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Abstract

Suppose that a harmonic function h on a �nite cylinder vanishes
on the curved part of the boundary. This paper answers a question
of Khavinson by showing that h then has a harmonic continuation to
the in�nite strip bounded by the hyperplanes containing the �at parts
of the boundary. The existence of this extension is established by an
analysis of the convergence properties of a double series expansion of
the Green function of an in�nite cylinder beyond the domain itself.

1 Introduction

The Schwarz re�ection principle gives a formula for extending a harmonic
function h on a domain 
 � RN through a relatively open subset E of the
boundary @
 on which h vanishes, provided E lies in a hyperplane (and is
a relatively open subset thereof). By the Kelvin transformation there is a
corresponding result where E lies in a sphere. When N = 2, such a re�ection
principle holds also when E is contained in an analytic arc (see Chapter 9
of [7]). However, when N � 3 and N is odd, Ebenfelt and Khavinson [4]
(see also [6] and Chapter 10 of [7]) have shown that a re�ection law can only
hold when the containing real analytic surface is either a hyperplane or a
sphere.

Now let N � 3, let 
a be the �nite cylinder B0 � (�a; a), where B0 is
the open unit ball in RN�1 and a > 0, and let 
 = B0�R. Dima Khavinson
raised the following question with the authors:

Question. Given a harmonic function h on 
 which vanishes on @
, does
it follow that h must have a harmonic extension to RN?
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Although the above results show that there can be no pointwise re�ec-
tion formula for such an extension, this paper will establish that such an
extension does indeed exist.

We will use the notation x = (x0; xN ) to denote a typical point of RN =
RN�1 � R.

Theorem 1 Let h be a harmonic function on 
a which continuously van-
ishes on @B0 � (�a; a). Then h has a harmonic extension eh to RN�1 �
(�a; a). Further, for any b 2 (0; a), there is a constant c, depending on
a; b;N and h, such that���eh(x)��� � cx01�N=2 (x0 2 RN�1nB0; jxN j < b): (1)

It is a classical fact that the Green function for a three-dimensional in�-
nite cylinder can be represented as a double series involving Bessel functions
and Chebychev polynomials: see, for example, p.62 of Dougall [3] or p.78 of
Carslaw [2]. Our approach to proving Theorem 1 involves establishing such
a double series representation in N dimensions and analysing its convergence
properties outside the cylinder.

2 Preparatory material

Let J� and Y� denote the usual Bessel functions of order � � 0 of the �rst
and second kinds (see Watson [12]). Thus these functions both satisfy the
di¤erential equation

z2
d2y

dz2
+ z

dy

dz
+ (z2 � �2)y = 0: (2)

Further, let (j�;m)m�1 denote the sequence of positive zeros of J� , in increas-
ing order. We collect below some facts that we will need.

Lemma 2 (i)
d

dz
z�J�(z) = z

�J��1(z) and
d

dz

J�(z)

z�
= �J�+1(z)

z�
.

(ii) J��1(z) + J�+1(z) =
2�J�(z)

z
and J��1(z)� J�+1(z) = 2J 0�(z).

(iii) J�(t)Y 0�(t)� Y�(t)J 0�(t) =
2

�t
(t > 0).

(iv) fJ�(t)g2 + fY�(t)g2 <
2

�

�
t2 � �2

��1=2
(t > � � 1

2).

(v) jJ�(t)j �
�
t

2

�� 1

�(� + 1)
(t � 0).

(vi) j0;m � (m+ 3=4)�.
(vii) j�;m � j0;m + �.
(viii) jJ�(t)j < ��1=3 (� > 0; t � 0).
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(ix) jJ�(t)j � minf1; t�1=3g (t > 0).

(x) fJ�(t)g2 + fY�(t)g2 <
2

�t
(0 � � � 1

2 ; t > 0):

Proof. (i) and (ii). See p.45 of Watson [12].
(iii) See p.76, (1) of [12].
(iv) See p.447, (1) of [12].
(v) See p.49, (1) of [12].
(vi) See p.489 of [12].
(vii) See Laforgia and Muldoon [8], (2.4).
(viii) See Landau [9].
(ix) We know from p.406, (10) of [12] that jJ� j � 1; and from [9] that

jJ�(t)j � t�1=3:
(x) By Section 13.74 of [12] the function t 7! t

�
fJ�(t)g2 + fY�(t)g2

�
is

non-decreasing when 0 � � � 1
2 , and has limit 2=� at 1.

