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Abstract

It is well known that the frequency sampling approach to the design of Finite Impulse Response

digital filters allows recursive implementations which are computationally efficient when most of the

frequency samples are integers, powers of 2 or nulls. The design and implementation of decimation

(or interpolation) filters using this approach is studied herein. Firstly, a procedure is described which

optimizes the tradeoff between the stopband energy and the deviation of the passband from the ideal filter.

The search space is limited to a small number of samples (in the transition band), imposing the condition

that the resulting filter have a large number of zeroes in the stopband. Secondly, three different structures

to implement the decimation (or interpolation) filter are proposed. The implementation complexity, i.e.

the number of multiplications and additions per input sample, are derived for each structure. The results

shown that, without taking into account finite word-length effects, the most efficient implementation

depends on the filter length to decimation (or interpolation) ratio.
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Polyphase FIR networks based on frequency

sampling for multirate DSP applications

I. INTRODUCTION

Decimation and interpolation filters (Fig. 1) are used in a wide range of applications, such

as data compression, speech enhancement, multi-carrier data transmission, wireless transceivers,

digital receivers, software radio receivers, or image size conversion [1]–[9]. In Fig. 1, P (z) is

the system function, which is usually a linear-phase low-pass filter, with a cutoff frequency of

ωs = π/M to prevent downsampler-induced aliasing or to remove images after the upsampling

process.

One problem these structures have is related to the M value of the decimation or interpolation

factor. In some practical systems, such as in decimation schemes for Σ∆ A/D converters or in

Software Defined Radio (SDR) receivers, interpolation/decimation ratios can have large values.

In these cases, most decimation filter architectures are designed in multistage subfilters, each

one obtaining a smaller decimation factor. At the end of the decimation chain, a very selective

low-pass Finite Impulse Response (FIR) filter is generally obtained. Besides providing a high

value for M , it is also well known that decimation/interpolation filters operating at high rates

must be computationally very efficient. This means that high order filters with good selectivity

and discrimination are required, and efficient structures to implement them as well.

To address these issues, this paper deals with the design and implementation of these filters

using the frequency sampling approach [10], [11]. In the proposed technique, the coefficients are

obtained by means of a procedure which only consists of optimizing the values of the samples in

the transition band. In this sense, FIR filters with a high length (number of coefficients) can be

designed, by optimizing only a small number of samples. In addition, it is well known that the

frequency sampling approach is a method that allows recursive implementations of FIR filters.

In general, these implementations greatly reduce the number of arithmetic operations in digital

filters, especially when most samples are either integers (or powers of 2) or null. Therefore, these

structures are beneficial when a low number of frequency samples are nonzero and the length of

the prototype filter is large. In this case, efficient implementations from a computational point
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Fig. 1. (a) Decimation and (b) interpolation filters.

of view can be obtained. We address this possibility herein, studying recursive implementations

for the polyphase components of the derived filters. For the sake of brevity, we mainly focus

our attention on decimation filters, but the results could be extended to interpolation filters.

The rest of this letter is organized as follows. In Section II, we describe a procedure to obtain

linear-phase decimation or interpolation filters. The proposed technique is based on a frequency

sampling approach which can provide linear-phase filters which also have a very large number of

transmission zeros. Section III deals with the implementation structures. First, the relationship

between the frequency samples and the M polyphase components is obtained. Certain cases

of interest are considered, and a new expression for the polyphase components that allows the

system to be implemented with real coefficients is developed. The implementation complexity is

studied based on the number of multiplications per input sample (MPIS) and additions per input

sample (APIS). The results are compared to conventional polyphase implementation. In Section

IV, several examples are included to illustrate the benefits of the proposed technique and to

compare the computational cost of different structures. Finally, we summarize our conclusions.

II. FREQUENCY SAMPLING TECHNIQUE

The frequency sampling approach is a well-known discrete design technique for obtaining FIR

filters [10], [11]. Basically, this technique consists of finding the impulse response coefficients

p [n] from a desired frequency response specified at a set of equally spaced frequencies; i.e.,

given the frequency samples P [k], the impulse response coefficients are obtained as

p [n] =
1

N

N−1∑

k=0

P [k] · ej 2π
N k·n, n = 0, 1 · · · , N − 1. (1)

Expressing the above equation in a matrix form, we get

pT =
1

N
W−1

N P, (2)
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where p =
[

p (0) p (1) · · · p (N − 1)
]
, W−1

N is the N × N IDFT matrix, and

PT =
[

P [0] · · · P [N − 1]
]

(3)

contains the desired values of the frequency response.

