
Dynamic Complexity Scaling for Real-Time H.264/AVC
Video Encoding

Yuri V. Ivanov
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

+(353) 1 716 29 15
yury.ivanov@ucd.ie

C. J. Bleakley
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

+(353) 1 716 29 15

chris.bleakley@ucd.ie

ABSTRACT
The H.264 video encoding standard can achieve high coding
efficiency at the expense of high computational complexity.
Typically, real-time software implementation requires omission of
most optional encoding tools leading to significantly reduced
coding efficiency. This paper proposes a novel method for real-
time H.264 encoding based on dynamic control of the encoding
parameters to meet real-time constraints while minimizing coding
efficiency loss. Experimental results show that the method
provides up to 19% lower bit rate than conventional real-time
encoding using fixed parameters with the same visual quality. The
method allows real-time 30fps QCIF encoding on a Pentium IV
with similar coding efficiency to full search baseline profile
encoding.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: real-
time and embedded systems.

General Terms
Algorithms, Design.

Keywords
H.264, fast mode decision, complexity scaling, real-time video
encoding.

1. INTRODUCTION
The H.264 standard [9] developed by the Joint Video Team (JVT)
provides better coding efficiency than MPEG-4 and H.263 at low
bit rates [17] but at the cost of significantly increased
computational complexity. This makes it difficult to use software
implementations of the encoder in practical real-time multimedia
applications. Videophone conferencing, for example, requires
every frame be encoded within 1/30 of a second to maintain a

high quality frame rate and to provide low end-to-end delay.

A large number of algorithms have been proposed by researchers
to reduce H.264 computational complexity. These algorithms are
focused on new methods to reduce the complexity of the most
computationally complex components of the video encoder, i.e.,
Motion Estimation (ME), Mode Decision (MD) and Discrete
Cosine Transform (DCT) coding. In almost all cases, these
algorithms are aimed at reducing total encoding time, rather than
in meeting real-time constraints.

As in other video coding standards, H.264/AVC exploits the
spatial, temporal and statistical redundancies of the source video.
Since the amount of redundancy varies between frames, the
computational complexity of, for example, mode decision can
vary significantly between consequent frames. This effect is
particularly important when using ‘fast’ encoding schemes in
which MD and ME search are terminated early. Utilization of
encoding tools such as Variable Block Sizes in MD, B-frames and
multiple reference frames in ME can further increase variation in
the processor workload and therefore create much greater
variation in frame encoding complexity.

To the authors’ knowledge, few papers consider the problem of
dynamic complexity scaling in real-time H.264 video encoding,
including utilization of frame buffers and maintaining constant
processor workload. In contrast, most software solutions simply
reduce the MD and ME search size globally, so as to meet real-
time constraints in the worst case. This leads to significant
reduction in coding efficiency.

The problem of real-time video encoding with dynamically
varying computational complexity has a lot of similarities with
the real-time rate-control problem [8]. That is, maintaining
constant frame complexity in real-time encoding is similar to
maintaining constant bit rate. Thus, this paper investigates the use
of rate-control (RC) techniques for complexity control in real-
time video encoding. The mode decision algorithm with
dynamically variable complexity, proposed in this paper, is based
on a MD class fast search algorithm and operates in real-time on
an average Pentium IV PC. The technique for dynamic
complexity scaling, proposed in the paper, is general and can be
applied across a range of similar algorithms, such as [3].

The paper is organized as follows. Section 2 reviews related work
in the field. Section 3 provides an analysis of frame complexity
prediction methods and proposes a complexity prediction model.
The proposed MD algorithm with dynamic complexity scaling is
described in Section 4. Experimental results are presented in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009...$5.00.

Section 5 and discussed in Section 6. Finally, Section 7 concludes
the paper.

2. RELATED WORK
Since the H.264 standard was adopted and its complexity was
studied and analyzed [5][17], various methods had been proposed
to reduce its computational complexity. In H.264, the most
computationally complex components are Mode Decision and
Motion Estimation [7]. Generally speaking, work done by
researchers in the field can be divided into two categories.

Algorithms in the first category, such as [3][6][11-14][16] allow
for complexity reduction of the total execution time of H.264.
Some of these methods allow for several fixed complexity
settings.

The conventional mode decision technique can be significantly
improved by so-called ‘early termination’ (ET) and ‘forward
SKIP prediction’ techniques [6][11][13][14]. These techniques
assume that some block modes can be eliminated from the mode
search without loss and that correct SKIP decisions may be made
at the start of the MD process. The key to the success of these
techniques is utilization of fast and efficient decision metrics.

