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Abstract— Recent work, using electrical distance metrics and 

concepts from graph theory, has revealed important results 

about the electrical connectivity of empiric power systems. Such 

structural features are not widely understood or portrayed. 

Power systems are often depicted using unenlightening single line 

diagrams, and the results of load flow calculations are often 

presented without insightful elucidation, lacking the necessary 

context for usable intuitions to be formed. For system operators, 

educators, and researchers alike, a more intuitive, accessible 

understanding of a power system’s inner electrical structure is 

called for. Data visualization techniques offer several paths 

towards realizing such an ideal. The present paper proposes 

various ways electrical distance might be defined for empiric 

power systems, and records how well each candidate distance 

measure may be embedded in two dimensions. The resulting two-

dimensional projections form the basis for new visualizations of 

empiric power systems, and offer novel, useful insights into their 

electrical connectivity and structure. 

Index Terms—Data visualization, power system structure, Zbus 

matrix 

I. INTRODUCTION 

s early as 1993, the authors of [1] emphasised the value 

of visualizing power system data using a “natural 

encoding that most people could grasp easily and without 

interpretation”. This injunction echoes Edward Tufte’s 

seminal works on effective data visualization [2-4]. By 2012, 

the partial review of [5]  noted that there still no “best 

practice” for visually representing power system data.  Since 

the mid 1990s, various researchers have proposed ways of 

improving the humble single line diagram, with Dr. Thomas 

Overbye and his collaborators making noteworthy 

contributions here ([6] surveys several of his contributions). 

Some typical examples from the literature: [7, 8] added 

coloured contour lines to portray voltage magnitudes; [9, 10] 

added a third-dimension above the diagram plane to visualize 

various data;  [11] discussed ways of superimposing real-time  

market data. The authors of [5] noted the recent paucity of 

works building on these contributions: “since then, 

surprisingly few new ideas […] have been presented”  

One shortcoming in each of the foregoing works is that 

plotted bus positions remain substantially arbitrary, and 

exhibit no meaningful “natural encoding”. While there are 

some examples in the literature of algorithmic bus positioning 

[12-14], none of these methods locate nodes in a way that is 

defensibly electrically meaningful. A rare example of system 
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diagrams based on meaningful electrical distances is given in  

[15], though results are only shown for a small 14 bus system. 

For cognitive reasons, two nodes drawn in close proximity 

are likely to be perceived as being in the same group or cluster 

[16, 17]. As such, an arbitrarily laid out single line diagram 

may give the erroneous impression that an isolated node is 

well-connected, or that a central node is electrically remote.  

A first step to rectify this would be to scale each branch’s 

length such that it corresponds to its impedance. Force-

directed graph layout algorithms (e.g [18]) can achieve this, 

and they have been deployed in this role [12, 19]. The 

treatment of [12] is comprehensive, and the visualization they 

present was shown in usability trials to aid system operators in 

identifying salient features of the power system, for instance 

allowing rapid and easy recognition of several diverse 

synchronous islands. The authors concluded: “there is a 

tremendous value to leveraging the existing visualization 

knowledge base to a field that has traditionally not expended 

significant resources in the area” 

This paper takes its cue from this exhortation, and also 

seeks to extend, and articulate, some recent results on 

electrical connectivity and centrality in empiric power 

systems. Electrical power systems can be viewed as undirected 

complex graphs; from this perspective [20], which disregards 

the physics of electrical power flow, various works [21-25] 

have sought to classify empiric power systems using such 

classic topological descriptors as node degree. While 

consensus has not always been reached, the state of the art 

allows the synthesis of artificial networks that resemble 

existing power systems in their topological structure [26]. 

One motivation for taking a graph theory approach to 

power systems is to better understand system vulnerability to 

attack or component failure (as in [24, 27-29]), especially 

given the interesting observed fact that the severity of power 

system black-outs [30], like terrorist atrocities [31], follow a 

power-law distribution. This is plausibly a consequence of 

some structural power-law distribution in electrical networks, 

however trying to infer the vulnerability of a power system 

from basic topological measures remains quite dubious [32]. 

Purely topologic models of a power system offer only limited 

insight into how a system will behave, as they neglect the 

physical flow equations that govern power propagation 

through the network.  