Deng et al. [4] propose an efficient method to design prototype filters for low-delay non-

uniform pseudo-Quadrature Mirror Filter banks based on minimizing the objective function

E = α 1
2π

ωp∫

−ωp

(
|P (ejω)|2 − |P (ej0)|2

)
dω

+ (1 − α) 1
2π

2π−ωs∫
ωs

|P (ejω)|2 dω,
(4)

where 0 ≤ α ≤ 1 . With this technique, the filter is designed to minimize a weighted sum of

the stopband energy and passband error energy, recording this error as the deviation from the

ideal filter in the passband. To formulate the problem, (4) is expressed as

E = pΦpT (5)

where Φ = αΦp + (1 − α)Φs, where the (i, j)-th elements of matrices Φp and Φs are obtained

as follows [4]:

Φp (i, j) =

⎧
⎪⎨

⎪⎩

0, i = j,

1
π

(
sin[ωp(i−j)]

(i−j) − ωp

)
, otherwise,

Φs (i, j) =

⎧
⎪⎨

⎪⎩

1 − ωs
π , i = j,

− sin[ωs(i−j)]
π(i−j) , otherwise.

By introducing (2) into (5), the above technique can be reformulated to be used with the frequency

sampling approach. Starting from a set of initial frequency samples, the proposed optimization

problem is to find a filter that minimizes

E = PTQP,

where Q = 1
N2W∗

NΦW−1
N .

Note that the maximum value for the stopband cutoff frequency must be ωs = π/M . This

means that the maximum number of samples in the passband and transition band is limited to

⌊N/(2M)⌋ + 1, where ⌊·⌋ denotes rounding to the next smaller integer.

Using this technique, if the design process is totally focused on the passband error energy

(α = 1) or in the stopband energy (α = 0), the optimization can cause some problem. In this
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Fig. 2. Type-1 polyphase component structure for the designed filter.

case, as is suggested in [4], the optimization process can be iterative, by fixing an initial value

for α and increasing (case of αinitial = 0) or decreasing (case of αinitial = 1) it gradually, until

an acceptable frequency response is obtained.

III. IMPLEMENTATION STRUCTURES

Once the decimation or interpolation filter is designed, the structure to implement it must

be chosen. As explained previously, the frequency sampling approach is a method that allows

recursive implementation which can greatly reduce the number of arithmetic operations required

for digital filtering. Three different structures, therefore, can be employed to give unique imple-

mentations, without using multi-stage subfilters decomposition:

1) Through Type-1 (see Fig. 2) or Type-2 polyphase component decomposition [3], using

the time-domain filter coefficients. The polyphase filters can be arranged as a parallel

realization, in which the output of each filter is selected by a commutator (for more

information, see [2]). This structure requires ⌈N/M⌉ multiplications and (⌈N/M⌉ − 1)

additions per input sample [3], where ⌈·⌉ denotes rounding to the next larger integer.

2) For a small number of nonzero frequency samples, the frequency-sampling realization [11]

is also an alternative structure for these filters. The system function is characterized by the

set of frequency samples as

P (z) =
1 − z−N

N
·

N−1∑

k=0

P [k]

1 − ej 2π
N ·k · z−1

. (6)

The corresponding filter realization is made up of a cascade of two filters, a comb filter

with zeroes located on the unit circle, and a parallel bank of single pole filters also located
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in identical positions to the zeroes. It is important to note that in practical implementations

the structures derived from (6) may have poor finite-word-length behavior, since any

uncanceled poles on the unit circle will cause the filter to be unstable. This problem

is mitigated by positioning the poles and the zeroes on a circle slightly inside the unit

circle, i.e. by

P (z) =
1 − rNz−N

N
·

N−1∑

k=0

P [k]

1 − r · ej 2π
N ·k · z−1

. (7)

As a result, the filter is guaranteed to be stable. However, as is claimed in [12], this

structure does not completely solve the coefficient quantization, roundoff noise and limit

cycles problems. In order to solve these problems, it is important to note that each second-

order section is open to multiple implementations. Thus, by carefully choosing the final

realization, it is possible to minimize the impact of finite word-length on the performance

of the system. For example, structures particularly suitable to operate with poles close to

the unit circle can be found in [13], [14], optimal state-space realizations of second-order

filters having minimum roundoff noise are described in [15], [16], and procedures to get

low sensitivity are presented in [17], etc. It is also possible to apply techniques based

on genetic algorithms, to obtain robust second-order structures under finite word-length

conditions [18], [19]. In [12], each second-order section is implemented in canonical direct

form, using suboptimal and minimum roundoff noise structures, and the performance in

terms of noise gain is evaluated.

