding at 15, 20 and 30fps on a reference 3GHz 
Pentium IV PC with 1GB RAM. The obtained results for bit rate 
gain, quality degradation and complexity reduction versus non-
real time JM running at full search baseline profile on the same 
PC are shown in Tables 2–4. The minus (–) sign denotes 
improvement for the new method. 

Using Eqs. (12)–(14) we calculated the percentage of unused time  
Tunused, prediction error Terror and trim time Ttrim:  
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Figure 3.   Real-time complexity scalable fast MD algorithm 

For the proposed algorithm running on the reference PC at 30fps, 
the results obtained include the Pearson correlation between 
predicted and actual time.  
All results are given in Tables 2–5. 

 
Table 2.  ∆Bit rate, % for the proposed method vs. ref. JM 

  

Frame rate 
Video sequence 

15fps 20fps 30fps 
Carphone 0.05 1.04 15.25 

Table tennis 2.48 3.85 11.16 
Coastguard 0.26 0.87 6.48 

News 0.84 0.76 5.90 
Salesman -0.5 -1.50 5.60 

Grandmother -1.23 -3.08 -1.82 
Mother -0.7 -1.00 1.68 

Hall 0.03 -1.73 -4.41 
Akiyo -1.15 -1.80 -1.85 
mean 0.01 -0.28 4.22 

 

 

Table 3.  ∆PSNR, dB for the proposed method vs. ref. JM 

Frame rate 
Video sequence 

15fps 20fps 30fps 
Carphone 0.11 0.28 0.49 

Table tennis 0.24 0.24 0.46 
Coastguard 0.06 0.08 0.13 

News 0.09 0.12 0.38 
Salesman 0.03 0.07 0.24 

Grandmother 0.02 0.19 0.18 
Mother 0.06 0.17 0.32 

Hall 0.01 0.03 0.20 
Akiyo 0.01 0.02 0.16 
mean 0.07 0.13 0.28 

 

 

Table 4.  Total encoding time  reduction, %  
for the proposed method vs. JM 

Frame rate 
Video sequence 

15fps 20fps 30fps 
Carphone –43.30 –52.42 –73.27 

Table tennis –47.20 –52.10 –72.95 
Coastguard –46.73 –54.64 –73.10 

News –40.75 –48.03 –71.27 
Salesman –35.42 –48.70 –71.25 

Grandmother –32.97 –48.42 –70.54 
Mother –32.77 –47.91 –70.18 

Hall –40.92 –47.33 –70.97 
Akiyo –38.77 –47.41 –70.64 
mean –39.87 –49.66 –71.57 

 
 



Table 5. Tunused, Terror Ttrim , % and Pearson correlation, r  for the 
proposed algorithm at 30fps 

 

Video 
sequence unusedT  

 
errorT
 

trimT  
r between 

}{ _ predictedFastMDT
and { Tactual }  

Carphone 3.81 3.39 74.95 0.581 
Table tennis 5.75 5.55 50.59 0.546 
Coastguard 4.12 3.88 98.27 0.509 

News 6.17 5.88 21.11 0.557 
Salesman 6.11 6.28 18.04 0.422 

Grandmother 2.72 2.56 13.74 0.667 
Mother 3.40 3.13 17.00 0.643 

Hall 5.68 6.40 5.75 0.630 
Akiyo 2.85 3.64 -2.92 0.738 

 

Worst case scheduling was tested under the same simulation 
conditions.  The H.264 complexity settings were selected as 
shown in Table 6, so the encoding time for the worst sequence 
allow encoding at 15, 20 and 30fps. The standard non-real time 
JM with full search baseline profile achieves only 8fps on the 
reference PC. 

 
Table 6.  H.264 settings for the worst case scheduling 

Worst scheduling at.. H.264 
settings 

30fps 20fps 15fps 8fps 

VBS modes 
P16x16, 
all Intra 
modes 

P16x16,  
P8x8,  

 all Intra 
modes 

All 
VBS 

modes 

All VBS 
modes 

Search range 1 4 6 8 
Hadamard 
transform off on 

 

In order to compare the efficiency of both algorithms on the 30fps 
point, the difference in the bit rate and PSNR for the proposed 
algorithm were calculated relative to worst-case scheduling.  The 
results are given in Table 7. In the Table 7, minus sign (–) 
indicates improvement for the method. 

 
Table 7.  Comparison of the proposed algorithm  

       vs. worst-case scheduling 
 

Video sequence ∆Bit rate, % ∆PSNR, dB 

Carphone 2.26 –0.04 
Table tennis –8.10 0.09 
Coastguard –6.84 –0.07 

News –11.10 –0.06 
Salesman –12.58 –0.06 

Grandmother –11.15 –0.08 
Mother –6.89 –0.18 

Hall –18.80 –0.1 
Akiyo –15.58 –0.19 
mean –9.89 0.07 

6. DISCUSSION 
From the experimental results in Tables 2–5, it can be concluded 
that the proposed algorithm provides dynamic complexity scaling 
for the selected sequences, making optimal real-time H.264 video 
encoding possible on a range of processors.  