Further Mode Decision complexity reduction involves more
sophisticated approaches, such as [3][12], whereby all MBs in the
frame are classified according to certain features of the video
signal. Different MD search parameters are used for each class.
For example, in [3], the authors propose Mode Group (MGs)
classification that utilizes overlapped MGs based on a measure of
the residual error with predefined empirical thresholds. The
method provides 52% total complexity reduction, but only for P
frames with Rate-Distortion Optimization (RDO) on. A feature-
based approach with a risk minimizing Mode Decision was
proposed in [12], but it is less effective – only reducing total
encoding time by 20-30%.

In the second category, there are algorithms that are practical
implementations of H.264 on particular hardware platforms, such
as [4][15][18]. Unlike algorithms in the previous category, they
are designed to operate under real-time conditions. The authors
claim that they can provide a real-time video encoding on the
selected hardware platform. For example, [18] discusses a real-
time H.264 implementation on a TMS320C6416 DSP.

The authors do not concentrate only on the Mode Decision
technique (or any other technique) by itself. Instead, they
optimize different parts of the H.264 encoder to achieve the real-
time goal. In [15], for instance, several techniques such as Intra
prediction optimization, SAD optimization for Motion Estimation
and DCT optimization are proposed. The resultant encoder was
tested for its performance on the Pocket PCs and Smart phones.

These papers mainly discuss hardware-related issues of particular
H.264 algorithm implementations (such as code optimizing
techniques) and do not provide a deep discussion about how the
proposed techniques can be utilized on other hardware platforms,
if they can be utilized at all.

Finally, none of these papers investigate the dynamic complexity
scaling problem, i.e. maintaining defined complexity when the
processor’s workload varies, or design of a real-time encoder

working on a PC. We believe that the solution can be found
among existing Rate Control techniques since the RC problem has
many similarities with dynamic complexity scaling.

3. ANALYSIS
Rate control algorithms allocate a bit rate quota for encoding each
video frame. The quota must be met with minimum loss in
encoding efficiency. In the computational complexity control
case, the problem can be formulated as:

)min(),min(DR ∆∆ such that actualT < quotaT (1)

where ∆R is bit rate gain, ∆D is distortion, Tactual is the actual
encoding time and Tquota is the time quota, which depends on frame
rate.

As for RC algorithms [8], complexity scaling can be applied to
the frame layer or the macroblock layer. At the frame layer,
complexity scaling is applied to all MBs in a given frame in the
same way. Thus, a single complexity setting is used for the whole
frame. At the macroblock layer, complexity scaling is applied to
each MB in the frame individually and there is a complexity
setting for each MB. The choice of layer depends on the variation
in complexity between different MBs when encoded using the
same parameters.

3.1 Methods of Complexity Prediction
Current studies of RC algorithms in [8] show that solutions can be
divided into two categories: those that operate without a buffer,
and those that use a scene-content complexity estimation
approach and require a buffer. Based on this, we propose the
following schemes for dynamic complexity control.

In the first category, we consider fixed worst-case frame
scheduling and truncated time scheduling. In fixed worst-case
scheduling the time quota quotaT WC is the maximum frame
encoding time as measured for the most computationally complex
frame (e.g. in a high motion video sequence):

tframe_limi
WC

quota
WC TT = (2)

The encoding parameters in worst-case scheduling are fixed such
that the actual encoding time Tactual is less than quotaT WC in all
cases. The unused processing time can be calculated as:

)(
0

unused i

N

i

WC
quota

WC TTT ∑=
−= (3)

where N is the total number of frames in the video sequence and
Ti is the actual processing time for the particular frame i.

This approach has a large disadvantage: since the actual encoding
time Tactual depends on the temporal-spatial complexity of the
source video material, it is impossible to take advantage of the
unused processing time for video frames requiring less than
maximum computational complexity.

Truncated time scheduling assumes that the encoding parameters
can be adjusted dynamically to ensure that the encoding time
Tactual is less than Tquota. All MBs in the frame are processed with
fixed encoding complexity settings as in worst case scheduling,

but if the quota is exceeded then the rest of the MBs are skipped.
The advantage of this approach is that it allows a reduction in the
unused processing time compared to worst case: WC

unused
TRUNC

unused TT < .
Thus, higher encoding settings than in worst-case scheduling may
be used, leading to greater average coding efficiency. The
disadvantage is that the number of skipped MBs in some frames
leads to high visual quality degradation for fast changing frames.