More useful insights are possible when the electrical 

realities of a power grid are united with a complex graphs 

analytic perspective. For instance, [33] defined a meaningful 

measure of electrical distance on power systems, and used it to 

show that empiric systems tend to have a number of core 

nodes possessing high “electrical centrality”. This fact is not 

properly revealed by purely topologic centrality metrics, nor is 
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this perspective emphasised in traditional electrical 

engineering approaches. Drawing on similar insights, [34] 

used cognate concepts of electrical proximity to divide a 

power system into meaningful network zones; [35] used 

spectral clustering and embedding techniques to partition and 

visualise power systems; [36] defined an electrically 

meaningful centrality metric to identify critical components; 

[37] used an impedance-based graph metric to assess a power 

system’s robustness to cascading failure. 

The novel techniques given in the present work permit a 

deeper understanding of the power grid’s role as an 

interconnected electromechanical system of systems. The 

principal methodology used is multidimensional scaling, 

which allows electrical distance measures to be projected into 

a visually tractable two-dimensional plane. For the first time, 

this work defines a number of candidate electrical distance 

measures, and records how well each can be projected into 

two dimensions. To this end, a valuable technique for 

calculating inter-node Thevenin impedances is discussed. The 

application of multidimensional scaling with certain distance 

measures reveals an entirely new perspective on power 

systems, where the electrical realities of the network are 

explicitly portrayed. This new portrayal offers new insights on 

the electrical structure, and voltage performance, of power 

systems, and also shows the distinct qualities of the 

transmission and distribution systems. Finally, a validatory 

application is presented, where a power system is divided into 

electrical zones based on its two-dimensional projection. 

The visualization methodology is described in Section II. 

Results, and example layouts, for various common test power 

systems are provided in Section III. A partitioning application, 

and partial validation, of the technique is given in Section IV, 

with discussions and conclusions given in V. 

II. VISUALIZATION METHODOLOGY 

A.  Multidimensional Scaling 

How can a matrix of inter-node electrical distances, 

howsoever defined, be converted to a meaningful 

representation of the power system? The well-established 

statistical technique of multidimensional scaling [38, 39] 

offers the required visualization capability [15, 40]. 

Multidimensional scaling methods use iterative techniques 

to position each node, in an arbitrary number of dimensions, 

N, so that the fitted distances between node pairs, dij, are 

maximally consistent with the desired input distances, d*
ij. 

The present work uses the Sammon stress function [41], 

which defines the error function, E, to be minimised thusly:  
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This function can be minimized using iterative gradient 

descent methods, and its final value suggests a goodness-of-fit 

for the embedding of d*
ij into the N chosen dimensions. 

Multidimensional scaling is one of many dimensionality-

reduction techniques [42]. It is selected in this instance 

because it explicitly seeks to preserve inter-node distances, 

and so the resulting projections can be dimensioned in 

explicitly electrical units. 

B.  Candidate Distance Measures 

The recent work of Hines et al. [22, 33, 43] as well as 

Bompard et al. [27, 44, 45] points towards the role of inter-

node electrical distance measures in elucidating the structural 

features of power systems. Earlier works have used electric 

distance measures in a number of roles: [46] introduced node-

to-node voltage attenuation distances and used them in 

identifying voltage control zones; [47] used the same in 

assessing system voltage security; [48] to partition a system 

into localized reactive power markets; [49] used impedance 

sub-matrices to relate load and generator voltages as a distance 

metric for transmission use-of-system charging; later, and 

seemingly independently, Abdelkader et al. [50-52] used 

closely related sub-matrices for power flow tracing and loss 

allocation purposes. 

A number of potential electrical distance measures of 

differing complexity are considered in the present work, 

relying variously on the simple topology of the system, the 

electrical connectivity of the system, and the Jacobian 

matrices formed in solving the ac power flow problem. 

These various measures are being trialled, in the first 

instance, to ascertain which can meaningfully be projected 

onto a two-dimensional plane. The motivation for such a 

projection is twofold: firstly, visualization is an established 

exploratory practice for revealing structures of interest in 

complex networks [53], and secondly, to demonstrate novel 

ways of representing power systems such that their operation 

can be understood in a more intuitive way, per [1]. 

