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Abstract

Suppose that a harmonic function h on a finite cylinder vanishes
on the curved part of the boundary. This paper answers a question
of Khavinson by showing that h then has a harmonic continuation to
the infinite strip bounded by the hyperplanes containing the flat parts
of the boundary. The existence of this extension is established by an
analysis of the convergence properties of a double series expansion of
the Green function of an infinite cylinder beyond the domain itself.

1 Introduction

The Schwarz reflection principle gives a formula for extending a harmonic
function h on a domain Q C RY through a relatively open subset E of the
boundary 92 on which h vanishes, provided F lies in a hyperplane (and is
a relatively open subset thereof). By the Kelvin transformation there is a
corresponding result where F lies in a sphere. When N = 2, such a reflection
principle holds also when E' is contained in an analytic arc (see Chapter 9
of [7]). However, when N > 3 and N is odd, Ebenfelt and Khavinson [4]
(see also [6] and Chapter 10 of [7]) have shown that a reflection law can only
hold when the containing real analytic surface is either a hyperplane or a
sphere.

Now let N > 3, let Q, be the finite cylinder B’ x (—a,a), where B’ is
the open unit ball in R¥N~! and a > 0, and let Q = B’ x R. Dima Khavinson
raised the following question with the authors:

Question. Given a harmonic function h on 2 which vanishes on 0, does
it follow that A must have a harmonic extension to RV ?
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Although the above results show that there can be no pointwise reflec-
tion formula for such an extension, this paper will establish that such an
extension does indeed exist.

We will use the notation x = (2/, ) to denote a typical point of RN =
RN-1 x R.

Theorem 1 Let h be a harmonic function on Sy which continuously van-
ishes on OB’ x (—a,a). Then h has a harmonic extension h to RN™1 x
(—a,a). Further, for any b € (0,a), there is a constant c, depending on
a,b, N and h, such that

N2 e RV-W\BY Jan| < b). (1)

@) < el

It is a classical fact that the Green function for a three-dimensional infi-

nite cylinder can be represented as a double series involving Bessel functions

and Chebychev polynomials: see, for example, p.62 of Dougall [3] or p.78 of

Carslaw [2]. Our approach to proving Theorem 1 involves establishing such

a double series representation in N dimensions and analysing its convergence
properties outside the cylinder.

2 Preparatory material

Let J, and Y, denote the usual Bessel functions of order v > 0 of the first
and second kinds (see Watson [12]). Thus these functions both satisfy the
differential equation

dy  dy
2 2_ 2
zdz2+zdz+(z —v)y =0. (2)

Further, let (j, m)m>1 denote the sequence of positive zeros of J,, in increas-
ing order. We collect below some facts that we will need.

o d v 7 d JV(Z) _ Jl/+1(z)
Lemma 2 (7) P J,,(z)2—Jz Jy—1(z) and p 7 A
(i) Jue1(2) + Jys1(2) = — Z”(Z) and J,—1(2) = Jy41(2) = 2J(2).

(iii) (Y1) — Yo ()T () = % (t>0).

(i0) (TP + 0 < 2 (=) >0 ).
t\" 1

w1l (5) sy €20

(vi) jom > (m + 3/4).

(’Uii) ju,m > jO,m + v.

(viii) |, ()] < v~Y3 (v >0,t>0).



(iz) |J,(t)] < min{l,¢ 3} (¢ >
0

() (RO + D) < 5
Proof. (i) and (ii). See p.45 of Watson [12].
iii) See p.76, (1) of [12].
iv) See p.447, (1) of [12].

0).
<v<it>0).

N[ =

(

(

(v) See p.49, (1) of [12].

(vi) See p.489 of [12].

(vii) See Laforgia and Muldoon [8], (2.4).

(viii) See Landau [9].

(ix) We know from p.406, (10) of [12] that |J,| < 1, and from [9] that
()] <18,

(x) By Section 13.74 of [12] the function ¢ +— ¢t ({Jy(zf)}2 + {Yl,(t)}Q) is

non-decreasing when 0 < v < 1, and has limit 2/7 at co. ®

Some consequences of Lemma 2 are noted below.

N . 2
Lemma 3 (Z) ]B,m {Jl/+1(]u,m)}2 > %
(ii) Gum > (m+3/4)T + v.