In the second category, we propose a scheduling scheme based on
scene complexity estimation. In this case the MB encoding
parameters are adjusted such that the predicted encoding time is
on average equal to the time quota. The encoding time is
predicted based on an estimate of scene complexity:

)(framepredicted CfT = (4)

where Tpredicted is the predicted frame encoding time (or predicted
Tactual) and Cframe is the estimated scene frame complexity. A study
of previous RC algorithms [8] reveals that scene complexity can
be estimated in a number of ways, e.g., by frame energy, number
of allocated bits and by utilization of visual metrics like PSNR,
MAD or SAD. The function f can be calculated adaptively, based
on the Cframe , Tpredicted and Tactual obtained for the previous frames.

This scene complexity estimation approach is combined with a
complexity control scheme that adjusts complexity dynamically.
This ensures that Tactual ≈ Tquota and minimizes unused processing
time. The disadvantage here is that large variations in Cframe
produce large variations in Tpredicted and may eventually result in
the predicted time exceeding the time quota.

A frame buffer allows for errors in prediction – excess coding
time in one frame is simply subtracted from the quota in the next.
The buffer size must be small for low delay applications, where a
higher frame rate is desirable (i.e. 30 fps) and can be larger for
applications that allow greater delay [8]. Small buffer sizes may
result in buffer overflow for large errors in Tpredicted. In order to
avoid this, an efficient MB complexity scaling scheme is required
in addition to accurate scene complexity prediction.

It can be concluded that of all of these schemes, scene complexity
estimation is the most advantageous as it provides maximum
flexibility in minimizing coding efficiency loss. Hence, scene
complexity estimation is applied in this work and compared with
the worst case scheduling.

3.2 Proposed Model
Experiments with various video sequences indicate that when a
fast Mode Decision algorithm is used, the encoding time for each
MB varies greatly. In fact, frame encoding time can be
determined from the distribution of Mode Decision classes (or
MD classes) across all MBs in the frame. Thus, the predicted
encoding time for the current frame TFastMD_predicted can be estimated
as:

∑
=

=

+=
5

1
0_

i

i
iipredictedFastMD TtnT , constti = (5)

where in is the number of MBs that belong to MD class i and it

is the average encoding time for that MD class. For this model it

can be determined experimentally across several high and low
motion QCIF video sequences.

For fast Mode Decision algorithms that employ early termination
schemes such as [6], it calculated per MB for the same MD class
can vary greatly, depending on the stage of the MD process at
which early termination occurred. To extend the complexity
prediction model to these cases, a scheme for adaptive calculation
of it is proposed.

The adaptive scheme involves storing the encoding time statistics
for previously encoded frames and re-calculating it for all MD

classes every Nth frame. The following methods of updating it
were assessed experimentally for the proposed model as in Eq. (5)
with N = 5:

1. Use the mean time for each MD class, calculated across
all MBs in the previous frames:

},...,,{ 110 −= Ni TTTmeant (6)

This method is the simplest and most straight-forward
solution.

2. Use mean time for MBs that did not have their class
changed as a part of a scaling algorithm (i.e. were not
demoted, see below):

},...,{ 1__0__ −= Ndemotednotdemotednoti TTmeant (7)

As demotion happens for MBs with the lowest previous
J (see Eq. (9)) within a class and since lower J values
indicate higher scene complexity, then demoted MBs
are harder to encode.

3. Use the maximum time measured for each MD class
calculated across all N frames for MBs that were not
early terminated:

},...,max{ 1_0_ −= NnotETnotETi TTt (8)

Since early termination significantly reduces MD time,
calculation of TFastMD_predicted excludes early terminated
MBs in order to provide a consistent estimate.

The experimental results are provided in Table 1. From the
experimental results, it can be clearly seen that ‘Maximum it ’ is
very inaccurate. The other two methods provide accurate
prediction with an average difference between predicted and
actual times of about 7%. Since the ‘mean not demoted’ method
has a higher Pearson correlation coefficient, it is deemed to
provide the most accurate prediction for fast MD with early
termination, so the final frame complexity prediction model
chosen adopts Eq. (5) with adaptive it calculation as in Eq. (7).

Once frame complexity is predicted, macroblock layer complexity
scaling can be performed. The goal is the adjustment of
computational complexity for each MB in the frame in order that
the time quota is met and coding efficiency degradation is
minimized.

Table 1. Estimation of adaptive frame prediction models

Prediction error, %

Video
sequence

M
et

ho
d

min max avg.