In our work, in order to obtain the computational complexity, the above problem is not

considered, i.e., the study is focused on eq. (7) for r = 1. In this case, by exploiting

the P [k] = P ∗ [N − k] symmetry, the recursive structure of Fig. 3 can be used. In this

diagram, the coefficients are given by [20]

b0k = P [k] + P [N − k] ,

b1k = P [k] · e−j2πk/N + P [N − k] · ej2πk/N ,

a1k = 2 cos (2πk/N) .

If R+1 is the number of nonzero samples in the interval [0, π], this diagram requires the

number of MPIS and APIS shown in Table I. It is worth noting that this table shows the



CIRCUITS, SYSTEMS, AND SIGNAL PROCESSING 7

z -N z -1
-11/N

P[0]
01b

11a-1 11bz -1
z -1

z -1
z -1

0Rb
1Ra-1 1Rb

P( )z
Mx n[ ] y n[ ]

Fig. 3. Frequency sampling structure for the designed filter.

TABLE I

COMPUTATIONAL COMPLEXITY PER INPUT SAMPLE FOR THE STRUCTURES OF FIGS. 3 AND 4.

Structure MPIS APIS Change of Sign

Comb Filter 1 1 1

1st Parallel Filter 1 1 0

Rest of Parallel Filters 3R 3R R

Extra 0 1+R 0

Total 2+3R 3+4R 1+R

maximum number of operations, without considering that this number can be reduced in

certain cases (for example, usually P [0] = 1). Although a direct implementation of the

FIR filter is very inefficient (only one output for every M samples is required at the filter

output), the number of operations could be reduced using recursive diagram since it is

directly related to the number of nonzero samples.

3) A supposedly more efficient filter structure that introduces the frequency samples into the

polyphase components, i.e., recursive implementations of the polyphase components, could

be developed. The expressions that describe them, and their implementation complexities,

are shown in the following subsections.
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The question now is, which is the most efficient structure from a computational point of

view, taking the number of MPIS or APIS into account? This point is addressed in the following

section. The relationship between the frequency response samples and the polyphase components

is obtained. From this relationship, a new structure used to implement the filter bank is derived.

For the sake of simplicity,M Type-1 polyphase components are considered, making it extremely

easy to apply the results obtained to other kinds of polyphase components.

A. Polyphase FIR Recursive Structures

The M Type-1 polyphase components of the prototype filter can be obtained as

Gℓ (z) =
⌈N/M⌉−1∑

n=0

gℓ [n] · z−n, (8)

where gℓ [n] = p [Mn + ℓ], ℓ = 0, 1 · · · , M−1. Introducing (1) in (8), the system function Gℓ (z)

becomes
Gℓ (z) =

⌈N/M⌉−1∑
n=0

1
N

N−1∑

k=0
P [k] · ej 2π

N k·(Mn+ℓ) · z−n

= 1
N

N−1∑

k=0
P [k] · ej 2π

N k·ℓ
⌈N/M⌉−1∑

n=0

(
ej 2π

N ·M ·k · z−1
)n

.
(9)

Adding the finite geometric series, (9) can be written as

Gℓ (z) =
1

N
·

N−1∑

k=0

P [k] · ej 2π
N k·ℓ ·

(
1 − ej 2π

N k·M ·⌈N
M ⌉ · z−⌈

N
M ⌉

)

1 − ej 2π
N ·M ·k · z−1

. (10)

B. Implementation with Real Coefficients

The prototype filter is usually designed to have real coefficients. Its length can be expressed

as N = mM + s, where 0 ≤ s ≤ (M − 1). Thus, we get

⌈
N

M

⌉
=

⎧
⎪⎨

⎪⎩

m, for s = 0,

m + 1, for 1 ≤ s ≤ (M − 1) .

If the filter length is N = mM , (10) can be simplified as

Gℓ (z) =
1 − z−⌈N/M⌉

N
·

N−1∑

k=0

P [k] · ej 2π
N k·ℓ

1 − ej 2π
N ·M ·k · z−1

. (11)

At this point, it is important to remark that expression (11) will lead to structures with poles

and zeroes at the same locations on the unit circle, and those problems derived from the finite
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precision effects should be taken into account. Again, in order to obtain the computational

complexity, we will consider an ideal behaviour.