Some consequences of Lemma 2 are noted below.

Lemma 3 (i) j2�;m fJ�+1(j�;m)g
2 � 2

�

q
j2�;m � �2 (m � 1).

(ii) j�;m � (m+ 3=4)� + �:
(iii) jJ�(j�;ms)j � j�;m(1� s) (0 � s � 1).

(iv) jJ�(j�;ms)j �
1

�

r
2

ms
(s � 1):

Proof. (i) By the second equation of Lemma 2(i), J 0�(j�;m) = �J�+1(j�;m).
If � � 1

2 , then, by (iii), (iv) and (vii) of that result,

j2�;m fJ�+1(j�;m)g
2 = j2�;m

�
J 0�(j�;m)

	2
=

4

�2 fY�(j�;m)g2
>
2

�

q
j2�;m � �2:

If 0 � � < 1
2 , we use part (x) of Lemma 2 in place of part (iv).

(ii) This follows from Lemma 2(vi),(vii).
(iii) By the mean value theorem,

jJ�(j�;ms)j � j�;m(1� s) sup
1=2�t�1

��J 0�(j�;mt)�� (1=2 � s � 1):

We know from Lemma 2(i),(ii) that J 0� = (J��1 � J�+1)=2 when � � 1 and
J 0�(z) = (�=z)J�(z)� J�+1(z) otherwise. In either case we see from Lemma
2(ix) and part (ii) of this lemma that jJ 0�(j�;mt)j � 1 when 1=2 � t � 1,
so the desired inequality is established when 1=2 � s � 1. It is clearly also
valid when 0 � s < 1=2, since jJ� j � 1, and j�;m � 2 by part (ii).

(iv) By (ii) we have (j�;ms)2 � (m�s)2 + �2 when s � 1. If � � 1=2,
then we see from Lemma 2(iv) that

fJ�(j�;ms)g2 <
2

�2ms
(s � 1);
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as desired. If 0 � � < 1=2, we can instead appeal to Lemma 2(x).

The following result is taken from Sections 18.24�18.26 of [12].

Proposition 4 Let f : (0; 1]! R be a continuous function of locally bounded
variation such that f(1) = 0 and

R 1
0 t

1=2 jf(t)j dt <1, and let

am =
2

fJ�+1(j�;m)g2
Z 1

0
tf(t)J�(j�;mt) dt:

Then the series
1P
m=1

amJ�(j�;mt) converges to f(t) locally uniformly on (0; 1].

Formula (3) below is stated without proof by Carslaw [2].

Lemma 5 Let 0 < s < 1.
(a) If � > 0, then

4�
1X
m=1

J�(j�;ms)J�(j�;mt)

j2�;m fJ�+1(j�;m)g
2 =

�
t�(s�� � s�) (0 � t � s)
s�(t�� � t�) (s < t � 1) ; (3)

and the series converges uniformly for t 2 [0; 1].
(b) In the case where � = 0 we have

2
1X
m=1

J0(j0;ms)J0(j0;mt)

j20;m fJ1(j0;m)g
2 =

�
� log s (0 � t � s)
� log t (s < t � 1) ; (4)

and the series converges uniformly for t 2 [0; 1].

Proof. (a) Let fs(t) denote the expression on the right hand side of (3). By
Proposition 4 it is su¢ cient to show thatZ 1

0
tfs(t)J�(j�;mt) dt =

2�

j2�;m
J�(j�;ms):
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In fact, using parts (i) and (ii) of Lemma 2, we see thatZ 1

0
tfs(t)J�(j�;mt) dt = (s�� � s�)

Z s

0
t�+1J�(j�;mt) dt

+s�
Z 1

s
(t1�� � t�+1)J�(j�;mt) dt

= (s�� � s�)
Z j�;ms

0

u�+1J�(u)

j�+2�;m
du

+s�
Z j�;m

j�;ms

 
j��2�;m

u��1
� u

�+1

j�+2�;m

!
J�(u) du

= (s�� � s�)
�
u�+1J�+1(u)

j�+2�;m

�j�;ms
0

+s�

"
�
j��2�;m J��1(u)

u��1
� u

�+1J�+1(u)

j�+2�;m

#j�;m
j�;ms

=
s

j�;m
fJ�+1(j�;ms) + J��1(j�;ms)g

� s�

j�;m
fJ��1(j�;m) + J�+1(j�;m)g

=
2�

j2�;m
J�(j�;ms):

