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Summary. In a longitudinal metabolomics study, multiple metabolites are measured from1

several observations at many time points. Interest lies in reducing the dimensionality of such2

data and in highlighting influential metabolites which change over time. A dynamic probabilistic3

principal components analysis (DPPCA) model is proposed to achieve dimension reduction4

while appropriately modelling the correlation due to repeated measurements. This is achieved5

by assuming an autoregressive model for some of the model parameters. Linear mixed models6

are subsequently used to identify influential metabolites which change over time. The proposed7

model is used to analyse data from a longitudinal metabolomics animal study.8

1. Introduction9

Metabolomics is the study of low molecular weight compounds known as metabolites found10

in biological samples; its application reveals information on metabolic pathways within an11

organism. The number of areas in which metabolomics is applied has recently enjoyed rapid12

growth and metabolomics is now employed in fields such as nutrition, toxicology and disease13

diagnosis. In a typical metabolomics study large data sets are generated using analytical14

technologies such as nuclear magnetic resonance spectroscopy (NMR) (Reo, 2002) and mass15

spectrometry (MS) (Dettmer et al., 2007). With respect to NMR spectroscopy the resulting16

spectrum consists of a series of peaks where the height of a peak is related to the relative17

abundance of the associated metabolite. Studying such metabolomic profiles gives insight18

to the metabolic state of a system.19

20

Metabolomic data sets are usually high-dimensional, in that the resulting spectra con-21

tain many peaks (i.e. variables), yet they are characterised by small sample sizes – hence22

classical statistical approaches cannot be easily applied. The data sets contain variables23

that are not independent in that metabolites can be represented by more than one peak24

and metabolites can be highly correlated (van den Berg et al., 2006). In addition to corre-25

lated variables, in longitudinal metabolomics data sets there is further correlation structure26

due to the repeated measurements of observations over time. Hence, appropriate statistical27

models are required in order to appropriately model the data and extract true, important28

information.29

30

Within the metabolomics literature, principal components analysis (PCA) (Jolliffe, 2002)31

is often used for multivariate data exploration (Walsh et al., 2007; Smolinska et al., 2012;32
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Cassol et al., 2013; Carvalho et al., 2013; Bathen et al., 2013; Sachse et al., 2012). Methods33

that improve and extend the application of this common statistical technique will prove34

extremely useful to the metabolomics practitioner, and to scientists in other fields. The35

application of PCA to longitudinal studies is limited however by the fact that PCA does36

not take into account information about the experimental design i.e. if PCA is applied to37

all time points simultaneously, measurements taken repeatedly over time are assumed inde-38

pendent (Choi et al., 2006). In such a case, since PCA looks for directions in the data space39

with maximum variation, time related variation will act as a confounding factor obscuring40

potential differences due to treatment.41

42

Several extensions to PCA have been developed to take into account the experimental43

design of a study and therefore can be used to analyse longitudinal metabolomics data more44

appropriately. These include weighted PCA (Jansen et al., 2004) which uses weights to ac-45

count for variation due to repeated measurements and ASCA (Smilde et al., 2005) which46

combines analysis of variance and simultaneous components analysis methods to deal with47

complex multivariate datasets. Jansen et al. (2009) employ local PCA models at each time48

point, and then link these local models to each other. Dynamic PCA (Smilde et al., 2010)49

uses a back-shift matrix to analyse data from multiple time points simultaneously. The50

main limitation of these approaches is that they do not have an associated generative prob-51

abilistic model. Hence, it is difficult to assess the uncertainty in the fitted model estimates,52

and model extensions are not feasible.53

54

Mixed effects models have also been employed to model longitudinal metabolomics data.55

Mei et al. (2009) employ a linear mixed-effects model (LMM) in the context of feature selec-56

tion for longitudinal metabolomics data, but under the assumption that spectral peaks are57

independent variables. The high levels of correlation between spectral peaks (i.e. metabo-58

lites) is biologically important however, and such correlation structure should be explicitly59

modeled. In a similar vein, Berk et al. (2011) employ smoothing splines mixed-effects models60

to model longitudinal metabolomics data. While these models have a statistical modelling61

basis and therefore appropriately model the longitudinal aspect of the data, multiple testing62

issues (Dudoit et al., 2003) result as the chances of false positives increase with the dimen-63

sionality of the data. While this problem can be controlled (Benjamini and Hochberg, 1995),64

dimension reducing features of methods such as PCA are attractive.65

66

Probabilistic PCA (PPCA) is an approach to PCA based on a Gaussian latent variable67

model (Tipping and Bishop, 1999; Nyamundanda et al., 2010). PPCA retains the benefits68

of PCA, such as dimension reduction, while facilitating model extensions through its basis69

in a statistical model. Here an extension of PPCA called dynamic PPCA (DPPCA) is70

proposed which allows PPCA to appropriately model the time dependencies in longitudinal71

metabolomics data. This is achieved by assuming a stochastic volatility model for some72

of the PPCA parameters. The proposed DPPCA model is closely related to the dynamic73

factor analysis model (Aguilar and West, 2000) employed to model multivariate financial74

time series data.75

76

Data generated in longitudinal metabolomics studies form the basis for the development77

of the proposed DPPCA model. Examples of such studies include, but are not limited78

to, postprandial human studies and long term drug treatment studies (Wopereis et al.,79