Additionally, the range of distance measures considered 

allows instructive comparisons to be made between them. 

    1)  Thevenin Impedance Distance 

Consider first an intuitive measure, where the distance 

between two nodes is the equivalent Thevenin impedance 

between them, being the parallel combination of all impedance 

paths connecting them. Usefully, this can be calculated 

directly from the system’s Zbus matrix, which is simply the 

matrix inverse of the system’s Ybus matrix, the fundamental 

topological descriptor of the electrical system’s connectivity, 

corresponding [35] to the Laplacian matrix [54] for generic 

networks. The relevant calculation is given by Klein in [55] 

as: 

 
thev
ij ii jj ij jiZ Z Z Z Z     (2) 

where Zij denotes the (complex-valued) element in the ith 

row and jth column of the Zbus matrix, being the mutual 

impedance between those two buses. The symmetry of the Zbus 

matrix, in the absence of active elements [56], implies that Zij 

= Zji. Note that we can also decompose this into resistance and 

reactance, with Rthev = Re(Zthev) and Xthev = Im(Zthev) 

This manipulation gives the Klein Resistance Distance 

between the two nodes, in the power systems context 

equivalent to the Thevenin impedance [57]. This graph 
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distance measure is quite popular across various fields that 

model systems by analogy with electrical circuits (e.g 

communication networks in [58], fullerene isomers in [59], 

and genetic structuring across heterogeneous landscapes in 

[60]). It is perhaps surprising that it is not commonly used in 

the electrical ambit where it seems most directly applicable, 

though some rare examples in the power systems area exist 

[45, 61]. 

In transmission systems, branches are assumed to have a 

high X/R ratio, permitting application of the dc power flow 

approximations [62, 63]. Under these assumptions, the |Zthev
ij| 

distance predicts the change in voltage angle required to 

transmit a unit of active power from one bus, i, for reception at 

j, holding all other system quantities constant.  

Work such as [64] has proposed system voltage angle 

separations as being a key metric of system robustness, while 

[65] concludes that “phase angle differences serve as an 

excellent measure of system stress”. Conceptually, large 

voltage angle differences arise when substantial power flows 

are transacted over long electrical distances: the |Zthev| distance 

may help to visualize power systems so that such transactions 

can be easily identified.  

Note that the |Zthev| distance is independent of system 

loading, and can be calculated without power flow techniques. 

Crucially, it properly accounts for all the available current 

paths between two nodes; compare work such as [66, 67] 

where the impedance between nodes is approximated by 

summing impedances along the topologically shortest path. 

 The sum of all inter-node resistance distances is generally 

defined as the Kirchoff Index of a graph [55], a graph measure 

believed to be closely related to network robustness [68]. 

Recent work [37] has found a close relationship between this 

measure and a power system’s vulnerability to cascading 

failures.  

Finally, note that resistance distances are closely related to 

random walks on graphs [69], and to the eigenvalues and 

eigenvectors of the graph’s Laplacian, and they can be 

calculated by such means [70-72]. This is an example of 

spectral graph theory [54], whose application to power system 

problems has only recently emerged [35, 61, 73-76]. 

    2)  Mutual Impedance Distance 

Certain authors [43] have simply used the off-diagonal 

elements of a system’s Zbus matrix to populate a system 

distance matrix. The diagonal elements of the Zbus matrix are 

not generally zero, suggesting that it does not inherently 

encode distance information. The mutual impedances can be 

interpreted as giving the voltage at the i bus for a unit current 

injection at j, assuming open circuit conditions at all other 

buses: 

 0i
ij n j

j
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For the present work, the requirement for zeroes on the 

main diagonal is artificially enforced as follows, to populate 

the Zmut distance matrix as follows: 

 
|

|0

i jijmut
ij

i j

Z
Z






 


 
(4) 

    3)  Power Transfer Distance 

The dc power flow approximations can be further extended 

to capture the aggregate effect on branch flows for a power 

transfer between a sending bus i and a receiving bus j. While 

|Zthev
ij| indicates the voltage angle change needed to realise 

this, how will this voltage angle shift affect flows in each 

branch of the system? Such altered branch flows have been 

described in the regulatory context using Power Transfer 

Distribution Factors [77]. Using a similar approach, a new 

electrical distance measure is here proposed, PTij. This gives 

the total shift in active power flows, FP, across all branches, B, 

in the entire system, for a unit active power injection at i and 

withdrawal at j: 