To see the uniformity of convergence of the series on all of [0; 1], we note
from parts (viii) and (ix) of Lemma 2 that

jJ�(j�;ms)J�(j�;mt)j � (j�;ms�)�1=3;

and thus from Lemma 3(i),(ii) that�����J�(j�;ms)J�(j�;mt)j2�;m fJ�+1(j�;m)g
2

����� � �(j�;ms�)
�1=3

2
q
j2�;m � �2

� 1

2(�s�)1=3
1

m4=3
:
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(b) Now let fs(t) denote the expression on the right hand side of (4).
ThenZ 1

0
tfs(t)J0(j0;mt) dt = (� log s)

Z s

0
tJ0(j0;mt) dt�

Z 1

s
(log t)tJ0(j0;mt) dt

= (� log s)
Z j0;ms

0

uJ0(u)

j20;m
du�

Z j0;m

j0;ms

uJ0(u)

j20;m
log

u

j0;m
du

= (� log s)
"
uJ1(u)

j20;m

#j0;ms
0

+ log j0;m

"
uJ1(u)

j20;m

#j0;m
j0;ms

�
"
log u

j20;m
uJ1(u)

#j0;m
j0;ms

+

Z j0;m

j0;ms

J1(u)

j20;m
du

=
J0(j0;ms)

j20;m
;

and (4) follows as before from Proposition 4. The proof of uniform conver-
gence is also similar.

We recall (see Section 4.7 of Szegö [11], or Chapter IV of Stein and Weiss
[10]) that, when � > 0,

(1� 2tu+ u2)�� =
1X
n=0

P (�)n (t)un (jtj � 1; juj < 1);

where P (�)n is the usual ultraspherical (Gegenbauer) polynomial. Also,

� log(1� 2tu+ u2) =
1X
n=1

2

n
Tn(t)u

n (jtj � 1; juj < 1); (5)

where Tn(t) is the Chebychev polynomial given by cos(n cos�1 t) when jtj �
1. In each case, for a given t, the series is locally uniformly convergent in
u 2 (�1; 1). These polynomials are related to each other by the equation

Tn(t) = (n=2) lim
�!0+

��1P (�)n (t) (n � 1):

The next result summarizes properties that we will use.

Lemma 6 (i)
���P (�)n (t)

��� � P (�)n (1) =

�
n+ 2�� 1

n

�
(jtj � 1).

(ii) P (�)n satis�es the di¤erential equation

(1� t2)d
2y

dt2
� (2�+ 1)tdy

dt
+ n(n+ 2�)y = 0:
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(iii) Tn satis�es the di¤erential equation

(1� t2)d
2y

dt2
� tdy

dt
+ n2y = 0:

Proof. (i) See Theorem 2.7.1 and Corollary 2.3.8 of [1] for the inequality,
and p.80 of [11] for the equality.

(ii) See p.80 of [11].
(iii) See p.60 of [11].

3 Expansions in a ball

We denote by GB0(�; �) the Green function of the unit ball B0 of RN�1 (N �
3), and de�ne

�n = n+
N � 3
2

(n � 0):

Proposition 7 Suppose that y0 2 B0nf00g.
(i) Let N � 4. If 0 < kx0k < ky0k, then

GB0(x
0; y0) =

1X
n=0

�x0y0� 3�N2 P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

�x0�n ny0��n � y0�no ;
(6)

and, if ky0k < kx0k < 1, then

GB0(x
0; y0) =

1X
n=0

�x0y0� 3�N2 P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

�y0�n nx0��n � x0�no :
(7)

Further, for any " > 0, these series converge uniformly on fx0 : 0 < kx0k �
ky0k � "g and fx0 : ky0k+ " � kx0k < 1g, respectively.
(ii) Let N = 3. If 0 < kx0k < ky0k, then