(#i) | Ty (Goms)| < Jum(1l —5) (0<s<1).

jg,m_VZ (le)

(Z"U) ‘Ju(ju,m3)| < 711_\/1 (S > 1).

Proof. (i) By the second equation of Lemma 2(i), J},(ju.m) = —Jv4+1(Jvm)-
If v > L, then, by (iii), (iv) and (vii) of that result,

Jv.m {JV+1(jV,m)} =Jvm {Ju(j%m)} =5, 3~ = \/ Jom — V7
2 {Y, (Gom)}? T

If 0 < v < 3, we use part (x) of Lemma 2 in place of part (iv).
(ii) This follows from Lemma 2(vi),(vii).
(iii) By the mean value theorem,

|JV(jV,m5)‘ < ju,m(l —s) sup |Jz,/(jl/,mt)| (1/2<s<1).
1/2<t<1

We know from Lemma 2(i),(ii) that J, = (J,—1 — Jy41)/2 when v > 1 and
J(2) = (v/2)J,(2) — J,41(2) otherwise. In either case we see from Lemma
2(ix) and part (ii) of this lemma that |.J),(jymt)] < 1 when 1/2 < ¢ < 1,
so the desired inequality is established when 1/2 < s < 1. It is clearly also
valid when 0 < s < 1/2, since |J,| < 1, and j, 4, > 2 by part (ii).

(iv) By (ii) we have (j,ms)? > (mms)? + v? when s > 1. If v > 1/2,
then we see from Lemma 2(iv) that

{JV(jV,mS)}2 <= (3 > 1),



as desired. If 0 < v < 1/2, we can instead appeal to Lemma 2(x). =
The following result is taken from Sections 18.24-18.26 of [12].

Proposition 4 Let f : (0,1] — R be a continuous function of locally bounded
variation such that f(1) =0 and fol tY2|f(t)| dt < oo, and let

1
Am = {J+1(2j)}2/(; tf(t)Ju(ju,mt) dt.

o0
Then the series Yy, amJy(Ju.mt) converges to f(t) locally uniformly on (0, 1].

m=1
Formula (3) below is stated without proof by Carslaw [2].
Lemma 5 Let 0 <s < 1.
(a) If v > 0, then
o0

v Z JV(jV,mS)JV(jV,mt) _ { (s —=s") (0<t< Sg , (3)

=gz A1 Gom) s/t =t") (s<t<1

and the series converges uniformly for t € [0, 1].
(b) In the case where v =0 we have

o0

2y Joloms)Doldomt) { ~logs (0<t<s
m=1 -]g,m {Jl(j(],m)}2 —logt (8 <t<1

, (4)

~— —

and the series converges uniformly for t € [0,1].

Proof. (a) Let fs(t) denote the expression on the right hand side of (3). By
Proposition 4 it is sufficient to show that

! . 2v .
/0 th(t)']V(JV,mt) dt = TJV(JV,mS)-

v,m



In fact, using parts (i) and (ii) of Lemma 2, we see that

/ 0T Gomt) dt
0

(57 — ") / BT Gyt di
0

1
+8” / 7 — ") T, (Gumt) dt

ju,ms v+1
(s~ — s”)/ uJy(u) du
0

jl/+2
v,m
ju,m jV72 ul/+1
1 rv,m
+5 / (ul’l -5z Jy(u) du
Ju,m$ Jv,m

o [ e (w) ]
v [Tt

v,m

0

1 ju,m
o | (W) w T (u)
+s B wuv—1 B V42
Jv,m )
Jv,m$8
S . .
. {Jl/+1(,71/,m5) + Ju—l(]u,ms)}
v,m
s¥
- {Jufl(jv,m) + JVH(jv,m)}
v,m
2v .
5 Jv(Jv,ms).
Jv.m

To see the uniformity of convergence of the series on all of [0, 1], we note
from parts (viii) and (ix) of Lemma 2 that

|Jl/(jl/,m8)JV(jV,mt)‘ S (]l/,msy)il/37

and thus from Lemma 3(i),(ii) that

Iy (Gv.mS) Iy (Gu.mt) - 7y msv) L3 g 1 )
32.m AT Gom) Y|~ QW = 2(rsv) 1B mA/3’