 
1, 1

P
ij B
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 (5) 

Note that this measure takes an absolute value for power 

flow shifts: for a particular transaction, flows on certain 

branches will increase, and on others will decrease, while it is 

the aggregate shift that is being captured. The PT distance is 

closely related to the ideas of net-ability and power transfer 

capacity as described in [44], and also recalls current flow 

centrality metrics defined for generic graphs [78]. 

The PTij distance is proposed to indicate how much of a 

network’s assets are used in facilitating a transaction between 

two nodes. Given the fact that branches in a power system 

have maximum current limits, it seems plausible that regions 

separated by high PTij values will not be able to trade much 

power, and may exhibit divergent locational marginal prices 

[79]. 

    4)      Jacobian Distances 

The solution of the load flow problem yields a useful 

matrix of power flow sensitivities, the Jacobian:  

 
P
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This matrix relates the effect of an incremental complex 

power injection at a bus, i, on voltage magnitudes and angles 

at other buses, j. The authors of [33, 34] point out that the 

inverse of this matrix can also be manipulated to find Klein 

resistance distances [55]. Four matrices can be extracted from 

the Jacobian:  
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(7) 

The first two correspond to dc power flow intuition: JPƟ, 

which relates nodal active power injections, P, to voltage 

angle changes, Ɵ; and JQV, which relates reactive power 

injections, Q, to voltage magnitude changes, V. We can also 
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extract the contrary matrices, JPV and JQƟ, whose interpretation 

confounds the expectations of dc power flow. By taking the 

matrix pseudo-inverse [80] of each of these, notated J -1, we 

can apply the Klein distance formula to attain power flow 

sensitivity matrices that are conveniently free of slack-bus 

dependence:  

 
1 1 1 1( ) ( ) ( ) ( )ij ij P ii P ij P ji P jjP J J J J              (8) 

 
1 1 1 1( ) ( ) ( ) ( )ij ij QV ii QV ij QV ji QV jjV Q J J J J          (9) 

 
1 1 1 1( ) ( ) ( ) ( )ij ij PV ii PV ij PV ji PV jjV P J J J J          (10) 

 
1 1 1 1( ) ( ) ( ) ( )ij ij Q ii Q ij Q ji Q jjQ J J J J              (11) 

To clarify the notation: the first of these measures describes 

the incremental change in voltage angle difference between 

two nodes, (Ɵi - Ɵj), for an incremental injection of active 

power at i, and withdrawal at j, holding all other quantities 

constant. 

    5)  Topological Geodesic Distance 

 This is a fundamental topological distance measure, 

recording the minimum number of branches that must be 

traversed to travel from node i to node j.  This disregards the 

electrical realities of a power system, treating it instead as a 

simple unweighted, undirected graph. It can be calculated by a 

number of algorithms, all somewhat computationally 

intensive, the most popular of which is given by Djikstra [81]. 

The geodesic distance, dgeo
ij, provides a lower bound to the 

PTij measure: where the connection between i and j is purely 

radial, as is typical in distribution  systems [82], the two 

measures will be equal. 

III. RESULTS 

TABLE I  

ACHIEVED SAMMON STRESS VALUES, E, FOR EACH TEST SYSTEM (N = 2) 

 

  

rts_1_area 

[83] 

case30 

[84] 

case39 

[85] 

rts_2_area 

[83] 

case57 

[86] 

case118 

[86] 

case300 

[86] 