GB0(x
0; y0) = � log

y0+ 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

�x0n ny0�n � y0no ;
(8)

and, if ky0k < kx0k < 1, then

GB0(x
0; y0) = � log

x0+ 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

�y0n nx0�n � x0no :
(9)

Again, for any " > 0, these series converge uniformly on fx0 : 0 < kx0k �
ky0k � "g and fx0 : ky0k+ " � kx0k < 1g, respectively.
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Proof. (i) Let N � 4. Then (see Chapter 4 of [1])

GB0(x
0; y0) =

x0 � y03�N � y03�N x0 � y0

ky0k2

3�N
=

y03�N  x0

ky0k �
y0

ky0k

3�N � y0x0 � y0

ky0k

3�N
=

x03�N  x0

kx0k �
y0

kx0k

3�N � y0x0 � y0

ky0k

3�N :
We know thaty0x0 � y0

ky0k

3�N =

�
1� 2 hx

0; y0i
kx0k ky0k

x0y0+ x02 y02� 3�N
2

=
1X
n=0

P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

��x0y0�n ;
and the series converges uniformly for x0 2 B0nf00g. If kx0k < ky0k, then

 x0

ky0k �
y0

ky0k

3�N =

 
1� 2 hx

0; y0i
kx0k ky0k

kx0k
ky0k +

kx0k2

ky0k2

! 3�N
2

=
1X
n=0

P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

��
kx0k
ky0k

�n
;

where the series converges uniformly for 0 < kx0k � ky0k � ", and so

GB0(x
0; y0) =

1X
n=0

P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

�x0n ny03�N�n � y0no ;
which yields the desired formula. If ky0k < kx0k < 1, then

 x0

kx0k �
y0

kx0k

3�N =

 
1� 2 hx

0; y0i
kx0k ky0k

ky0k
kx0k +

ky0k2

kx0k2

!(3�N)=2

=

1X
n=0

P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

��
ky0k
kx0k

�n
;

where the series converges uniformly for ky0k+ " � kx0k < 1, and so

GB0(x
0; y0) =

1X
n=0

P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

�y0n nx03�N�n � x0no ;
which again yields the desired formula.
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(ii) Let N = 3. Then

GB0(x
0; y0) = � log

x0 � y0+ log�y0x0 � y0

ky0k2

�
= � log

y0� log  x0

ky0k �
y0

ky0k

+ log y0x0 � y0

ky0k


= � log

x0� log  x0

kx0k �
y0

kx0k

+ log y0x0 � y0

ky0k

 :
We know from (5), multiplied by the factor 1=2, that

� log
y0x0 � y0

ky0k

 = 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

��x0y0�n :
Also,

� log
 x0

ky0k �
y0

ky0k

 = 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

��
kx0k
ky0k

�n
if
x0 < y0 ;

and

� log
 x0

kx0k �
y0

kx0k

 = 1X
n=1

1

n
Tn

�
hx0; y0i
kx0k ky0k

��
ky0k
kx0k

�n
if
y0 < x0 < 1:

Thus we obtained the desired formulae as before.

The following result is su¢ cient for our purposes, but is known to hold
under much weaker smoothness assumptions (see [5] and the references
therein).

Proposition 8 Let f 2 C1(@B0) and let ci;j be the Fourier coe¢ cients of
f with respect to an orthonormal basis fHi;j : j = 1; :::;M(i)g of the spher-
ical harmonics of degree i in RN�1. Then the series

P1
i=0

PM(i)
j=1 ci;jHi;j

converges uniformly on @B0 to f , and so the series

1X
i=0

x0i M(i)X
j=1

ci;jHi;j

�
x0

kx0k

�
converges uniformly on B0nf00g to the Poisson integral of f in B0.

Let y0 2 B0nf00g and � 2 (0; 1), and let Sy0 be the sphere in RN�1 centred
at 00 that contains y0. We de�ne �y0;� to be the probability measure on Sy0
which has density with respect to surface measure proportional to

exp

0@� 1� kz0 � y0k2
�2 ky0k2

!�11A when
z0 � y0 < � y0 , and 0 otherwise.
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We further de�ne the Green potential

GB0�y0;�(x
0) =

Z
GB0(x

0; z0) d�y0;�(z
0) (x0 2 B0);

and the function

P
(N�3

2
)

n �y0;�(x
0) =

Z
P
(N�32 )
n

�
hx0; z0i
kx0k kz0k

�
d�y0;�(z

0) (x0 2 RN�1nf00g):

When N = 3 the function Tn�y0;� is de�ned from Tn analogously.