Pearson
correlation

between
predicted
and actual
MD time

1 0.02 33.04 6.95 0.751
2 0.13 33.75 7.73 0.771

Carphone,
QCIF

3 8.21 85.61 23.35 0.496
1 0.02 46.70 3.95 0.949
2 0.21 43.90 5.46 0.967 Hall,

QCIF
3 4.18 88.62 22.94 0.625
1 0.01 28.8 2.31 0.969
2 0.02 29.13 3.42 0.983 Akiyo,

QCIF
3 2.67 66.93 14.41 0.768

Since reducing complexity effects both bit rate and distortion, the
need arises to unify both quantities into a single metric which is
representative of the overall coding efficiency. At present, the
rate-distortion model is adopted in H.264 Mode Decision [9] for
making optimal decisions where both bit rate and distortion are
important:

min { J }, where RDJ ⋅+= λ (9)

where D is a distortion measure (usually Sum of Absolute
Differences) and R represents bit rate. During video encoding, the
Lagrange rate-distortion function J is minimized for a particular
value of the Lagrange multiplier, λ.

Based on this, we introduce a coding efficiency metric, W, which
is dependent on visual quality loss, ∆D, and bit rate increase, ∆R,
relative to that achieved by the full complexity encoder. We
define W as:

 DRW ∆+∆= µ (10)

where ∆R is a percentage, ∆D is PSNR in dB and µ is a constant
relating bit rate loss and distortion increase. Thus, for any given
computation complexity point Ci, the most efficient encoder can
be identified as the one providing minimum W.

The constant µ can be interpreted as the percentage increase in bit
rate equivalent to a 1 dB loss in PSNR. Previous work [1]
determined that, for the frame sizes under investigation, a 10%
decrease in bit rate is roughly equivalent to a loss of 0.5 dB in
PSNR. In our work, µ was determined experimentally [7] and was
set to 13.

Assuming, that the encoder parameter configurations form a
discrete set, the problem of selecting the optimal encoder
configuration for any given complexity point can be solved by
Pareto analysis [2]. In this work, the efficiency of the encoder was
assessed across a range of parameter configurations. These results
were a projected on to a graph relating coding efficiency to
computational complexity. The optimum encoder parameters
were then identified as those points (Ci, Wi) which form the
Convex Hull of the Individual Minima (CHIM) on the Pareto
curve, shown as the blue line in Figure 1. Parameter
configurations corresponding to points inside the CHIM are sub-

optimal. In this work, the MD classes only contain parameter
configurations which are on the CHIM.

The low complexity encoding algorithm considered in this work
allocates an MD class to each MB based on an analysis of the
MB’s statistical properties. MBs likely to have low motion are
allocated to an MD class with a narrow search range in ME. This
reduces encoding time without loss of coding efficiency. MD
class allocation based on MB statistics is used for initial frame
encoding time prediction. If the prediction exceeds the quota, then
some macroblocks must have their MD classes demoted to reduce
total encoding time. In contrast, if the prediction time is less than
the quota, then some MBs may have their MD classes promoted
to improve coding efficiency.

Scaling complexity down for a particular MB is referred to as MD
class demotion. For example, a macroblock initially allocated to
class B can be demoted to class C. This reduces computational
complexity by ∆C and reduces coding efficiency by ∆W, as
defined in Eq. (10). For a given reduction in computational
complexity of ∆C, it is clear that the best demotion class is on the
convex hull of the Pareto curve.

0

2.5

5

7.5

10

12.5

15

17.5

30 40 50 60 70 80 90 100

Complexity, C (%)

W
-m

et
ric

Pareto curve

∆C

∆W

Class C

Class B

Class A

Figure 1. MB demotion example

It can be observed in Figure 1 that the gradient
C
W
∆
∆

of the

convex hull of the Pareto curve is lower between more

computational complex MD classes (i.e.
BC

BC

AB

AB

C
W

C
W

∆
∆

<
∆
∆

).

That is, there is less coding efficiency loss for a given reduction
in computational complexity. Hence, demotion should start with
macroblocks that are in the more computationally complex MD
classes.

In some cases, it may not be necessary to demote all MBs within
a given class. Since demotion generally leads to a bit rate and
distortion increase, demotion should start with MBs that have
lowest previous J within the class. In this way, the most
effectively coded MBs are demoted first, minimizing coding
efficiency loss.