Thevenin Impedance |Zthev| 0.0261 0.0328 0.045 0.0229 0.0256 0.0333 0.0316 

Jacobian P   0.0317 0.0319 0.0377 0.0306 0.0294 0.0409 0.0195 

Shortest Path dgeo 0.0267 0.0457 0.0153 0.0165 0.059 0.0281 0.0349 

Power Transfer PT 0.0275 0.0447 0.0203 0.0295 0.0485 0.0383 0.0453 

Jacobian V Q   0.0446 0.0769 0.0437 0.0293 0.0284 0.0289 0.0187 

Jacobian V P   0.0243 0.1462 0.0417 0.1847 0.0298 0.1073 0.1769 

Mutual Impedance |Zmut| 0.1267 0.1453 0.1266 0.0914 0.1457 0.0397 0.3624 

Jacobian Q   0.1939 0.1329 0.2558 0.3363 0.1489 0.291 0.0728 

TABLE II 

LINEAR COEFFICIENTS OF DETERMINATION BETWEEN SELECTED DISTANCE MEASURES 

  rts_1_area case30 case39 rts_2_area case57 case118 case300 

R2 (|Zthev|, P  ) 0.9929 0.9972 0.9836 0.9827 0.9962 0.954 0.9951 

R2 (|Zthev|, V Q  ) 0.7667 0.9302 0.9724 0.9396 0.9933 0.9804 0.9927 

R2 (PT, dgeo) 0.8396 0.8398 0.9253 0.8604 0.8609 0.9057 0.8988 

R2 (Xthev, Rthev) 0.9077 0.7927 0.6635 0.9275 0.7821 0.9579 0.6937 

R2 (|Zthev|, PT) 0.4086 0.4821 0.6457 0.697 0.464 0.8109 0.0099 

 

A.  Implementation 

Multidimensional scaling and related visualizations were 

performed in MATLAB [87], and power system calculations 

were performed using the MATPOWER package [88]. Seven 

different test power systems, ranging in size from 24 to 300 

buses, were considered. 

B.  Distance Measure Suitability 

Interpreting the goodness-of-fit for a multidimensional 

scaling solution requires care [89]; while simulation studies on 

random distance data offer some insight on what stress values 

to anticipate [90, 91], as does Kruskal’s [38] original rule-of-

thumb for his stress function2; these alone do not fully capture 

the quality of a mapping. The Sammon stress values in Table I 

should be interpreted in this light, bearing in mind, too, that as 

they are the result of a randomly-initiated iterative process, 

they are subject to some variation. They are sorted in 

                                                           
2 He suggested these thresholds: .20 = poor, .10 = fair, .05 = good, .025 = 

excellent, and .00 = perfect. 
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ascending order, to identify which distance measures tend to 

have the most meaningful embedding in two dimensions (N = 

2). 

Fortunately, several of the candidate measures seem to 

embed consistently well into two dimensions. The |Zthev| 

measure is the best performing, showing that the impedance 

structure of a power system has a fundamentally two-

dimensional interpretation. It is useful and encouraging that 

this impedance structure can be portrayed in two dimensions 

with minimal distortion. 

Considering all the candidate measures, they appear to sort 

themselves into two groups: the upper five seem quite 

satisfactory, whereas the bottom three do not. Notably, these 

latter three measures do not command a meaningful intuitive 

interpretation. One does not expect the Ɵ/Q Jacobian 

measure to be insightful, as voltage angle separations are not a 

driver of reactive power flows; likewise, the V/P metric is 

at odds with conventional expectations for active power flows 

on a transmission system. Finally, the |Zmut| metric does not 

perform well as a distance measure, a result anticipated by its 

non-zero diagonal components. 

C.  Linear Regressions Between Distance Measures 

From Table II, it is seen that the Ɵ/P and V/Q 

measures are closely linearly related to |Zthev|, and this explains 

the similar stress values achieved for these measures in Table 

I. These Jacobian sensitivities necessarily derive from the 

underlying impedance structure of the power system, which is 

now seen to possess a substantially two-dimensional 

character. 

From Table II one can also note a reasonably close 

relationship between PT and dgeo, which shows, surprisingly, 

that even a naïve topological distance function can 

approximate how power flows in an electrical network. 

Interestingly, regressing PT against the electrically meaningful 

|Zthev| does not reveal pronounced linear correlation. Indeed, 

this comparison is quite heterogeneous across the six power 

systems, with the 300 bus system showing practically no 

linear correlation between |Zthev| and PT. Finally, note that in 

terms of inter-node Thevenin equivalent distance, X/R ratios 

are not generally consistent, as revealed by the lack of 

substantive linear correlation between Rthev and Xthev. 