Remark 9 By Proposition 7 we obtain formulae for GB0�y0;�(x0) if we re-

place P
(N�32 )
n

�
hx0;y0i
kx0kky0k

�
by P

(N�3
2
)

n �y0;�(x
0) in (6) and (7), and Tn

�
hx0;y0i
kx0kky0k

�
by Tn�y0;�(x

0) in (8) and (9). Further, the series in (6) and (8) would now
converge uniformly on fx0 : 0 < kx0k � ky0kg, by Proposition 8, because the
restriction of GB0�y0;� to Sy0 is C

1 (cf. Theorem 3.3.3 of [1]). Also, the
series in (7) and (9) would converge uniformly on fx0 : ky0k � kx0k < 1g.
To see this in the case of (9) we write the series as the di¤erence of

1X
n=1

1

n
Tn�y0;�(x

0)
y0n x0�n and

1X
n=1

1

n
Tn�y0;�(x

0)
y0n x0n :

The second of these series clearly converges uniformly on B0, and we can use
inversion together with Proposition 8 to see that the �rst series converges
uniformly on fx0 : kx0k�1 � ky0k�1g. A similar argument, based on the
Kelvin transformation, applies to the series in (7).

Let

fn;m(s; t) =
J�n(j�n;ms)J�n(j�n;mt)

j�n;m fJ�n+1(j�n;m)g2
(s � 0; t � 0; n � 0;m � 1):

The above remark and Lemma 5 combine to yield the following.

Proposition 10 Suppose that x0; y0 2 B0nf00g and � 2 (0; 1).
(i) If N � 4, then

GB0�y0;�(x
0) =

1X
n=0

�x0y0� 3�N2 P
(N�3

2
)

n �y0;�(x
0)4�n

1X
m=1

fn;m(kx0k ; ky0k)
j�n;m

:

(ii) If N = 3, then

GB0�y0;�(x
0) = 2

1X
m=1

f0;m(kx0k ; ky0k)
j0;m

+4

1X
n=1

Tn�y0;�(x
0)

1X
m=1

fn;m(kx0k ; ky0k)
j�n;m

:
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4 Proof of Theorem 1

We de�ne aN = �N (N � 2) when N � 3, and a2 = �2, where �N denotes
the surface area of the unit sphere in RN .

Lemma 11 For any n � 0;m � 1 and any y 2 (B0nf00g)�R, let un;m;y be
the function de�ned by

x 7!
x0 3�N2 P

(N�32 )
n

�
hx0; y0i
kx0k ky0k

�
fn;m(

x0 ;y0)e�j�n;mjxN�yN j (N � 4);

x 7! Tn

�
hx0; y0i
kx0k ky0k

�
fn;m(

x0 ;y0)e�j�n;mjxN�yN j (N = 3):

Then un;m;y
(i) is harmonic on

�
RN�1nf00g

�
� (RnfyNg);

(ii) has a harmonic continuation to RN�1 � (RnfyNg);
(iii) continuously vanishes on @
;
(iv) is, in 
, the Green potential of the signed measure given by

2a�1N j�n;mun;m;y(x
0; yN )dx

0 on B0 � fyNg; (10)

(v) satis�es

jun;m;y(x)j �
1� ky0k
kx0kN=2�1

�
n+N � 4

n

�
e�j�n;m"

fJ�n+1(j�n;m)g2

on RN�1 � ((�1; yN � ") [ (yN + ";1)), where " > 0 and the binomial
coe¢ cient is interpreted as 1 when N = 3.