Scaling complexity up for a particular MB is referred to as MD
class promotion. For example, a macroblock initially allocated to
class C can be promoted to class B. This may improve MB coding
efficiency, but also increases computational complexity.
Promotion should start with the macroblocks that are allocated to
less computationally complex MD classes, i.e. class E or D, and
continues until the highest complexity class is reached (class A).
Since promotion generally reduces bit rate and distortion, it
should start with the MBs that have highest previous J within the
given class, thus the less effectively coded MBs are promoted
first.

The proposed frame complexity estimation model was tested and
optimized for IPPP GOP structure. For B-frames the average
encoding time it for each MD class is generally higher than for
P-frames due to increased computational complexity. To
overcome this, it is proposed to utilize different sets of it values

for P- and B-frames, i.e. }...,{ 10
P

i
PP ttt and }...,{ 10

B
i

BB ttt .

Alternatively, a scaling coefficient γ can be applied for P
it values

when dealing with B-frames. The particular value for γ is
determined experimentally.

4. ALGORITHM
The fast Mode Decision algorithm used in these experiments is
shown in Figure 2. It consists of two parts: MD class selection
and fast Mode Decision with Early Termination.

The MD class selection algorithm chooses the macroblock class
based on three metrics: FD [16], Jprev and SAD8x8 [6]. The Mode
Decision algorithm with Early Termination utilizes J values from
the previous frame (i.e. Jprev) in order to omit unnecessarily MD
computations [6].
As is typical of most fast MD algorithms, algorithm’s
computational complexity is dependent on frame content. In
order to achieve good coding efficiency, frames with high motion
typically require more processing than frames with low motion.
The algorithm for real-time dynamic complexity scaling in the
H.264 encoder is shown in Figure 3. The algorithm uses a one-
frame buffer. The time quota Tquota is re-calculated after each
frame is processed as:

) ,min(tframe_limitframe_limitframe_limi TTTNTT totalquota −⋅+= (11)

In order to synchronize the buffer, the last frame encoding time
Tlast_frame cannot exceed the frame encoding time limit Tframe_limit. The
value of Tframe_limit is selected in order to allow real-time encoding
at the desired frame rate.

5. EXPERIMENTAL RESULTS
The MD algorithm for real-time complexity scaling was
implemented in the JM [10] reference encoder and experimentally
tested. No assembly language or other manual optimizations
were applied. Several QCIF video sequences of 300 frames each
were encoded with an “IPPP” GOP structure. Reference encoding
used all seven VBS modes, CABAC entropy coder and RDO off.

FD < 8 Assign MB
class I

Assign MB
class II

Calculate
FD

Assign MB
class IV

SAD8x8 > T2

 Jprev ≤ T1

Calculate
SAD8x8,

JSKIP_predicted

JSKIP_predicted

< Jmean

Assign MB
class V

Calculate
SADfull,
JSKIP_P,

JSKIP_B

Assign MB
class III

Perform MD
with early

termination

 Last MB?

Set complexity
settings

according to
class of MB

Begin

End

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

Figure 2. Fast MD algorithm with MD classes

In the experiments, QP was set to 28. The algorithm was tested
under conditions, where the value of Tframe_limit was set to allow
real-time encoding at 15, 20 and 30fps on a reference 3GHz
Pentium IV PC with 1GB RAM. The obtained results for bit rate
gain, quality degradation and complexity reduction versus non-
real time JM running at full search baseline profile on the same
PC are shown in Tables 2–4. The minus (–) sign denotes
improvement for the new method.

Using Eqs. (12)–(14) we calculated the percentage of unused time
Tunused, prediction error Terror and trim time Ttrim:

∑
=

=

−=
300

1 _

_1 ,%
n

n nquota

nactual
unused T

T
T (12)

total

n

n
nactualnpredictedFastMD

error T

TT
T

∑
=

=

−
=

300

1

,% (13)

total

n

n
nactualndemotionwithoutpredictedFastMD

trim T

TT
T

∑
=

=

−
=

300

1

,% (14)

Using Eq.(5) calculate

TFastMD_predicted

 TFastMD_predicted > Tquota

Select MBs with highest

MD class

Among selected MBs

choose MB with lowest J

Demote chosen MB

Highest MD
class is SKIP ?

Yes

No

No

Assign MD class to every

MB of the frame

Begin

Using Eq.(5) calculate

TFastMD_predicted

 TFastMD_predicted > Tquota

Select MBs with lowest

MD class

Among selected MBs

choose MB with lowest J

Promote chosen MB

Highest MD
class is class A ?

Yes

Yes

No

No

Using Eq.(5) calculate

TFastMD_predicted

TFastMD_predicted < Tquota

Yes

No

Yes

Demote last promoted

MB

Perform Fast MD

Measure Tactual

 No

Tlast_frame = Tframe_limit

Yes

End

Encoded frame
is Nth frame?