From the foregoing discussion, it is clear that our five well-

performing distance measures duplicate each other to a 

substantial degree. For the remainder of this paper, |Zthev| will 

be used to describe the electrical connectivity between buses, 

given its direct calculation and intuitive interpretation, and PT 

will be used to capture the flow-sensitive connectivity 

between buses. 

D.  Example Layouts 

Space constraints preclude the display of all layouts 

represented in Table I, so only the more illuminating examples 

are provided here. Colour and line thickness are both used to 

indicate bus and branch operating voltage: a legend is shown 

in Fig. 1. As these diagrams are intricate they are best viewed 

in colour, as available in the electronic version of this paper. 

 
Fig. 1 Nominal voltage colour scale 

    1)  IEEE 30 Bus System 

 
Fig. 2 The IEEE 30 bus test system laid out to show the aggregate flow shift, 
PT, for each node-to-node transaction 

 
Fig. 3 The IEEE 30 bus test system laid out consistent with |Zthev|. 

The diagram in Fig. 2 presents a new perspective on the 

IEEE 30 bus system. One feature this diagram brings to light 

is the comparative ease with which power can be transacted 

across the transmission (132 kV) network. These nodes form a 

small core in the diagram, indicating that power transactions 

between them are relatively efficient in their use of system 

assets. Around this core are the 33 kV distribution buses.  

The |Zthev| impedance layout of this system, in Fig. 3, shows 

an even more pronounced clustering of the higher voltage 

buses. They sit within a core with a diameter of ~ 0.1 pu. As 

such, power can be transacted around this core with only 

minor voltage angle separations. The 33 kV system is here far 

greater in extent, with certain buses (e.g 26, 29 and 30) clearly 

quite electrically remote from the central core. It is not 

coincidental that 30 was identified by [92] as being a 

particularly voltage-weak bus.  

The length of the transformer branches is notable, clearly 

showing how the non-negligible reactance of transformers 

creates a substantial electrical separation between the various 
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voltage levels in a power system. (These transformer connect 

to lower-voltage buses 27, 12, 10 and 9) 

Both Fig. 2 and Fig. 3 show that the 30 bus system is 

somewhat unrepresentative of real power systems. We would 

expect the 33 kV distribution buses to fully encircle the 

central core, whereas here they only connect at three distinct 

buses, emphasising that the distribution circuits at other 

transmission nodes have not been included in this test system 

specification. 

    2)  IEEE RTS96 Test System 

 
Fig. 4 The IEEE RTS96 two area test system laid out consistent with |Zthev| 

 
Fig. 5 The IEEE RTS96 one area test system laid out consistent with |Zthev|  

The impedance structure of the RTS96 test system, in both 

its one and two area incarnations, is shown in Fig. 4 and Fig. 

5. The representation of Fig. 4 recalls the structure of the 30 

bus system (Fig. 3) with the higher voltage (230 kV) buses 

forming an electrically cohesive core of the system. As before, 

the lower-voltage buses are not homogeneous in their 

peripherality, with two buses (207 and 208) notably 

electrically remote, at the top right of the figure.  The system 

is also largely symmetric from left-to-right: this is because the 

two area system specification simply connects together two 

copies of the one area system [83], which is shown in Fig. 5. 

Previous loadflow simulation work by the authors [93] has 

examined regional reactive power requirements and voltage 

performance on the RTS96 single-area system. Two buses, 

107 and 108, showed consistently unacceptable voltage 

performance that could be only be remedied by constraining-

on generation at bus 107. The visualization of Fig. 5 makes it 

very clear that these buses are electrically remote, making 

obvious the difficulties of transmitting reactive power to 

support voltages there. By contrast, the canonical system 

representation of Fig. 6 obscures the dysfunctional lack of 

connectivity for these buses. Indeed, the unusually exhaustive 

system description in [83], building on [94, 95], nowhere 

notes or anticipates voltage problems for these buses.  

The lesson is clear: meaningful system representations 

show important electrical features that would otherwise be 

passed over, even by sophisticated professionals such as those 

who authored  [83]. Without portraying the  two-dimensional 

impedance structure of a power system, its voltage 

performance can only be gauged with cumbersome methods, 

such as the loadflow studies in [93]. The novel visualization 

promotes insight and understanding; the traditional diagram 

impedes these. 