Proof. (i) If N � 4, we know from Theorem 2.7.1 of [1] that the function

x0 7!
x0n P (N�32 )n

�
hx0; y0i
kx0k ky0k

�
;

interpreted as 0 at 00, is harmonic on RN�1, so the function

x0 7! P
(N�32 )
n

�
hx0; y0i
kx0k ky0k

�
is an eigenfunction of the Laplace-Beltrami operator on @B0 with eigenvalue
�n(n+N � 3). Next, the Laplacian of the radial function

x0 7!
x0 3�N2 J�n(j�n;m

x0)
is, by direct computation,

r�(N+1)=2

(
j2�n;mr

2J 00�n(j�n;mr) + j�n;mrJ
0
�n(j�n;mr)�

�
N � 3
2

�2
J�n(j�n;mr)

)
;
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where r = kx0k. Hence, by (2), the function

x0 7!
x0 3�N2 P

(N�32 )
n

�
hx0; y0i
kx0k ky0k

�
J�n(j�n;m

x0)
is an eigenfunction of the Laplacian on RN�1nf00g, with eigenvalue �j2�n;m.
The harmonicity of un;m;y in

�
RN�1nf00g

�
� (RnfyNg) is now clear.

The case where N = 3 is similar (and simpler).
(ii) This follows from Lemma 2(v) and the fact that any line segment,

being polar, is a removable singularity for bounded harmonic functions in
RN (N � 3). (See Corollary 5.2.3 of [1].)

(iii) This is obvious.
(iv) Let 	 be a C1 function on 
 with compact support. This support

is contained in 
a for some a > jyN j. By applying Green�s theorem to the
cylinders B0 � (�a; yN � ") and B0 � (yN + "; a), we obtain (in the sense of
distributions)

(�un;m;y) (	) =

Z


un;m;y�	 dx

= lim
"!0+

8<:
R
B0�fyN+"g

�
	
@un;m;y
@xN

� un;m;y @	@xN
�
dx0

�
R
B0�fyN�"g

�
	
@un;m;y
@xN

� un;m;y @	@xN
�
dx0

9=;
= �

Z
B0�fyNg

2j�n;mun;m;y 	dx
0:

Thus, if v denotes the Green potential in 
 of the signed measure given
by (10), we see from Theorems 4.3.8(i) and 4.3.5 of [1] that un;m;y � v is
harmonic on 
. Since this di¤erence vanishes on @
 and at in�nity, we
conclude that un;m;y = v on 
.

(v) Lemma 3(iv) shows that jJ�n(j�n;m kx0k)j � kx0k�1=2 when kx0k �
1, and this inequality remains valid for kx0k < 1 by Lemma 2(ix). Also,
Lemma 3(iii) shows that jJ�n(j�n;m ky0k)j � j�n;m(1 � ky0k). On RN�1 �
((�1; yN � ") [ (yN + ";1)) we thus have the stated estimate, in view of
Lemma 6(i).

Remark 12 Now let � 2 (0; 1) and let u�n;m;y have the same de�nition as

un;m;y, except that we use P
(N�3

2
)

n �y0;�(x
0) (respectively, Tn�y0;�(x

0)) in place

of P
(N�32 )
n

�
hx0;y0i
kx0kky0k

�
(respectively, Tn

�
hx0;y0i
kx0kky0k

�
). Then Lemma 11 clearly

remains true if we replace un;m;y by u�n;m;y throughout.
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Theorem 13 Let y 2 (B0nf00g)�R. Then G
(�; y) has a harmonic exten-
sion eG
(�; y) to RN�1 � (RnfyNg). On this set,

eG
(x; y) =
aN
aN�1

y0 3�N2 1X
n=0

2�n

1X
m=1

un;m;y(x) (N � 4); (11)

eG
(x; y) = 2

1X
m=1

u0;m;y(x) + 4

1X
n=1

1X
m=1

un;m;y(x) (N = 3): (12)

Further, if " > 0, then there is a positive constant c, depending on " and N ,
such that��� eG
(x; y)��� � c 1� ky0k

kx0kN=2�1
on f(x0; xN ) : jxN � yN j � "g: (13)

Proof. Let � 2 (0; 1). If jxN � yN j � " > 0, then Lemma 11(v), Remark 12
and Lemma 3(i) together show that���u�n;m;y(x)��� � �

2

1� ky0k
kx0kN=2�1

�
n+N � 4

n

�
j2�n;me

�j�n;m"q
j2�n;m � �2n

: (14)

Since
1q

j2�n;m � �2n
� 1

j0;m
� 1

�

by Lemma 2(vii), and j�n;m � (m+ 3=4)� + n by Lemma 3(ii), we see that�����u�n;m;y(x)j2�n;m