(b) Now let fs(t) denote the expression on the right hand side of (4).
Then

1 s 1
/ Hu(O) ToGomt) dt = (~logs) /0 tTojount) dt — / (log t)tJo (Gomt) dt

0

jO,'ms J jO,'nL J
= (—logs)/ u2(u) du—/ u2(u) log —
0 jO,m Jo,m$S jO,m Jo,m
jO,mS .jO,m
uJ1(u . uJi(u
= (—logs) .2() + log jo,m ‘2()
0,m 0 0,m Go.ms$
jOm .
logu ’ Jom I (w
— 2g uJy(u) +/ 12( )du
Jo,m Joms jo,ms JO,m
_ Jo(Joms)
Jom

and (4) follows as before from Proposition 4. The proof of uniform conver-
gence is also similar. m

We recall (see Section 4.7 of Szegd [11], or Chapter IV of Stein and Weiss
[10]) that, when A > 0,

(1—2tu+u®) " => PV (|t <1,]ul < 1),
n=0

where P,S)‘) is the usual ultraspherical (Gegenbauer) polynomial. Also,

2.2
—log(1 - 2tu + u®) =) “To(tu” (<1 Jul < 1), (5)

n=1

where T),(t) is the Chebychev polynomial given by cos(n cos™!t) when [¢| <
1. In each case, for a given t, the series is locally uniformly convergent in
u € (—1,1). These polynomials are related to each other by the equation

To(t) = (n/2) lmn AP (0 1),

The next result summarizes properties that we will use.

Lemma 6 (i) [PV(1)| < PV(1) = <” + 27; - 1) 1 <1).
(ii) pM satisfies the differential equation
d’y dy
1—t2)—2 — (2 A+ 1)t— 2\)y = 0.
( t)dtQ (2 + )tdt+n(n+ ANy=0

du



(11i) T, satisfies the differential equation

d*y  dy

Proof. (i) See Theorem 2.7.1 and Corollary 2.3.8 of [1] for the inequality,
and p.80 of [11] for the equality.

(ii) See p.80 of [11].

(iii) See p.60 of [11]. m

3 Expansions in a ball

We denote by Gpi(-,-) the Green function of the unit ball B’ of RN=1 (N >
3), and define

Proposition 7 Suppose that y' € B'\{0'}.
(i) Let N > 4. If 0 < ||2|| < ||y/]|, then

G ') = 3 (I WD 27 (i) e {7 = 1}

[l Iyl
(6)

and, if /]| < |2/l < 1, then

G/ =3 ()% R () e (o = o}
- (7

Further, for any € > 0, these series converge uniformly on {z' : 0 < ||2/| <
V]| — e} and {z" : ||| + ¢ < ||2/|| < 1}, respectively.
(i1) Let N = 3. If 0 < ||2'|| < ||¥'||, then

Gt/ = =t |+ 3 375 (g ) W {1 = 117}

Hw’ll 1/l
(8)

and, if /]| < |l2'll < 1, then

Gvtetahy = toule + 327 () W {11 1)
©

Again, for any e > 0, these series converge uniformly on {z' : 0 < ||2'|] <
Y]] — e} and {z" : ||| + ¢ < ||2/|| < 1}, respectively.



Proof. (i) Let N > 4. Then (see Chapter 4 of [1])

Gata) = A R
S /1P
B N3N z! 3—N
3 il Mm h
[l Hx’ll IIy |
We know that
3—N < u
e =l = (=2 e+ 7))
_3 T y
> () U 1"

and the series converges uniformly for 2/ € B'\{0'}. If ||2'|| < [|¢/||, then

o RN e E A
= =27 / T 2
[ 17 T 70 (o 4
S (42 ()
- HUU’H 1y'll/ \ Iyl
where the series converges uniformly for 0 < ||z/|| < ||¢/|| — &, and so

3 X y,> n —N—n n
Gty = 3 F) ([l b1 {1 = 1)

iy

/ /

r oy
74 I

which yields the desired formula. If ||| < ||2’|| < 1, then
3-N 2\ 3=N)/2
o ) I Y
- -2 / / / + 2
[ 17 T [ P
N 3 / / n
_ ZP NP ( : ', y') )(H?J/H>
[l 111/l

where the series converges uniformly for ||| + & < ||2|| < 1, and so

Gty = AT ([l W (i = ).

iy

/ /

x y
=l

which again yields the desired formula.