2009; Lin et al., 2011; Krug et al., 2012; Nicholson et al., 2012). Interest lies in reducing80
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the dimensionality of the data (for statistical and visualisation purposes) and subsequently81

highlighting influential metabolites which change over time, while appropriately modelling82

the longitudinal nature of the data. The proposed DPPCA model is employed to achieve di-83

mension reduction and model the time dependencies; linear mixed models (LMM) are then84

employed to identify the metabolites which change over time. The utility of the DPPCA85

approach is demonstrated through the analysis of data from a longitudinal metabolomics86

animal study.87

88

The remainder of the article is structured as follows. An overview of longitudinal89

metabolomics studies is presented in Section 2. The DPPCA model is introduced in Section90

3 and the use of stochastic volatility models to account for the correlation due to repeated91

measurements is detailed. The DPPCA model is estimated within the Bayesian paradigm;92

accordingly Section 4 specifies the necessary prior distributions and describes the use of93

Markov chain Monte Carlo (MCMC) techniques to fit the DPPCA model. Section 5 details94

the application of the DPPCA model to a longitudinal metabolomics data set. Discussion95

of the developed model and further avenues of research are deferred until the conclusion, in96

Section 6.97

2. Longitudinal metabolomics studies98

In recent years, a number of longitudinal metabolomics datasets have emerged in the lit-99

erature (Wopereis et al., 2009; Lin et al., 2011; Krug et al., 2012). With regard to human100

applications, a number of studies employing metabolomics over time following acute chal-101

lenges such as the oral glucose tolerance test have recently been published and shown to102

be extremely powerful in studying subtle changes. Applying metabolomics to longitudinal103

animal studies for determining long term drug toxicity and efficacy is also an important104

emergent area. In such applications a number of key study aims typically exist which, in105

general, can be described as follows:106

(i) data visualisation107

(ii) assessing the effect of time within each treatment group and108

(iii) identifying metabolites which change over time within each treatment group.109

The DPPCA model proposed here helps address these specific aims. In the case of (i) the110

DPPCA model facilitates visualisation of the study participants in a reduced dimensional111

space, while appropriately modelling the time course nature of the data. The effect of time112

within each treatment group (aim (ii)) can be assessed by applying the DPPCA model to113

the data from each treatment group. An additional output of the DPPCA model is a list of114

the most influential metabolites within each group. To address aim (iii) univariate analyses115

with LMM are then carried out to identify those influential metabolites which change over116

time.117

118

Metabolomics data from a longitudinal animal study motivate and illustrate the pro-119

posed DPPCA model. The study has been described in detail in Carmody and Brennan120

(2010). Briefly, an animal model of epilepsy was employed by repeated administration121

of pentylenetetrazole (PTZ) which leads to the development of generalised tonic-clonic122

seizures. Over the administration period (5 weeks) urine samples were collected from treated123

animals (PTZ treated) and control animals (saline treated animals). The aim of the study124
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was to determine metabolic changes that occur over time during PTZ treatment.125

126

NMR spectra were acquired from the urine samples and the spectra were integrated into127

bin regions of 0.04 parts per million (ppm), excluding the water regions (4.0–6.0 ppm). For128

the purposes of this work, the final acquired data set consists of NMR spectra for n = 15129

animals (8 treated and 7 control), each containing p = 189 spectral bin regions, from M = 8130

time points. The p = 189 peaks in the spectra at different chemical shift values (measured in131

ppm) relate to specific metabolites; the height of a peak in any spectrum details the relative132

abundance of the associated metabolite in the animal’s urine sample. Figure 1 illustrates133

a metabolomic spectrum resulting from the urine sample collected at a single time point134

from an animal in the study.135

136

Fig. 1. A metabolomic profile resulting from the urine sample collected at a single time point from an
animal in the longitudinal metabolomic study.

3. Dynamic Probabilistic Principal Components Analysis137

Probabilistic principal components analysis (PPCA) is a latent factor model constrained138

such that the maximum likelihood estimates of the parameters span the principal subspace139

of conventional PCA. Given its underlying assumptions however, PPCA is only applicable140

to data from a cross sectional study. Here an extension of PPCA to a dynamic PPCA141

(DPPCA) model is developed; a brief introduction to PPCA, and its extension to the142

DPPCA model, are detailed in what follows.143
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3.1. Probabilistic Principal Components Analysis (PPCA)144

PPCA is a generative statistical model which models a high-dimensional observed data
point as a linear function of a corresponding low-dimensional latent variable plus isotropic
(full-dimensional) noise. For each of n animals, let xT

i = (xi1, . . . , xip) denote the set of p
observed variables for animal i (eg. an NMR spectrum with p spectral bins). The PPCA
model relates each xi to a q-dimensional latent Gaussian variable ui (typically q ≪ p)
through the linear model:

xi = Wui + ϵi

where W is a p× q loadings matrix and the error term ϵi is assumed to have a multivariate145