����� � 1� ky0k
kx0kN=2�1

�
n+N � 4

n

�
e�(�m+n)" (n � 0;m � 1):

It follows that the series

aN
aN�1

y0 3�N2 1X
n=0

2�n

1X
m=1

u�n;m;y(x)

j2�n;m
(N � 4);

2
1X
m=1

u�0;m;y(x)

j20;m
+ 4

1X
n=1

1X
m=1

u�n;m;y(x)

j2n;m
(N = 3)

converge absolutely and locally uniformly on (RN�1nf00g)� (RnfyNg), and
indeed (by the volume mean value property of harmonic functions) on RN�1�
(RnfyNg), to a harmonic function g satisfying the bound in (13). We know
from Remark 12 and Lemma 11(iv) that (aN=aN�1)j�2�n;mu

�
n;m;y is, in 
, the

potential of the signed measure given by

2a�1N�1j
�1
�n;mu

�
n;m;y(x

0; yN )dx
0 on B0 � fyNg:

13



(WhenN = 2, we have aN=aN�1 = 2 and �n = n.) Thus, by Proposition 10,
and the uniformity of convergence in Lemma 5 and Remark 9, the function
g is, in 
, the potential G
��1 of the measure given by

d��1 = a
�1
N�1GB0�y0;�(x

0)dx0 on B0 � fyNg:

By the invariance of G
(�; �) under translation in the xN -direction, and har-
monicity,

@2G
�
�
1

@x2N
=

Z
B0
G
(�; (z0; yN )) d��2(z0) on 
;

where
d��2 = �a�1N�1�GB0�y0;� on B0 � fyNg

in the sense of distributions. Hence

@2G
�
�
1

@x2N
=

Z
B0
G
(�; (z0; yN )) d�y0;�(z0) on 
: (15)

The left hand side of (15) equals

aN
aN�1

y0 3�N2 1X
n=0

2�n

1X
m=1

u�n;m;y(x) (N � 4);

2
1X
m=1

u�0;m;y(x) + 4
1X
n=1

1X
m=1

u�n;m;y(x) (N = 3)

on 
n(RN�1 � fyNg) by the local uniform convergence of the above series
there. Further, as � ! 0+, the functions de�ned by these series converge
locally uniformly on the same set to the expressions on the right hand side
of (11) and (12). Since the right hand side of (15) converges to G
(�; y) as
� ! 0+, we have established (11) and (12). Further, (13) follows easily from
(14).

Remark 14 The proof of the above results can be simpli�ed when N = 3:
the use of the smoothing measure �y0;� can be avoided, since the partial sums
of the series in Proposition 7(ii) are then dominated by a multiple of the

integrable function x0 7! � log
�
1� minfkx0k ; ky0kg

maxfkx0k ; ky0kg

�
on B0.

Proof of Theorem 1. Let h be a harmonic function on 
a which van-
ishes on @B0 � (�a; a). There is no loss of generality in assuming that h
is continuous on 
a. Further, since h (being the integral of hj@
a against
harmonic measure) can be written as the di¤erence of two such functions
which are positive, there is no loss of generality in assuming that h > 0.
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Next, let 0 < b < a, and let h� be de�ned as h on B0 � [�b; b], as 0 on
B0 � (�1;�a] and B0 � [a;1) and @
, and extended to 
 by solving the
Dirichlet problem in B0 � (�a;�b) and in B0 � (b; a). Then h� is subhar-
monic on B0� ((�1;�b) [ (b;1)) and superharmonic on B0� (�a; a), and
continuously vanishes on @
. It can be written as G
�, where � is a signed
measure on B

0 � f�a;�bg satisfyingZ
(1�

��y0��)d j�j (y) <1:
It now follows from Theorem 13 that h can be extended to a harmonic

function eh on RN�1 � (�b; b). The estimate (1) is a consequence of (13).
Since b can be arbitrarily close to a, the result follows.

Remark 15 The rate of decay in (1) is sharp. This follows from the obser-
vations that each of the functions un;m;y in Lemma 11 satis�es the hypotheses
of Theorem 1 (with a = jyN j), and that (for a �xed �)

J�(t) =

r
2

�t
cos
�
t� ��

2
� �
4

�
+O(t�3=2) (t!1)

(see [11], equation (1.71.7)).
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