In general, the frequency samples P [k] are complex, and a direct implementation of (11)

requires complex arithmetic. To avoid this complication, the following symmetry conditions

can be used: P [k] = P ∗ [N − k], ej 2π
N ·(N−k) = e−j 2π

N k, which are satisfied for filters with real

coefficients. Using the properties described above and combining both the k-th and the (N−k)-th

single-pole sections, Gℓ (z) can be written in two different ways for k ̸= 0. For an odd N :

Gℓ (z) = 1−z−⌈N/M⌉

N ·
[

P [0]
1−z−1

+
(N−1)/2∑

k=0

αk+βk·z−1

1−2·cos(2π
N ·M ·k)·z−1+z−2

]

.
(12)

For an even N :
Gℓ (z) = 1−z−⌈N/M⌉

N ·
[

P [0]
1−z−1 + P [N/2]

1+z−1

+
N/2−1∑

k=0

αk+βk·z−1

1−2·cos( 2π
N ·M ·k)·z−1+z−2

]

.
(13)

In both eqs. (12) and (13),

αk = 2 · |P [k]| · cos
(

2π

N
k ·

(
ℓ − N − 1

2

))
(14)

and

βk = 2 · |P [k]| · cos
(

2π

N
k ·

(
ℓ − M − N − 1

2

))
. (15)

Considering that P [N/2] = 0 for even-length low-pass prototype filters, the second term of (13)

is null. Therefore, the realization diagram of Fig. 4, where ak = 2 · cos
(

2π
N · M · k

)
, describes

both cases, and only requires real coefficients.

C. Implementation Complexity

In order to obtain the implementation complexity of each polyphase component, only the

practical case of real-coefficient low-pass linear-phase prototype filters and N = 2mM are

considered. Table I shows the implementation complexity of the structure plotted in Fig. 4,

where R+1 is the number of nonzero samples in the interval [0, π]. In this case, the polyphase

filters can also be implemented using a parallel realization using the commutator model shown

in [2]. Here, then, each polyphase filter performs the computations at M times lower rate than

with direct implementation.
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Fig. 4. Polyphase implementation based on the frequency samples. The values of αk and βk are given by (14) and (15),

respectively.

Thus, the total implementation cost of the polyphase structure based on the frequency samples

(Fig. 4) is 3R + 2 multiplications and 4R + 3 additions per input sample. Direct polyphase

implementation Fig. 2, which also operates at fs/M , requires ⌈N/M⌉ multiplications and

(⌈N/M⌉ − 1) additions per input sample. Therefore, from a computational point of view and

considering the number of multiplications, the implementation of Fig. 4 is more efficient than

direct polyphase implementation when R < (⌈N/M⌉ − 2)/3. However, as a main drawback,

special care must be taken with regard to the finite precision effects. The above frequency-

sampling structures with poles on the unit circle cannot be used in practice due to the noise

generated in the loops. In this case, robust structures where the poles have been moved to the

inside of the unit circle should be considered to implement the filters [12].

IV. EXAMPLE DESIGN

In this section, two examples will be provided which can be designed by the proposed

technique. Optimization is performed using the fmincon function included in the Matlab

Optimization Toolbox. The implementation complexity of all the three structures described in

this paper will also be shown.

Example 1.- First, the design of a 1050-length linear-phase decimation filter for applications

where M = 105 is considered. This decimation order can be found in certain receivers for
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Fig. 5. Example 1. Detail of the magnitude response and optimized samples.

TABLE II

Example 1. MAGNITUDE RESPONSE SAMPLES OF THE SYMMETRIC PROTOTYPE FILTER.

k Initial Values Optimized
∣∣P

(
ejk2π/1050

) ∣∣

0 1 1

1 0.9045 1

2 0.6545 0.723753832577010

3 0.3455 0.251325117897753

4 0.0955 0.027460652958948

5 0 0.000082949562129

6 ≤ k ≤ 525 0 0
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Fig. 6. Example 2. Detail of the obtained magnitude response.
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software defined radio [5]. We consider in this design that α = 0.00001. The initial1 and

optimized values for the frequency response are provided in Table II, and Fig. 5 shows a detail of

the resulting magnitude response and the optimized samples. The minimum stopband attenuation

for this filter is MSA=−89.9131 dB. The total number of MPIS and APIS for the different

structures described in this paper are given in Table III.