Gaussian distribution, centred at zero with covariance σ2I, where I denotes the identity146

matrix. The error term models the part of the observed data which cannot be accounted for147

by the q underlying latent variables, or principle components (PCs). Assuming a standard148

multivariate normal (MVN) distribution for ui, each data point has a zero mean multivariate149

normal distribution with covariance WWT + σ2I.150

Crucially, the likelihood of the PPCA model is maximized when the columns of W151

span the principal subspace of conventional PCA (Tipping and Bishop, 1999). Thus the152

maximum likelihood estimate of the loadings matrix in PPCA corresponds exactly to the153

loadings matrix in conventional PCA. Hence the model output in PPCA is exactly that154

obtained in conventional PCA, but with the additional advantages of uncertainty assessment155

and potential model extensions.156

3.2. Dynamic Probabilistic Principal Components Analysis (DPPCA)157

The derivation of PCA from a probabilistic framework facilitates the development of dy-158

namic PPCA as a tool for modelling longitudinal multivariate data. Under the DPPCA159

model, the set of p observed variables xim for animal i at time point m (m = 1, . . . ,M) is160

modeled as:161

xim = Wmuim + ϵim (1)

where Wm, the loadings, and uT
im = (ui1m, . . . , uiqm), the latent scores, vary with time.162

163

Unlike the PPCA model which constrains the covariance of the multivariate Gaussian164

distribution of the latent variables to be an identity matrix, the DPPCA model eases the165

equal variance restriction such that166

p(uim) = MVNq(0,Hm)

where Hm = diag(h1m, . . . , hqm). This assumption allows the variances of the underlying167

latent variables to differ across the latent dimensions and to depend on time.168

169

The error, ϵim, for animal i at time m is also assumed to have a multivariate Gaussian
distribution:

p(ϵim) = MVNp(0, σ
2
mI).

Again, the variance parameter σ2
m varies with time. The errors, ϵim and the latent variables170

(or scores), uim are assumed to be mutually independent for all m = 1, . . . ,M .171

172
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While the variance parameter of the error terms σ2
m varies with time, it is constrained to173

be constant across all observed variables. This is in line with the assumptions of the under-174

lying PPCA model; should the variances be unconstrained across variables a dynamic factor175

analytic model results (McNicholas and Murphy, 2008; Aguilar and West, 2000). Thus the176

DPPCA model can be viewed as a constrained dynamic factor model.177

178

The choice of developing the DPPCA model, rather than employing an alternative dy-179

namic factor model to analyse the metabolomic data under study, deserves explanation.180

The manner in which time dependence is accounted for in the DPPCA model, and the181

constraints employed, are motivated by the explicit needs of the motivating metabolomics182

application. The metabolomics practitioners are interested in time evolving metabolites,183

hence the need for a different loadings matrix at each time point, leading to a highly pa-184

rameterised model. Further, strongly motivated by the ubiquitous use, understanding and185

acceptance of PCA in the metabolomics field (Smolinska et al., 2012; Cassol et al., 2013;186

Carvalho et al., 2013; Bathen et al., 2013; Sachse et al., 2012), maintaining a link to PPCA187

was deemed to be highly desirable. As the link to PPCA occurs by constraining the er-188

ror variances to be equal, this modelling decision satisfied the metabolomic scientists, and189

provided a more parsimonious model than a generic dynamic factor model. The appropri-190

ateness of the DPPCA model assumptions are assessed after model fitting in Section 5.4,191

using posterior predictive model checking.192

3.3. Stochastic Volatility Models193

Stochastic volatility models (Jacquier et al., 1994; Kim et al., 1998) are popular in econo-194

metrics and finance where they are typically employed to model the variance of returns over195

time, which are highly correlated. The DPPCA model accounts for the correlation due to196

repeated measurements through the use of stochastic volatility (SV) models. Specifically,197

the DPPCA model assumes that at time point m the variances h1m, . . . , hqm of the latent198

variables and the error variances σ2
m follow a latent stochastic process. These assumptions199

allow the DPPCA model to account for any potential time dependence in longitudinal mul-200

tivariate data.201

202

Again, the motivation behind the incorporation of SV models in DPPCA requires ex-203

planation. While SV models typically model settings with many time points (Aguilar and204

West, 2000), they have been employed when modelling longitudinal multivariate data, where205

the number of time points is low. Ramoni et al. (2002), Fang-Xiang et al. (2005) and Wang206

et al. (2008), for example, employ SV models for modelling high dimensional time course207

data where the number of time points ranges from 8 to 18. Hence the SV model was deemed208

suitable to model the evolution of the latent variables over time. The appropriateness of209

the SV model assumptions is assessed after model fitting in Section 5.4.210

3.3.1. A stochastic volatility model for the latent variables211

An SV model on the latent variable uijm of animal i (i = 1, . . . , n) for principal component212

j (j = 1, . . . , q) at time point m (m = 1, . . . ,M) can be expressed as:213

uijm = exp(λjm/2)ζijm
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where λjm = log(hjm) is known as the log volatility and ζijm, which has a standard univari-214

ate Gaussian distribution, denotes the error term of the SV model. Thus the conditional215