(ii) Let N = 3. Then

/
Gt f) = —togl? /] 108 (I o~ 2]
! / ’
= —loglly|| -1 x_yHH/,_y‘
o] - os | o o8 Il = gy
y/
-l
ongU H og‘ Ed H ,” ‘ og Hy Haj
We know from (5), multiplied by the factor 1/2, that
T y/ 1
1 _ _ in
os 1 S Lo, () )
Also,
xl y/ ‘ 0 1 ( <$/7yl> )(Hx/‘>n ' . )
oS, .
o« - 1o 25T qetin) ) W1 <1
and
l‘/ y/ oo 1 <fE, y/> ||y/H n . .
-1 - =2 T : if < <1
o8| i~ 1 2 (porton) () 1< 1

Thus we obtained the desired formulae as before. m

The following result is sufficient for our purposes, but is known to hold
under much weaker smoothness assumptions (see [5] and the references
therein).

Proposition 8 Let f € C*(9B’) and let ¢; j be the Fourier coefficients of
[ with respect to an orthonormal basis {H; ;j : j = 1,..., M (i)} of the spher-

ical harmonics of degree i in RN~1. Then the series > oo, Zj]\/i(f) cijHi
converges uniformly on OB’ to f, and so the series

ZHCE I ZCW J<’ /||)

converges uniformly on B'\{0'} to the Poisson integral of f in B’.

Let y € B'\{0'} and § € (0,1), and let S, be the sphere in RV ! centred
at 0/ that contains y’. We define t 5 to be the probability measure on S
which has density with respect to surface measure proportional to

EEria
exp | — (1 — 52HZ’/H2> when Hz' — y'H <90 Hy'H , and 0 otherwise.
(Y



We further define the Green potential

Gurttyo(@) = [ Gae ) duy () (@' € B,
and the function
A s = [ PO () dugas) @ e RV M0
When N = 3 the function Ty p,, 5 is defined from 7}, analogously.

Remark 9 By Proposition 7 we obtain formulae for Gpp,, s(z') if we re-

laceP(¥) ( (2 y) ) b P( =) 1 s(2) in (6) and (7), and T, (M)
prace i) b By s\ T Tl T
by Tupiy 5(x') in (8) and (9). Further, the series in (6) and (8) would now
converge uniformly on {x’ : 0 < ||2'|| < |||}, by Proposition 8, because the
restriction of Gpi,y 5 to Sy is C°° (cf. Theorem 3.3.3 of [1]). Also, the
series in (7) and (9) would converge uniformly on {x’' : ||| < ||2|| < 1}.
To see this in the case of (9) we write the series as the difference of

> ) W7 and S Sy

The second of these series clearly converges uniformly on B', and we can use
inversion together with Proposition 8 to see that the first series converges
uniformly on {2’ : ||’| 7" < |/|7'Y. A similar argument, based on the
Kelvin transformation, applies to the series in (7).

Let

o Gnan8) T Gt
Fum(a.t) = ZeeldramS)olinan) (04> 0.m > 0,m = 1)
]V'rum {JVn"l‘l(]Vnam)}

The above remark and Lemma 5 combine to yield the following.

Proposition 10 Suppose that 2',y" € B'\{0'} and ¢ € (0,1).
(i) If N > 4, then

o N—

/
GB/’uy/‘; Z ’.T H Hy H n 2 /‘Ly’ 5 4Vn Z fnm gf |1n Hy ”)

(ii) If N = 3, then

(||= (||’
Gy s’ _QZme 211, 11911 +4ZTn g (2 anm 12711 1"l

JOm ,]Vn,m

10



4 Proof of Theorem 1

We define ay = on (N —2) when N > 3, and ag = 02, where oy denotes
the surface area of the unit sphere in R¥.

Lemma 11 For anyn > 0,m > 1 and any y € (B'\{0'}) X R, let wpm, be
the function defined by

N (852 (& y)
o )<||xf\ Hy'n)f"’m(”“'

x~ﬂ<@“”)mMW’

el

y’H)e*jun,mkﬁN*ym (N > 4),

)

y/H)e*jun,m‘xN*yN‘ (N =3).