It can be observed from Table 5 that unused time Tunused and 
prediction error Terror for the algorithm are low, around 2.72–
6.17% on average. Trim time Ttrim shows the percentage of 
complexity that was scaled down by the algorithm from the 
original complexity. The minus sign for trim time (i.e. Akiyo) 
means that complexity was scaled up, not down, thus many MBs 
in that sequence were promoted.  

From Table 5, it can be observed that, depending on the motion in 
the source video, the results can be roughly divided into three 
groups low (Ttrim < 10% ), medium (10% ≤ Ttrim < 50%) and high 
motion sequences (Ttrim ≥ 50% ). 

For low motion sequences (i.e. Akiyo, Hall), the algorithm 
provides the best complexity scaling results. Prediction is quite 
accurate, and the Pearson correlation is quite high (0.63–0.73). 
These results show insignificant PSNR drop in visual quality and 
even bit rate reduction compared to the full search non-real time 
JM. 

For the medium motion sequences (i.e. News, Salesman, Mother 
etc), the MB complexity scaling scheme results in around 1.65–
6% of bit rate gain, which is due to the increased number of Intra 
macroblocks. The demotion of MD class C to class D is the most 
likely reason. Frame complexity prediction is accurate, the 
Pearson correlation is in the range 0.55–0.65.  

Sequences that are high motion (i.e. Carphone, Tennis etc) are the 
most difficult for the algorithm to handle. Complexity reduction 
Ttrim of 50–98% from non-scalable fast MD algorithm comes at the 
cost of a 0.5dB quality degradation and a bit rate increase of 10–
15%. Due to high spatial and motion complexity there are few 
MBs which that not demoted, resulting in inaccuracy in adaptive 

it  calculation. This results in poor frame complexity prediction 
(Pearson correlation is only 0.5). In fact, demotion of the original 
MD class A into class D seems to be necessary for complexity 
reduction, which results in a bit rate increase.   

Notably, results for Coastguard are much better than for Carphone 
and Tennis, despite having the highest trim time (98%). This can 
be explained by the fact that Coastguard has the highest number 
of Intra blocks in the ‘original’ JM encoding, which results in 
comparatively low bit rate increase (only 8%) and insignificant 
quality degradation (0.13dB). 

Based on these results, it can be concluded that the complexity 
scaling model needs to be improved to deal with high motion 
cases, where the demotion rate is high. A possible solution is 
utilization of multiple metrics for it  for different demotions. 

When comparing the proposed method with the worst scheduling 
approach, it can be concluded from Table 7 that the average bit 
rate reduction achieved for the method is almost 10% compared to 
worst case scheduling with almost 19% maximum (for Hall video 
sequence). PSNR is also better for the method for all sequences 
except Tennis. However, the difference in PSNR achieved is 
negligible. The results for previously published low complexity 



H.264 algorithms clearly indicate that none of the previously 
proposed methods achieve similar results. 

The bit rate gain and PSNR degradation was plotted against target 
processor performance for both methods. The performance of the 
reference PC that provides 30fps is equal to 33msec/frame.  
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Figure 4. Bit rate gain for both methods 
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Figure 5. Quality degradation for both methods 

In Figure 4, the bit rate curve for the proposed algorithm (solid 
line) lies much lower than for the standard worst case scheduling 
method (dashed line), which means that the proposed algorithm 
provides better encoding efficiency. It can be observed that the 
lower the frame rate – the closer the resultant bit rate curves, thus, 
the proposed algorithm becomes less effective relative to worst 
scheduling. Very high bit rate gain for the proposed algorithm at 
35fps indicates that the processor’s capabilities are the limiting 
factor and, in order to save processing time, the algorithm uses 
only Intra prediction and SKIPs. Therefore, the most efficient 
operating point for the algorithm is located on the ‘knee’ of the 
curve, which is around 30fps. 

7. CONCLUSIONS 
In this paper, various issues relating to dynamic real-time 
complexity scaling in H.264, such as complexity prediction 
methods, MB complexity scaling and time scheduling algorithms 
were investigated. 

The proposed real-time complexity scalable MD algorithm 
significantly outperforms the standard worst case scheduling 
approach, both in terms of bit rate reduction (10% in average) and 
frame rate. It offers roughly 30% of the computational complexity 
required for full search with the baseline profile at the same 
coding efficiency and allows an efficient real-time video encoding 
on the reference Pentium IV PC. 
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