No

Update ti as ‘mean not

demoted’

Yes

Tlast_frame>Tframe_limit

Ttotal = Ttotal + Tactual
Tlast_frame=NframeTframe_limit – Ttotal

Tquota = Tframe_limit + Tlast_frame

Figure 3. Real-time complexity scalable fast MD algorithm

For the proposed algorithm running on the reference PC at 30fps,
the results obtained include the Pearson correlation between
predicted and actual time.
All results are given in Tables 2–5.

Table 2. ∆Bit rate, % for the proposed method vs. ref. JM

Frame rate
Video sequence

15fps 20fps 30fps
Carphone 0.05 1.04 15.25

Table tennis 2.48 3.85 11.16
Coastguard 0.26 0.87 6.48

News 0.84 0.76 5.90
Salesman -0.5 -1.50 5.60

Grandmother -1.23 -3.08 -1.82
Mother -0.7 -1.00 1.68

Hall 0.03 -1.73 -4.41
Akiyo -1.15 -1.80 -1.85
mean 0.01 -0.28 4.22

Table 3. ∆PSNR, dB for the proposed method vs. ref. JM

Frame rate
Video sequence

15fps 20fps 30fps
Carphone 0.11 0.28 0.49

Table tennis 0.24 0.24 0.46
Coastguard 0.06 0.08 0.13

News 0.09 0.12 0.38
Salesman 0.03 0.07 0.24

Grandmother 0.02 0.19 0.18
Mother 0.06 0.17 0.32

Hall 0.01 0.03 0.20
Akiyo 0.01 0.02 0.16
mean 0.07 0.13 0.28

Table 4. Total encoding time reduction, %
for the proposed method vs. JM

Frame rate
Video sequence

15fps 20fps 30fps
Carphone –43.30 –52.42 –73.27

Table tennis –47.20 –52.10 –72.95
Coastguard –46.73 –54.64 –73.10

News –40.75 –48.03 –71.27
Salesman –35.42 –48.70 –71.25

Grandmother –32.97 –48.42 –70.54
Mother –32.77 –47.91 –70.18

Hall –40.92 –47.33 –70.97
Akiyo –38.77 –47.41 –70.64
mean –39.87 –49.66 –71.57

Table 5. Tunused, Terror Ttrim , % and Pearson correlation, r for the
proposed algorithm at 30fps

Video
sequence unusedT

errorT

trimT
r between

}{ _ predictedFastMDT
and { Tactual }

Carphone 3.81 3.39 74.95 0.581
Table tennis 5.75 5.55 50.59 0.546
Coastguard 4.12 3.88 98.27 0.509

News 6.17 5.88 21.11 0.557
Salesman 6.11 6.28 18.04 0.422

Grandmother 2.72 2.56 13.74 0.667
Mother 3.40 3.13 17.00 0.643

Hall 5.68 6.40 5.75 0.630
Akiyo 2.85 3.64 -2.92 0.738

Worst case scheduling was tested under the same simulation
conditions. The H.264 complexity settings were selected as
shown in Table 6, so the encoding time for the worst sequence
allow encoding at 15, 20 and 30fps. The standard non-real time
JM with full search baseline profile achieves only 8fps on the
reference PC.

Table 6. H.264 settings for the worst case scheduling

Worst scheduling at.. H.264
settings

30fps 20fps 15fps 8fps

VBS modes
P16x16,
all Intra
modes

P16x16,
P8x8,

 all Intra
modes

All
VBS

modes

All VBS
modes

Search range 1 4 6 8
Hadamard
transform off on

In order to compare the efficiency of both algorithms on the 30fps
point, the difference in the bit rate and PSNR for the proposed
algorithm were calculated relative to worst-case scheduling. The
results are given in Table 7. In the Table 7, minus sign (–)
indicates improvement for the method.

Table 7. Comparison of the proposed algorithm

 vs. worst-case scheduling

Video sequence ∆Bit rate, % ∆PSNR, dB

Carphone 2.26 –0.04
Table tennis –8.10 0.09
Coastguard –6.84 –0.07

News –11.10 –0.06
Salesman –12.58 –0.06

Grandmother –11.15 –0.08
Mother –6.89 –0.18

Hall –18.80 –0.1
Akiyo –15.58 –0.19
mean –9.89 0.07

6. DISCUSSION
From the experimental results in Tables 2–5, it can be concluded
that the proposed algorithm provides dynamic complexity scaling
for the selected sequences, making optimal real-time H.264 video
encoding possible on a range of processors.