)

Then tp m,y

(i) is harmonic on (RN"1\{0'}) x (R\{yn});

(ii) has a harmonic continuation to RN~1 x (R\{yn});

(iii) continuously vanishes on 0€);

(iv) is, in 2, the Green potential of the signed measure given by

2a&1jun,mun,m,y($/a yN)dx/ on B/ X {yN}; (10)
(v) satisfies

P )
U )| < ———— :
n,Mm,Yy Hx,HN/Q_l n {JVn-i-l(]I/n,m)}Q

on RN=L x ((—oo,yy — &)U (yn +¢,0)), where ¢ > 0 and the binomial
coefficient is interpreted as 1 when N = 3.

Proof. (i) If N > 4, we know from Theorem 2.7.1 of [1] that the function
N-=3 o
oo o P (50,
[l [ [l
interpreted as 0 at 0/, is harmonic on RV !, so the function

o PP ()

is an eigenfunction of the Laplace-Beltrami operator on 9B’ with eigenvalue
—n(n 4+ N — 3). Next, the Laplacian of the radial function

3-N
/ |2 . /
o | T G 2]

is, by direct computation,

) ' . ‘ , N-3\*_ .
T (N+1)/2 {jlgn,mr2t]{/[n (]V’nﬂnr) + JVnﬂ?’lrJ]I/n (]V’n,mr) - <2) JVn (]V'nvmr)} ?

11



where 7 = ||2/||. Hence, by (2), the function

SN (852 (Y :
o o P () B 1)

is an eigenfunction of the Laplacian on RY~1\{0'}, with eigenvalue —
The harmonicity of wp m,y in (RY71\{0'}) x (R\{yn}) is now clear.

The case where N = 3 is similar (and simpler).

(ii) This follows from Lemma 2(v) and the fact that any line segment,
being polar, is a removable singularity for bounded harmonic functions in
RN (N > 3). (See Corollary 5.2.3 of [1].)

(iii) This is obvious.

(iv) Let ¥ be a C* function on Q with compact support. This support
is contained in ), for some a > |yy|. By applying Green’s theorem to the
cylinders B’ x (—a,yy —€) and B’ x (yy + €,a), we obtain (in the sense of
distributions)

i2
Jvp,me

(Atpmy) (V) = /ﬂunymyA\I/ dx

8un,7n,y _ ov /
- lim T <‘I’ Dy “mmvy*axN)dx
i, Dty

ov /
- fB’X{yN—e} (\II ory Un,m,y 83:N) dx

= — / 250 mUn,m,y ¥dz’.
B'x{yn}

Thus, if v denotes the Green potential in ) of the signed measure given
by (10), we see from Theorems 4.3.8(i) and 4.3.5 of [1] that wy m,y — v is
harmonic on 2. Since this difference vanishes on 9€) and at infinity, we
conclude that wuy m,y = v on Q.

(v) Lemma 3(iv) shows that |J,, (ju,m [2'])] < |2/ 7*/? when ||2/|| >
1, and this inequality remains valid for ||2’|] < 1 by Lemma 2(ix). Also,
Lemma 3(iii) shows that |J,,, (ju,.m 1Y) < Junm(1l = [[¥/]). On RV~ x
((—oo,yny —€) U (yn + &,00)) we thus have the stated estimate, in view of
Lemma 6(i). m

Remark 12 Now let § € (0,1) and let ug’m’y have the same definition as
N-3

2

Un,m,y, except that we use P7(1 ty 5(x") (respectively, Ty, 5(x")) in place
N-3

of PTE ) (Hgfh’ﬁg?”) (respectively, T, (%)) Then Lemma 11 clearly
é

remains true if we replace unm.y by Uy, ,, throughout.

12



Theorem 13 Let y € (B'\{0'}) x R. Then Gq(-,y) has a harmonic exten-
sion Ga(-,y) to RN=1 x (R\{yn}). On this set,

Go(z,y) = —N \yH*ZMZunmy (N >4), (11)

aN—1
Gal(z,y) = 2 Z Uo,m,y () + 4 Z Z Unmy(z) (N =3). (12)
m=1 n=1m=1

Further, if € > 0, then there is a positive constant ¢, depending on & and N,
such that
=~ 1— |yl / ,
Ga(z,y)| Sc—=m—7  on {(z\zn):|lay —yn[ 2 e} (13)
| V2