Finally, it is interesting to note that the difference in scale 

between Fig. 4 and Fig. 5 is only slight. Even though the two-

area system is effectively a two-fold duplication of the one-

area, it is erroneous to imagine that its extent doubles in 

electrical terms. For the one-area system, the maximum |Zthev| 

impedance between any two nodes is 0.2616 pu; for the two 

area it is 0.3533 pu, a growth of 35.1%. In PT terms, the one 

area has a maximum separation of 8.43 MW/MW; the two 

area, 13.84 MW/MW, a growth of 64.2%.  

 
Fig. 6 Standard diagram for the RTS96 one area system, extracted from [83] 
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    3)  IEEE 118 Bus System 

The representation of the IEEE 118 bus system shown in 

Fig. 9 is revealing: note the two very remote nodes located in 

the upper right portion of the figure. These two nodes, 87 and 

86, are far more peripheral than the other nodes in the 138 kV 

system. Indeed, the authors of [96] identified bus 86 as being a 

very voltage-weak bus (though more remote, bus 87 is 

redeemed by the presence of a generator there) Separate work 

in [97] identified the region around bus 110 as being a 

potential source of voltage instability, noting that  “load 

increase at bus 110 results in substantial reduction of voltage 

at other buses surrounding it”. Such problems could be 

anticipated from inspection of Fig. 9, which shows the 

collocation of buses around 110, to the lower right, to be 

electrically remote from the higher voltage system, and only 

weakly interconnected with the broader system, with bus 100 

being the sole interfacing point. 

On the other hand, [96] also identified buses 20 and 33 and 

their neighbours as being voltage-weak, though these do not 

stand out in Fig. 9. Also, [92] identified a slew of potentially 

insecure buses which are not obvious from Fig. 9. It should be 

borne in mind that bus loadings and proximity to generation 

are also essential in appraising system voltage security, and 

these are not portrayed in Fig. 9, which exclusively considers 

impedance structure. 

Comparing a standard system diagram like Fig. 7 with Fig. 

8 or Fig. 9 is instructive. Most obviously, the lack of colour or 

thickness cues make it difficult to perceptually separate the 

two distinct voltage levels in Fig. 7. Furthermore, the greater 

extent of the 138 kV system, in electrical distance terms, is not 

made clear. The remote tail-fed spur connecting buses 86 and 

87 is not depicted in an illuminating way, discreetly residing 

in the centre middle, and giving the erroneous impression that 

these buses possess the same level of electrical connectivity as 

those nodes plotted adjacent to them. Indeed, Fig. 7 seems to 

indicate that nodes 9 and 10 are remote buses, separated on a 

long radial spur, whereas Fig. 9 reveals them to be electrically 

close to the broader power system. 

 

 
Fig. 7 A conventional diagram for the IEEE 118 bus system 
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Fig. 8 The IEEE 118 bus test system, laid out to show the aggregate flow shift for each node-to-node transaction, PT. 

 
Fig. 9 The IEEE 118 bus test system, shown with node numbers, and laid out consistent with |Zthev|  
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Fig. 10 The IEEE 300 bus test system laid out to show the aggregate flow shift for each node-to-node transaction 

 
Fig. 11 The IEEE 300 bus test system, with an inset to show the |Zthev| impedance structure of the inner core of the system 
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    4)  IEEE 300 Bus System 

The depiction of this system in Fig. 10 reveals some of its 

rich and complex structure. A great range of voltage levels are 

shown, from radial low voltage distribution networks 

operating between 0.6 kV and 6.6 kV (top centre-left; thin, 

cyan branches) to the central spine of the system, operating at 

345 kV. We also observe that this system includes many leaf-

nodes, that is nodes with degree k = 1, whereas the other 

systems (for instance in Fig. 2, Fig. 4 and Fig. 8) show a much 

greater degree of inter-node meshing. The presence of many 

low-voltage, and radially fed, nodes means that the |Zthev| 

structure of this network is markedly different to those of the 

other networks studied: Fig. 11 shows that nearly all system 

nodes are within a central core with diameter on ~0.3 pu, 

whereas around a dozen low voltage nodes sit on a periphery 

around this, at a remove of perhaps 5 pu. While this 

heterogeneity in impedance centrality does not impede the 

embedding into two dimensions (per Table I), it does presents 

challenges for presenting an uncluttered display, as even the 

zoomed-in inset is crowded and unclear. By contrast, the PT 

distance measure guarantees a reasonable separation between 

nodes, as it takes one MW/MW as a lower bound. 