distribution of the latent variable is uijm|λjm ∼ N [0, exp(λjm)]. The q-vector of log volatil-216

ities, λT
m = (λ1m, . . . , λqm), is assumed to have a stationary first order vector autoregressive217

process VAR(1) centered around a mean µT = (µ1, . . . , µq):218

λm = µ+ Φ(λm−1 − µ) +Rm

where Φ is a matrix of persistence parameters and Rm ∼ MVNq(0,V ) are independent in-219

novations. The model restricts dependencies across the principal dimensions by constraining220

the matrix of persistence parameters Φ and the covariance of the innovations V to be di-221

agonal i.e. Φ = diag(ϕ1 , . . . , ϕq) and V = diag(v2
1 , . . . , v

2
q ) respectively. The innovation222

variance v2j is the uncertainty associated with predicting the current log volatility using223

the log volatility from the previous time point on component j. The persistence param-224

eter Φ is the parameter of interest; it measures the strength of the relationship between225

time points. For stationarity, the persistence parameter ϕj is constrained to lie between226

-1 and 1 (Kim et al., 1998). The initial state, by stationarity, is drawn from the model227

p(λ1) = MVNq[µ, diag(
v2
1

1−ϕ2
1
, . . . ,

v2
q

1−ϕ2
q
)]. The distribution of the log volatilities λm given228

the log volatilities of the previous time point λm−1 is given by MVNq[µ+Φ(λm−1 −µ),V ]229

for m > 1.230

231

Constraining the covariance matrix V to be diagonal is a modelling decision motivated232

by the fact that the PPCA model does not facilitate dependence across the principal com-233

ponents and PPCA underpins the DPPCA model, as detailed in Section 3.2. Such a model234

was considered by Harvey et al. (1994), Kim et al. (1998) and Jacquier et al. (1995) among235

others; Aguilar and West (2000) allow correlation across dimensions, motivated by their236

financial application area.237

3.3.2. A stochastic volatility model for the errors238

Additionally, another SV model is adopted to model the potential time dependence in the239

errors of the DPPCA model. The p-vector of errors of observation i at time m can be240

expressed as ϵim = exp[ηm/2]ξim where ηm = log(σ2
m) is the log volatility at time m and241

ξim ∼ MVNp(0, I). The log volatilities ηm on the errors are assumed to have a stationary242

first order autoregressive process AR(1):243

ηm = ν + ϕ(ηm−1 − ν) + rm

where the center of the AR(1) model is ν and the persistence parameter ϕ is constrained244

such that ϕ ∈ [−1, 1]. The innovations of the AR(1) model are assumed to be normally245

distributed, rm ∼ N(0, v2). It follows that the initial state of the SV model is p(η1) =246

N(ν, v2

1−ϕ2 ) and that p(ηm|ηm−1) = N [ν + ϕ(ηm−1 − ν), v2] for m > 1. Note that, as stated247

in Section 3.2, to maintain the link to PPCA and for reasons of parsimony, each of the p248

dimensions in the error ϵim are constrained to follow the same AR(1) model.249
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4. Estimation of the DPPCA model250

Under the DPPCA model, the full augmented data likelihood function based on the data251

X = (X1, . . . ,Xn) and the latent variables U = (U1, . . .Un), Λ = (λ1 , . . . ,λM ) is:252

p(X,U,Λ,η|W, θ1 , θ2 ) =

[
M∏

m=1

n∏
i=1

p(xim|Wm,uim, ηm)p(uim|λm)

]
p(η|θ1)p(Λ|θ2 )

where θ1 = (ν, ϕ, v2) and θ2 = (µ,Φ,V ) denote the SV model parameters on the errors253

and latent scores respectively. The PPCA model on each time point p(xim|Wm,uim, ηm)254

is MVNp[Wuim, exp(ηm)I].255

256

A Bayesian approach is taken when estimating the DPPCA model; this requires the257

specification of prior distributions for all the model parameters. The resulting posterior258

distribution is intricate and Markov chain Monte Carlo methods are necessary to produce259

realizations of the model parameters. Specifically, a Metropolis-within-Gibbs algorithm is260

required to sample from the full conditional distributions for all model parameters and la-261

tent variables.262

263

4.1. Prior distributions264

Prior distributions over the full set of the model parameters need to be specified. It265

is assumed that the prior distributions on the model parameters are independent. Un-266

der the PPCA part of the DPPCA model, the only parameters are the loadings matrices267

W1, . . . ,WM . A q-dimensional multivariate normal prior distribution, centered at 0 with268

covariance Ωm , is assumed for each row of the loadings matrix Wm at time m.269

270

The remaining model parameters are all parameters of the SV part of the DPPCA model.271

Non-informative normal prior distributions are specified on the means of the SV models i.e.272

a N(µν , σ
2
ν) distribution is specified for ν and a N(µµ, σ

2
µ) distribution is assumed on each273

of the univariate elements of µ, where the variance hyperparameter in each of these priors274

is large. A conjugate prior is assumed for the variances of the innovations in the SV models275

i.e. an inverse gamma IG(α/2, β/2) distribution is chosen for the prior distribution of v2276

and for each of the diagonal elements of V . For stationarity, the persistence parameters of277

the SV models are constrained to lie in [−1, 1]; accordingly the prior distributions on ϕ and278

on the diagonal elements of Φ are truncated normal distributions, N[−1,1](µϕ, σ
2
ϕ).279