Example 2.- A new filter is designed, maintaining the same parameters as in the previous

example (M = 105, α = 0.00001 and q = 5), but, in this case, increasing the filter length to

N = 4200. In this second example, the decimation (interpolation) ratio allows establishment

of guard interval, in order to reduce the aliasing (imaging) effects. In this case, a number of

samples in the pass and transition bands smaller than the maximum number can be used. The

initial and optimized (after running the simulations) values of the frequency response are given

in Table IV, and the total number of MPIS and APIS are shown in Table V. Finally, Fig. 6

shows a detail of the resulting magnitude response, with MSA=−102.9096 dB.

In the previous Sections, it was shown that three different structures could be used to implement

the decimation (or interpolation) filters. (a) Type-1 polyphase component structure (Fig. 2), in

which each polyphase filter is implemented using conventional non-recursive structures (such as

direct and transposed forms); (b) the frequency sampling structure shown in Fig. 3; and (c) the

recursive structure of Fig. 4 for each polyphase component of Fig. 2. This last structure is useful

when there is a large number of null frequency response samples. This condition can be easily

fulfilled using the technique proposed in Section II to design the decimation (interpolation) filter.

The structure in Fig. 3 is the most computationally complex one, since M − 1 samples are

discarded after the filtering stage. From the results obtained in Section III, it can be seen that the

structure of Fig. 4 is more computationally efficient when a high N/M ratio and a low number

of nonzero samples are used. This situation is typical when high discrimination and selectivity

filters with a guard interval are required, in order to reduce the aliasing (imaging) effects which

are the result of an adjusted downsampling (upsampling) process. On the other hand, classical

Type-1 (Fig. 2) or Type-2 polyphase decompositions implemented by means of a non-recursive

structure are more interesting for low N/M ratios. Moreover, these latter structures are always

1The initial magnitude response values in the transition band are obtained using a raised cosine frequency characteristic with

a rolloff factor β = 1, i.e., (1 + cos (π(1 : q)/q))/2, for q = 5
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TABLE III

Example 1. COMPUTATIONAL COMPLEXITY PER INPUT SAMPLE

Structure MPIS APIS Frequency Rate

Fig. 2 10 9 fs/M

Fig. 3 16 23 fs

Fig. 4 16 23 fs/M

stable and are more robust when implemented using finite-precision arithmetic.

V. CONCLUSION

A frequency sampling technique, minimizing the energies of the stopband and the error in

the pass-band, is described. Since this technique allows implementation of FIR filters by means

of non-recursive and recursive structures, three different ways of realizing multirate systems

are shown: direct (Fig. 3), parallel polyphase component-based (Fig. 2), and recursive parallel

polyphase structures (Fig. 4). The results show that, in general, for low N/M ratios the most

efficient structure is the one plotted in Fig. 2. Moreover, this structure presents good properties

attending to the effects inherent in using finite-precision arithmetic. For high N/M ratios and

also when there are a low number of nonzero samples in the frequency response, the total

number of MPIS and APIS can be reduced in the direct structure. In future research, finite

word length effects must be considered. Since each recursive second-order section is open to

multiple implementations exhibiting different behavior with regard to roundoff noise, coefficient

sensitivity, etc. The best structure for the second-order sections must be selected in order to

minimize the impact of finite word-length conditions on the final implementation.
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TABLE IV

Example 2. MAGNITUDE RESPONSE SAMPLES OF THE SYMMETRIC PROTOTYPE FILTER.

k Initial Values Optimized
∣∣P

(
ejk2π/4200

) ∣∣

0 ≤ k ≤ 4 1 1

5 0.9045 1

6 0.6545 0.738845199854484

7 0.3455 0.269995641798031

8 0.0955 0.030571896208598

9 0 0.000068724205677

10 ≤ k ≤ 2100 0 0

TABLE V

Example 2. COMPUTATIONAL COMPLEXITY PER INPUT SAMPLE

Structure MPIS APIS Frequency Rate

Fig. 2 40 39 fs/M

Fig. 3 31 43 fs

Fig. 4 31 43 fs/M

REFERENCES

[1] A. N. Akansu and M. J. Medley (Edt.), Wavelet, Subband and Block Transforms in Communications and Multimedia.

Kluwer Academic Publishers, Norwell MA, 1999.

[2] R. E. Crochiere and L. R. Rabiner, Multirate Signal Processing. Englewood Cliffs, NJ, Prentice-Hall, 1983.

[3] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Prentice–Hall, Englewood Cliffs NJ, 1993.

[4] Y. Deng, V. J. Mathews, and B. Farhang-Boroujeny, “Low-Delay Nonuniform Pseudo-QMF Banks With Application to

Speech Enhancement,” IEEE Transactions on Signal Processing, vol. 55, no. 5, 2110-2121, May 2007.
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