E.  Comparison of Layout Attributes 

Based on the analyses in subsections B. and C., two 

distance measures were selected as the underpinnings of the 

novel power system visualization previously discussed. The 

first of these measures, |Zthev|, reveals the inherent impedance 

structure of the power system, and thus seems more 

appropriate for technical applications that are concerned with 

voltages, currents and power transfers. On larger systems, 

though, the heterogeneous nodal |Zthev| centrality means that 

resulting layouts can become cluttered and hard to interpret. 

The other distance measure considered, PT, is more directly 

related to the simple topology of the system, based on power 

transfers under dc linearizations. It may prove insightful for 

market applications: what nodes can typically transact power, 

and how might this affect locational marginal prices? As the 

PT measure remains well bounded on larger systems, it 

reliably gives interpretable, aesthetically pleasing network 

layouts. As such layouts succinctly reveal the topological 

connectivity of a system, they seem a strong candidate as the 

default layout choice in general power system analysis 

applications, as their legibility surpasses that of pseudo-

geographical single line diagrams. 

IV. SYSTEM PARTITIONING 

The authors of [35] use sophisticated spectral techniques to 

portray power system nodes in two dimensions based on the 

system Ybus matrix, an embedding which they apply to find 

meaningful electrical partitions of the network. The techniques 

presented in the present work also reveal cluster structures in 

power systems, and so a comparison between the two 

approaches can serve as a useful validation. While [35] 

considered both the 39 and 118 bus test systems, full results 

are only provided for the former, so we will restrict our 

comparison here to that smaller system. The partitioning 

shown in Fig. 12 is encouraging: the three separately-coloured 

areas are contiguous in our two-dimensional representation of 

the system’s structure. As a comparison, in Fig. 13, we show a 

simple K-means clustering [98] of the two-dimensional data. 

Encouraging, only a small number of nodes near boundaries 

are assigned to a new network partition. 

 
Fig. 12 The 39 bus test system, coloured to show a three-way partitioning 
performed using sophisticated spectral techniques in [35]. 

 
Fig. 13 The 39 bus test system, coloured to show a three-way partitioning 

performed using simple K-means partitioning of the two-dimensional data. 

V. CONCLUSIONS 

Certain meaningful electrical distance measures embed 

consistently well into two dimensions. The feasibility of this 

embedding, and the new perspectives it offers on the electrical 

structure of power systems, is the principal research 

contribution of the present work. 

This realization suggests several new ways of portraying, 

analysing and reasoning about power systems.  

One field that can clearly benefit from this new paradigm is 

voltage stability analysis. The impedance diagrams shown in 

this work makes the identification of voltage-weak buses quite 

intuitive; a load’s proximity to a source of reactive power can 

be immediately assessed. Monitoring a system’s voltage 

security in real time becomes more tractable with these 

techniques, as the new impedance structure following an 

outage can be intuitively grasped as the situation unfolds. 
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 The novel observation that inter-node Thevenin 

impedances consistently embed well into two dimensions 

opens up new ways for how power system partitioning may be 

performed and depicted.  

Power transfer distances can also be used to meaningfully 

position power system nodes. This may allow, for instance, the 

identification of system clusters that can consistently transact 

power amongst themselves, thus offering new ways of 

portraying and analysing the separation of electricity markets 

into distinct price zones. 

 The layouts based on power transfer distance enjoy greater 

visual separation between nodes, and so reduce clutter to give 

a layout that is both aesthetic and meaningful. 

Finally, beyond specific technical or market applications, 

the novel visualizations discussed in this work are more 

meaningful and accessible than traditional single line 

diagrams; this has clear pedagogic value, as well as 

demystifying the power system for economists, regulators and 

other non-engineers in the energy ambit. 
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