280

As in any Bayesian setting, the choice of prior distribution can potentially influence281

parameter inference. Sensitivity analyses were conducted to assess the influence of different282

choices of priors on the resulting posterior distribution. Some sensitivity was observed in283

the case of the persistence parameters. Kim et al. (1998) employ a transformed beta prior284

for the persistence parameters, but sensitivity analyses here suggested that the posterior285

distribution strongly depended on the values of the hyperparameters used. In a similar286

setting to the DPPCA model, Aguilar and West (2000) employ a truncated (between ±1)287

Gaussian prior for the persistence parameters; the posterior distributions were less sensitive288

to the parameter specification under this prior. Thus, a Gaussian prior, truncated (between289

±1), was employed here for the persistence parameters.290
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4.2. The Metropolis-within-Gibbs sampler291

Given the specified prior distributions, the resulting posterior distribution is intricate and292

Markov chain Monte Carlo (MCMC) methods are required to produce realizations of the293

model parameters. The full conditional distributions for the loadings matrices Wm, the294

latent scores Um, the SV model means ν and µ, and the SV model innovation variances295

v2 and V exist in standard form, and a straightforward Gibbs sampler can be employed to296

draw samples. However, the full conditional distributions for the persistence parameters ϕ297

and Φ and for the log volatilities Λ and η are not available in closed form; values from these298

distributions are therefore sampled using a Metropolis Hastings step. Hence a Metropolis-299

within-Gibbs algorithm (Gilks et al., 1996) is required to sample from the full conditional300

distributions for all model parameters and latent variables. Carlin and Louis (2000) detail301

the conditions necessary for the convergence of such a hybrid algorithm.302

303

Detailed derivations of the full conditional distributions for the DPPCA model param-304

eters and latent variables are given in the Supplementary Material. For the Metropolis-305

Hastings steps to update the log volatilities, proposal distributions which are closely related306

to the shape and orientation of the target full conditional distributions provide an im-307

proved rate of convergence. To achieve this, second order Taylor expansions of the full308

conditional distributions for η and Λ are employed to guide the choice of an effective pro-309

posal distribution and its parameter values (Kim et al., 1998). A summary of one sweep of310

the Metropolis-within-Gibbs sampler for the DPPCA model is given in the Supplementary311

Material.312

4.3. Model Identification313

As with factor analytic models, the DPPCA model suffers from identification issues. Sub-314

jecting the loadings matrix and latent scores to an orthogonal rotation gives rise to the same315

distribution for the observed data. Thus it is not possible to identify the model parameters316

from the observed data unless restrictions are imposed.317

318

Many attempts to deal with non-identifiability of the related factor analytic models are319

detailed in the literature. Most commonly, a unique model is defined by constraining the320

loadings matrix such that the first q rows are lower-triangular with positive diagonal ele-321

ments (Geweke and Zhou, 1996). However imposing this structure also imposes structure322

on the ordering of the variables (Aguilar and West, 2000). Within the context of the mo-323

tivating metabolomics application, such a structure cannot be imposed on the variables as324

the ordering of the spectral peaks within a metabolomics spectrum is important.325

326

The approach taken here is to estimate a fully unconstrained loadings matrix using327

the Metropolis-within-Gibbs sampler detailed in the Supplementary Material. Procrustean328

techniques (Borg and Groenen, 2005) are then employed to post-process the sampled load-329

ings matrices to match them to the maximum likelihood estimate (MLE) of the loadings330

matrix resulting from fitting a PPCA model to data from the relevant time point. The331

MLE is used only as a template, to identify the model. The transformation required to332

match the loadings matrices is also applied to the latent scores. In practice, this has proved333

to be a fast and satisfactory approach to dealing with model non-identifiability.334
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5. Results335

As detailed in Section 2, three specific issues associated with the longitudinal metabolomics336

study need to be addressed: (i) data visualisation, (ii) assessing the effect of time within337

each treatment group and (iii) identifying the specific metabolites which change over time338

within each treatment group. The DPPCA model, in combination with linear mixed models,339

is fitted to the longitudinal metabolomics data set to address these issues. For reasons of340

visual clarity, only models with q = 2 were considered. For each set of results detailed341

below, the prior distributions employed for the DPPCA model parameters were specifically:342

wkm ∼ MVNq(0, I) for k = 1, . . . , p and m = 1, . . . ,M.