Proof. Let § € (0,1). If |[xy —yn| > € > 0, then Lemma 11(v), Remark 12
and Lemma 3(i) together show that

;2 —Jun,mE€
5 T 1|yl (n+ N =4\ Jp,me "
L nm
u"’m’y<x)‘ -2 HiU'HNﬂ_l n 2 (14)

;2 _
]Vn,m Vn

Since
1 1
< - <
— y2 ]O,m

3| -

Jvn,m

by Lemma 2(vii), and j,,, m > (m + 3/4)7 +n by Lemma 3(ii), we see that

6
Uhmy(®)| 1= Y] <n+N—4>e—<m+n>a (n>0,m>1).
Jowm | VAN -

It follows that the series

aN-1 m=1 ]Vm
22 +4ZZ "my (N =3)
m=1 n=1m=1 Jnm

converge absolutely and locally uniformly on (RY=1\{0'}) x (R\{yn}), and
indeed (by the volume mean value property of harmonic functions) on RV 1 x
(R\{yn}), to a harmonic function g satisfying the bound in (13). We know
from Remark 12 and Lemma 11(iv) that (aN/aN_l)j;nz’mufhm’y is, in Q, the
potential of the signed measure given by

2a’N 1]Vnm fzmg(zn yN)d:LJ on B,X{yN}'

13



(When N = 2, we have ay/ay—_1 = 2 and v,, = n.) Thus, by Proposition 10,
and the uniformity of convergence in Lemma 5 and Remark 9, the function
g is, in €, the potential GQM({ of the measure given by

dp} = ay" Gy 5(a')da’ on B’ x {yn}.

By the invariance of Gq(+,-) under translation in the x y-direction, and har-

monicity,
92Gaul
aigul = Gal- (2 yn)) dud(z') on Q,
TN B

where
dus = —afvl_lAGB/,uy,ﬂ; on B’ x {yn}
in the sense of distributions. Hence
92Gqul
S = [ Gal, (o) diay s(2) on (15)
QZ'N B

The left hand side of (15) equals

3-N o) o)
Ly Y 2w >y (2) (N 9),
n=0 m=1

aN—1
0o co o0
2 Uumy() 4D Y U y(2) (N =3)
m=1 n=1m=1

on Q\(RV~! x {yn}) by the local uniform convergence of the above series
there. Further, as § — 0+, the functions defined by these series converge
locally uniformly on the same set to the expressions on the right hand side
of (11) and (12). Since the right hand side of (15) converges to Gq(-,y) as
d — 0+, we have established (11) and (12). Further, (13) follows easily from
(14). m

Remark 14 The proof of the above results can be simplified when N = 3:
the use of the smoothing measure i,y 5 can be avoided, since the partial sums
of the series in Proposition 7(ii) are then dominated by a multiple of the
i / !/
mﬂhﬂﬁ@M)ony'
max{ /], 7]}

integrable function x’' — —log <1 —

Proof of Theorem 1. Let h be a harmonic function on €2, which van-
ishes on OB’ x (—a,a). There is no loss of generality in assuming that h
is continuous on €),. Further, since h (being the integral of h|pg, against
harmonic measure) can be written as the difference of two such functions
which are positive, there is no loss of generality in assuming that h > 0.

14



Next, let 0 < b < a, and let h* be defined as h on B’ x [—b,b], as 0 on
B’ x (=00, —a] and B’ X [a,00) and 912, and extended to Q by solving the
Dirichlet problem in B’ x (—a, —b) and in B’ x (b,a). Then h* is subhar-
monic on B’ x ((—oo, —b) U (b, 00)) and superharmonic on B’ x (—a,a), and
continuously vanishes on 0€2. It can be written as Gqu, where p is a signed
measure on B X {+a, £b} satisfying

/ (1~ ¢/ lul (v) < 0.

It now follows from Theorem 13 that i can be extended to a harmonic
function h on RN=1 x (—b,b). The estimate (1) is a consequence of (13).
Since b can be arbitrarily close to a, the result follows. m

Remark 15 The rate of decay in (1) is sharp. This follows from the obser-
vations that each of the functions un m,y in Lemma 11 satisfies the hypotheses
of Theorem 1 (with a = |yn|), and that (for a fized v)

Jy(t) = \/Zcos (t - g — Z) +O0(t73?)  (t— )
(see [11], equation (1.71.7)).
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