It can be observed from Table 5 that unused time Tunused and
prediction error Terror for the algorithm are low, around 2.72–
6.17% on average. Trim time Ttrim shows the percentage of
complexity that was scaled down by the algorithm from the
original complexity. The minus sign for trim time (i.e. Akiyo)
means that complexity was scaled up, not down, thus many MBs
in that sequence were promoted.

From Table 5, it can be observed that, depending on the motion in
the source video, the results can be roughly divided into three
groups low (Ttrim < 10%), medium (10% ≤ Ttrim < 50%) and high
motion sequences (Ttrim ≥ 50%).

For low motion sequences (i.e. Akiyo, Hall), the algorithm
provides the best complexity scaling results. Prediction is quite
accurate, and the Pearson correlation is quite high (0.63–0.73).
These results show insignificant PSNR drop in visual quality and
even bit rate reduction compared to the full search non-real time
JM.

For the medium motion sequences (i.e. News, Salesman, Mother
etc), the MB complexity scaling scheme results in around 1.65–
6% of bit rate gain, which is due to the increased number of Intra
macroblocks. The demotion of MD class C to class D is the most
likely reason. Frame complexity prediction is accurate, the
Pearson correlation is in the range 0.55–0.65.

Sequences that are high motion (i.e. Carphone, Tennis etc) are the
most difficult for the algorithm to handle. Complexity reduction
Ttrim of 50–98% from non-scalable fast MD algorithm comes at the
cost of a 0.5dB quality degradation and a bit rate increase of 10–
15%. Due to high spatial and motion complexity there are few
MBs which that not demoted, resulting in inaccuracy in adaptive

it calculation. This results in poor frame complexity prediction
(Pearson correlation is only 0.5). In fact, demotion of the original
MD class A into class D seems to be necessary for complexity
reduction, which results in a bit rate increase.

Notably, results for Coastguard are much better than for Carphone
and Tennis, despite having the highest trim time (98%). This can
be explained by the fact that Coastguard has the highest number
of Intra blocks in the ‘original’ JM encoding, which results in
comparatively low bit rate increase (only 8%) and insignificant
quality degradation (0.13dB).

Based on these results, it can be concluded that the complexity
scaling model needs to be improved to deal with high motion
cases, where the demotion rate is high. A possible solution is
utilization of multiple metrics for it for different demotions.

When comparing the proposed method with the worst scheduling
approach, it can be concluded from Table 7 that the average bit
rate reduction achieved for the method is almost 10% compared to
worst case scheduling with almost 19% maximum (for Hall video
sequence). PSNR is also better for the method for all sequences
except Tennis. However, the difference in PSNR achieved is
negligible. The results for previously published low complexity

H.264 algorithms clearly indicate that none of the previously
proposed methods achieve similar results.

The bit rate gain and PSNR degradation was plotted against target
processor performance for both methods. The performance of the
reference PC that provides 30fps is equal to 33msec/frame.

-10

0

10

20

30

40

50

60

20 25 30 35 40 45 50 55 60 65 70

Performance, msec/frame

∆B
it

ra
te

, %

Worst case

Method

Figure 4. Bit rate gain for both methods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 25 30 35 40 45 50 55 60 65 70

Performance, msec/frame

∆P
SN

R
, d

B

Worst case

Method

Figure 5. Quality degradation for both methods

In Figure 4, the bit rate curve for the proposed algorithm (solid
line) lies much lower than for the standard worst case scheduling
method (dashed line), which means that the proposed algorithm
provides better encoding efficiency. It can be observed that the
lower the frame rate – the closer the resultant bit rate curves, thus,
the proposed algorithm becomes less effective relative to worst
scheduling. Very high bit rate gain for the proposed algorithm at
35fps indicates that the processor’s capabilities are the limiting
factor and, in order to save processing time, the algorithm uses
only Intra prediction and SKIPs. Therefore, the most efficient
operating point for the algorithm is located on the ‘knee’ of the
curve, which is around 30fps.

7. CONCLUSIONS
In this paper, various issues relating to dynamic real-time
complexity scaling in H.264, such as complexity prediction
methods, MB complexity scaling and time scheduling algorithms
were investigated.

The proposed real-time complexity scalable MD algorithm
significantly outperforms the standard worst case scheduling
approach, both in terms of bit rate reduction (10% in average) and
frame rate. It offers roughly 30% of the computational complexity
required for full search with the baseline profile at the same
coding efficiency and allows an efficient real-time video encoding
on the reference Pentium IV PC.