ν ∼ N(0, 10)

v2 ∼ IG(6/2, 0.5/2)

ϕ ∼ N[−1,1](0.75, 0.1)

The priors on the univariate entries of the set of parameters θ2 = (µ,Φ,V ) were the343

same as those for θ1 = (ν, ϕ, v2). The Metropolis-within-Gibbs sampler was run for 500,000344

iterations, thinned every 500th iteration. The first 5,000 iterations were discarded as burn-in.345

The MCMC algorithm was initialized using estimates of the loading matrices from fitting346

a PPCA model to data from each time point independently; stochastic volatility model347

parameters were set equal to their prior means. Trace plots and autocorrelation function348

(ACF) plots for the MCMC samples of the parameters were used to assess convergence of349

the algorithm.350

5.1. Data Visualisation: Exploring Metabolomic Trajectories351

In longitudinal metabolomics studies, trajectories through the latent principal subspace can352

be used to gain visual insight to the response of animals during the study period. Examin-353

ing the location, magnitude and direction of these metabolomic trajectories provides visual354

insight to the metabolomic changes over time.355

356

Here metabolomic trajectories were estimated using the latent scores of animals resulting357

from collectively modelling data from both treatment groups using a DPPCA model. Such358

a model takes into account the covariation between the metabolites and any correlation359

across time; this facilitates visualisation of animals in a reduced dimensional space, while360

appropriately modelling the time course nature of the data. Trace plots for the estimated361

latent scores and loadings are given in the Supplementary Material.362

363

The metabolomic trajectories of four randomly sampled animals are illustrated in Fig-364

ure 2. Under the DPPCA model, each time point m has a different principal subspace,365

defined by the columns of the relevant loadings matrix Wm. Hence the latent scores of366

animals at different time points lie in different subspaces. To visualise the metabolomic367

trajectories the latent scores must therefore be unified. This is achieved by again drawing368

on Procrustean ideas, where the loadings matrix from the first time point is used as the369

reference matrix. The loadings matrix from each subsequent time point m is rotated to best370

match the loadings matrix from the first time point; the same rotation is then applied to the371

associated set of scores from time point m. This facilitates illustration of the movement of372

the latent scores over time within the same principal subspace. Figure 2 therefore provides373
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visual insight to the animals’ metabolomic trajectories in the principal subspace from the374

first time point.375

376
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Fig. 2. Individual trajectories for four randomly sampled animals, in the principal subspace from the
first time point. (a) An animal from the control group (black solid lines) and an animal from the treated
group (red dashed lines) and (b) an animal from the control group (black solid lines) and an animal
from the treated group (red dashed lines). The digits represent the time points of the study and
arrows illustrate movement through time.

Figure 2 suggests the presence of a treatment effect through the visible separation of the377

locations of the treated and control animals in the principal subspace from the first time378

point. The difference in the biochemical composition of the urine due to treatment is high-379

lighted by the different ‘metabolic starting positions’ of the trajectories for the randomly380

selected animals from the control group and those from the treatment groups. This is due381

to the fact that the urine samples analysed at time point 1 actually resulted from day 3 of382

the study, at which stage the treatment is apparently having an effect.383

384

The trajectories also demonstrate that the magnitude of the metabolic changes in the385

biochemical composition of the urine samples is much greater in the treatment group than in386

the control group, over time. This is evidenced by the larger movements between time points387

by the treated animals. This shows that the variability in the urinary composition of the388

treated animals over time is greater than that in the control group. Thus, the metabolomic389

trajectories provide a visual insight to the metabolomic changes occurring over time.390

391
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5.2. Exploring the Effect of Time392

The second aim of the longitudinal study was to ascertain if there is a time effect within393

each treatment group. In an effort to quantify the effect of time, the DPPCA model was394

fitted separately to each treatment group. If a time effect is established, the task will then395

be to identify metabolites whose concentration level is significantly changing over time.396

5.2.1. Exploring the Effect of Time in the Treatment Group397

The DPPCA model was fitted to the metabolomic spectra from the animals in the treat-398

ment group. The persistence parameters in the SV models are the parameters of interest399

as they quantify the strength of the relationship between the time points. Figure 3(a) il-400

lustrates the posterior distribution of the persistence parameter (ϕ) of the SV model on401

the errors. The relevant trace and ACF plots are given in Figure 3(b) and Figure 3(c) re-402

spectively. The posterior mean of ϕ was large and positive (ϕ̂ = 0.69) and significant (95%403

quantile based credible interval (CI) (0.15, 0.97)). The persistence parameters of the SV404

model on the latent variables for PC 1 and PC 2 were also estimated to be large and signifi-405

cant at ϕ̂1 = 0.64 (0.07, 0.97) and ϕ̂2 = 0.66 (0.08, 0.97), respectively. The posterior means406

suggest that a positive time dependency exists among the spectra from the treatment group.407

408

φ

D
e

n
s
it
y

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

(a)

0 200 400 600 800 1000

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Thinned Iteration Number

φ

(b)

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

(c)

Fig. 3. The persistence parameter, ϕ, of the SV model on the error variances in the treatment group:
(a) plot of the posterior density, (b) trace plot and (c) ACF plot. The horizontal line in (b) illustrates
the posterior mean of ϕ.

Given that a time effect has been established, the third aim of the study was to identify409

the specific metabolites which change over time within the treatment group. This is achieved410

by first using the DPPCA model to expose those metabolites which influence the data struc-411

ture at each time point. Under the DPPCA model, this translates to identifying a subset412

of metabolites whose posterior mean loadings are largest (in terms of magnitude) at each413

time point. Standard linear mixed models are then fitted to these ‘influential metabolites’414

to identify those which change over time. This approach yields a panel of metabolites which415

evolve over time, while appropriately accounting for the covariation in the high-dimensional416

data, and the time related dependencies.417

418
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Table 1. Posterior means of the persis-
tence parameters and the correspond-
ing 95% CIs for the control group.
SV model Estimate (95% CI)

Errors (ϕ) 0.66 (0.09,0.98)
PC 1 (ϕ1) 0.65 (0.10,0.98)
PC 2 (ϕ2) 0.66 (0.07,0.97)

After fitting the DPPCA model to the spectra from animals in the treatment group,419

several spectral regions (corresponding to metabolites) were identified as influencing the420

underlying structure of the data. At each time point, the absolute values of the posterior421

mean loadings on PC1 were ranked in descending order. The top five influential spectral422

bins at each time point were determined and are shown in Figure 4. None of the 95%423

CIs associated with these spectral bins included zero. The set of the top five spectral bins424

across all M = 8 time points consists of only eight unique spectral bins (2.46ppm, 2.54ppm,425

2.58ppm, 2.66ppm, 2.7ppm, 2.74ppm, 3.02ppm and 3.26ppm).426

427

Bayesian linear mixed models were fitted to the data associated with the eight unique428

influential spectral bins to determine which, if any, have concentrations which evolve over429

time. A random intercept model with cubic time effect was the most complex model consid-430

ered; no interaction terms were considered. A backwards selection type approach was taken431

to model selection for each spectral bin considered. Of the eight spectral bins considered,432

six were deemed to have significantly fluctuating concentration levels over time. Figure 5433

illustrates the predicted average intensity levels for each of the six spectral bins.434

435

The metabolites identified to be evolving over time include the metabolite 2-oxoglutarate,436

represented by the spectral bins 2.46ppm and 3.02ppm. The concentration level of 2-437

oxoglutarate decreases initially during the study and increases at later time points, as438

illustrated by the similar behaviour of the predicted intensities of 2.46ppm and 3.02ppm in439

Figure 5. The model also predicts a linear decreasing metabolic time profile for spectral bin440

2.7ppm. Spectral bin 2.54ppm has a positive quadratic time effect in the treated animals441

i.e. the concentration level decreases and then increases over time. Spectral bins 2.58ppm442

and 3.26ppm have a positive linear time trend. Individual animal and predicted profiles for443

three of the six evolving spectral bins are given in the Supplementary Material.444

5.2.2. Exploring the Effect of Time in the Control Group445

To establish the presence or absence of a time effect in the control group of animals, and446

to subsequently highlight those metabolites which evolve over time, the same approach as447

that taken in Section 5.2.1 was followed. That is, the DPPCA model was fitted to the448

spectra of animals in the control group only; Table 1 details the posterior means of the449

persistence parameters of the SV model on the errors and on the latent variables, with their450

corresponding 95% CIs. Table 1 shows that the persistence parameters of the SV models451

are large and significant, suggesting that there is a relationship across time.452

453

Given that a time effect has been established in the control group, interest then lies in454

highlighting those metabolites which evolve over time. The posterior mean PC1 loadings of455
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Fig. 4. Barplots of the posterior mean loadings for the top five influential spectral bins, which cor-
respond to metabolites, in the treatment group. The error bars are the corresponding 95% quantile
based credible intervals.
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Fig. 5. The LMM predicted average intensities of the six influential spectral bins which evolve over
time in the treatment group.

the DPPCA model were ranked to select the top five influential spectral bins at each time456

point; again, none of the associated 95% CIs included zero. From this list of spectral bins,457

those which evolve over time in the control group were identified. Seven unique influential458

spectral bins were ranked in the top five over the eight time points; Bayesian LMM models459

were fitted to the profiles for each of these and all seven were identified as evolving over460

time. Figure 6 illustrates the predicted average intensity levels over the eight time points,461

under the selected LMM for each of the seven evolving spectral bins.462

463

The metabolite 2-oxoglutarate (with corresponding spectral bins 2.46ppm and 3.02ppm)464

was predicted by the Bayesian LMM to have a negative quadratic time effect in the control465

group i.e. its concentration increases and then decreases over time (see Figure 6). Spectral466

bins 2.54ppm and 3.42ppm have positive quadratic time effects. The remaining evolving467

spectral bins (2.58ppm, 2.7ppm and 3.26ppm) have cubic time effects. Individual animal and468

predicted profiles for three of the seven evolving spectral bins are given in the Supplementary469

Material.470

5.3. Comparing evolving metabolites in the two treatment groups471

As the aim of the longitudinal metabolomics study was to determine metabolic changes that472

occur over time during PTZ treatment, of interest are the similarities and differences be-473

tween the set of evolving metabolites in the treatment group and the set in the control group.474

475

A total of six spectral bins were highlighted as evolving in the treatment group and476

seven in the control group. There is considerable overlap between the two sets of evolving477
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Fig. 6. The LMM predicted average intensities of the seven influential spectral bins which evolve over
time in the control group.

bins, with 3.42ppm evolving in the control group only. While some of the common spec-478

tral bins had the same evolution pattern, some differed. In particular, the spectral bins479