8. REFERENCES

[1] Bjontegaard, G. Calculation of average PSNR differences

between RD curves. Document VCEG-M33, ITU-T VCEG
Meeting, Austin, 2001.

[2] Das, I. On characterizing the ‘knee’ of the Pareto curve
based on Normal-Boundary Intersection, Structural and
Multidisciplinary Optimization, 18, 3 (1999), 107–115.

[3] Feng, B., Zhu, G., and Liu, W. Fast Adaptive Inter Mode
Decision Method for P Slices in H.264. In Proc. of IEEE
3rd Int. Conf. on Consumer Communications and
Networking (CCNC’06), 2 (2006), 745–748.

[4] Hsu, K.W., Xiang Li, and Chopra, R. An IC design for real-
time motion estimation for H.264 digital video. In Proc. of
48th Symp. On Circuits and Syst., 2, (August 7–10, 2005),
1489–1493.

[5] Implementation Studies Group of ISO/IEC. Main Results of
the AVC Complexity Analysis. Document ISO/IEC
JTC1/SC29/WG11, Klagenfurt, 2002.

[6] Ivanov, Y. V., and Bleakley, C. J. Skip Prediction and Early
Termination for Fast Mode Decision in H.264/AVC. In
Proc. of Int. Conf. on Digital Communications (ICDT).
(August, 2006).

[7] Ivanov, Y.V., and Bleakley, C. J. Survey and Pareto
Analysis Method for Coding Efficiency Assessment of Low
Complexity H.264 Algorithms. In Proc. of 10th Irish
Machine Vision and Image Processing Conf. (IMVIP)
(2006), 172–179.

[8] Jiang, M. and Ling, N. Low-Delay Rate Control for Real-
time H.264/AVC Video Coding. IEEE Trans. Multimedia,
8, 3 (June 2006), 467–477.

[9] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T
VCEG. Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification (ITU-T
Rec. H264|ISO/IEC 14496-10 AVC). Document JVT-
G050d35.doc, 7th Meeting: Pattaya, Thailand, March, 2003.

[10] JVT reference software JM 9.5, on the Web:
http://iphome.hhi.de/suehring/tml.

[11] Kannangara, C. S., Richardson, I. E.G., Bystrom, M.,
Solera, J. R., Zhao, Y., MacLennan, A., and Cooney, R.
Low-Complexity Skip Prediction for H.264 Through
Lagrangian Cost Estimation. IEEE Trans. Circuits Syst.
Video Technol., 16, 2 (2006), 202–208.

[12] Kim, C., and Jay Kuo, C. C. A Feature-based Approach to
Fast H.264 Intra/Inter Mode Decision. In Proc. of IEEE Int.
Symp. Circuits and Systems (ISCAS’05), 1, (May 23–26,
2005), 308–311.

[13] Kim, Y., Choe,Y., and Choi, Y. Fast Mode Decision
Algorithm using AZCB Prediction. In Proc. of Int. Conf. on
Consumer Electronics. (ICCE’06). Digest of technical
papers. (Jan. 7-11, 2006), 33–34.

[14] Li, G. L., Chen, M. J., Li H. J., and Hsu, C. T. Efficient
Motion Search and Mode Prediction Algorithms for Motion
Estimation in H.264/AVC. In Proc. of IEEE Int. Symp.

Circuits and Systems (ISCAS’05) 6, (May 23-26, 2005),
5481 – 5484.

[15] Rao, G. N., Prasad, RSV, Chandra, D. J., and Narayanan, S.
Real-Time Software Implementation of H.264 Baseline
Profile Video Encoder for Mobile and Handheld Devices
Acoustics. In Proc. of IEEE Int. Conf. on Speech and Signal
Processing (ICASSP’06), 5, (May 14-19, 2006), 457–460.

[16] Wang, H., and Zhu, Z. Fast Mode Decision and Reduction
of the Reference Frames for H.264 Encoder. In Proc. of Int.
Conf. On Control and Automation (ICCA’05), 2, (June 26–
29, 2005), 1040–1043.

[17] Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra,
A. Overview of the H.264/AVC Video Coding Standard. In
IEEE Trans.on Circuits Syst. Video Technol. 13, 7 (2003),
560–576.

[18] Zhe, W., and Canhui, C. Realization and optimization of
DSP based H.264 encoder. In Proc. of IEEE International
Symposium on Circuits and Syst. (ISCAS’06)
(May 21-24, 2006).