2.46ppm and 3.02ppm relating to the 2-oxoglutarate metabolite were predicted to have op-480

posite quadratic effects in the treatment group and in the control group. Figure 7, which481

shows the predicted average intensities for these two spectral bins only in both treatment482

groups, clearly illustrates this phenomenon. The biological basis of the diverse response of483

this metabolite will be investigated in future metabolomic experiments.484
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Fig. 7. The LMM predicted average intensities of the two spectral bins 2.46ppm and 3.02ppm which
relate to the metabolite 2-oxoglutarate in (a) the treatment group and (b) the control group.
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5.4. Assessing model fit486

As with any applied statistical analysis, the modelling assumptions employed need to be487

assessed to ensure valid inference. In the case of the DPPCA model, the modelling assump-488

tions are the multivariate Gaussian distribution for the latent variables and the error terms,489

and the stochastic volatility model assumed to control the evolution of the latent variables490

over time. Posterior predictive model checking (Gelman et al., 2003) was employed to assess491

these modelling assumptions. Replicated data were simulated from the posterior predictive492

distribution and compared to the observed data from each treatment group. Given the493

multivariate nature of the data, the replicated and observed data were compared by exam-494

ining the mean absolute deviations (MADs) between the covariance matrix of the observed495

data and the covariance matrix of the replicated data at each time point (Ansari et al.496

(2002)). The resulting MADs suggested that the DPPCA model fits well since the vast497

majority of the deviations were close to zero. A histogram of the MADs is available in the498

Supplementary Material. There were some large MADs (6% of MADs were > 1 for the499

treatment group data and 4% for the control group data) but given the large number of500

covariance parameters being compared, this was not viewed as sufficient evidence of invalid501

assumptions and poor model fit. The few large MADs may arise due to the fact that the502

number of latent dimensions was fixed at 2 (for visual substantive reasons), and that some503

parameters were constrained (for reasons of parsimony). Fitting a higher dimensional and504

less parsimonious model to the time course metabolomic data is an area of further research.505

6. Discussion506

analysing longitudinal data from metabolomics studies is problematic due to the dimen-507

sionality of the data, the correlated metabolites and correlation structure due to repeated508

measurements over time. Many currently existing approaches to analysing such data sets509

either have the limitation of confounding treatment variation with variability due to the510

longitudinal nature of the data or they ignore the fact that metabolites do not work inde-511

pendently of each other. Here the DPPCA methodology has been proposed which combines512

probabilistic PCA and stochastic volatility models to disentangle the two types of variation513

in the data, while also accounting for its high-dimensionality.514

515

The DPPCA model successfully addressed the aims of the metabolomic study i.e. vi-516

sualising the metabolomic trajectories through time, quantifying the effect of time, and517

highlighting metabolites which evolve over time. Importantly, the DPPCA model high-518

lighted the contrasting behaviour of the 2-oxoglutarate metabolite between the two treat-519

ment groups under study. Future work will examine further this contrasting behaviour.520

521

Many areas of further research naturally arise from the DPPCA model. From a practi-522

cal viewpoint, fitting the DPPCA model is computationally expensive, mostly due to the523

costly sampling of the log volatilities. Several approaches to sampling log volatilities for524

SV models are suggested and reviewed by Jacquier et al. (1994); Kim et al. (1998) and525

Platanioti et al. (2005). Further work in this area would expedite the convergence of the526

MCMC chain. Also, while data from 16 times points were collected, only 8 time points were527

analysed here, due to missing data. Imputation of such data would potentially be feasible528

within the model fitting algorithm.529

530
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Motivated by the real application area, only principal subspaces of dimension 2 were531

considered here; clearly the choice of dimensionality can be viewed as a model selection532

issue and any of the myriad of approaches to model selection in the Bayesian paradigm533

by evaluating the marginal likelihood could be employed; Friel and Wyse (2012) provide534

a review of such approaches. However, it is anticipated that such approaches would be535

computationally expensive in the setting of the DPPCA model. Minka (2000) proposes a536

computationally efficient approach to selecting the optimal dimensionality in PCA, which537

might also provide a possible solution to the model selection problem here.538

539

In terms of the DPPCA model itself, the manner in which the dynamics are modelled in540

the DPPCA model raises further research questions. Alternative approaches to modelling541

the time dynamics should be examined, for example (as suggested by a referee) using state-542

space models for the loadings matrix. Further, research into a random effects PPCA model543

to model such longitudinal metabolomics data is underway (Nyamundanda et al., 2013).544

The DPPCA approach proposed here can be thought of as an approach to identifying545

the subset of influential variables, which are then analysed via LMMs to highlight those546

which are time evolving. Hence, the issue of multiple testing is reduced but not eradicated547

under the DPPCA model; this could be addressed by employing a hierarchical modelling548

framework (Gelman et al., 2003). Further, the proposed DPPCA approach to highlighting549

time evolving metabolites requires a two step process: fitting a DPPCA model, followed by550

fitting LMMs. A more elegant approach would combine the ideas underlying both models551

into a single model. Clearly the development of the DPPCA model gives rise to many and552

varied areas of future work.553
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