
Scalable Correlation-aware Virtual Machine
Consolidation Using Two-phase Clustering

Xi Li, Anthony Ventresque, Jesus Omana Iglesias, John Murphy
Lero and School of Computer Science and Informatics

University College Dublin, Dublin, Ireland
Email: {xi.li, jesus.omana-iglesias.1}@ucdconnect.ie; {anthony.ventresque, j.murphy}@ucd.ie

Abstract— Server consolidation is the most common and
effective method to save energy and increase resource utilization
in data centers, and virtual machine (VM) placement is the usual
way of achieving server consolidation. VM placement is however
challenging given the scale of IT infrastructures nowadays and
the risk of resource contention among co-located VMs after
consolidation. Therefore, the correlation among VMs to be co-
located need to be considered. However, existing solutions do
not address the scalability issue that arise once the number of
VMs increases to an order of magnitude that makes it unrealistic
to calculate the correlation between each pair of VMs. In this
paper, we propose a correlation-aware VM consolidation solution
ScalCCon1, which uses a novel two-phase clustering scheme to
address the aforementioned scalability problem. We propose and
demonstrate the benefits of using the two-phase clustering scheme
in comparison to solutions using one-phase clustering (up to 84%
reduction of execution time when 17, 446 VMs are considered).
Moreover, our solution manages to reduce the number of PMs
required, as well as the number of performance violations,
compared to existing correlation-based approaches.

Keywords—Scalability; Correlation; Consolidation; Cluster-
ing; Performance degradation; VM placement;

I. INTRODUCTION

The sustained increasing demand of computing resources
has driven the growth of data center scale in recent years, while
the underutilization of servers within these data centers has
also received more and more attention as it leads to enormous
resource and energy waste. With the adoption of virtualization
technology, the number of servers in use can be reduced by
consolidating multiple virtual machines (VMs) on one physical
machine (PM) in order to improve the resource utilization
efficiency and reduce power consumption. Virtualization is
achieved by hypervisors or virtual machine monitors (e.g.,
Citrix XenServer, VMware ESX/ESXi, Microsoft Hyper-V),
which is a layer between the operating system instances and
hardware that partitions a PM’s physical resources to provide
performance isolation between co-located VMs [1]. Usually,
the initial memory allocation and disk capacity are statically
partitioned, and the sharing of CPU is taken care by the CPU
scheduler. However, several resources, such as cache and I/O
bandwidth, cannot be entirely isolated by hypervisors, and
could cause contention among co-located VMs sharing these
resources [2], [3]. Such contention can result in application

1Scalable Correlation-aware Consolidation

performance degradation and service level agreement (SLA)
violation. Contentions are common when a PM is hosting a
large number of VMs. Therefore, there is a trade-off between
the packing density of VMs and the VMs’ performance.

A common strategy to tolerate the performance degrada-
tion due to VM co-location contention is to reserve a fixed
proportion of a server’s capacity as a buffer [4], [5]. This
simple strategy has been proven to be efficient and easy to
implement. However, the reserved resources can be utilized
more efficiently with a deeper understanding of the VMs’
resources utilization. A significant number of researchers [3],
[6]–[16] have focused on analyzing and controlling the per-
formance impact caused by VM contention at different levels
and from various perspectives. A recent study, [2], summa-
rizes the solutions for mitigating performance overhead (i.e.,
unpredictable performance) in a single server into two types:
resource isolation among co-located VMs and optimization of
VM assignment. The first type is usually realized by resource
schedulers, and is complementary to the second type as it does
not determine where to place the VMs. Our paper focuses on
the second type of solutions and addresses the problem of
planning VM placement to both minimize the number of PMs
required and alleviate the performance degradation caused by
VM co-location contention.

A common approach to address this problem is based on
the model of performance interference among co-located VMs.
This approach is cost-efficient when the model is accurate,
which requires pre-running each VM with background bench-
mark workloads, while varying the background workloads’
resource utilization in enviroments same as the target PMs,
to train the model. This is obviously only applicable when
there are a few varieties of workloads on homogeneous PMs.
Another type of approach leverages the fact that VMs with
strongly correlated resource utilization are more likely to
have utilization peaks that coincide and to cause resource
contention. This type of approach provides an estimation of
the performance interference between two VMs instead of an
accurate value, but it is considered sufficient in guiding an ap-
propriate VM placement [2]. Moreover, this type of approach
is more practical than constructing accurate interference mod-
els in large-scale data centers, because it requires only the
VMs’ historical utilization information or the predicted future
utilization based on the historical utilization, but does not



require pre-running each VM in a particular environment for
model training. However, one drawback of most of the existing
correlation-based approaches is that the Pearson correlation
coefficient for each pair of VMs needs to be computed. Thus,
the size of the correlation matrix becomes extremely large as
the number of VMs grows, which makes it not scalable and
not applicable in large-scale environments. A possible solution
for solving the scalability issue is to consider a hierarchy of
VM clusters.

In this paper, we propose a scalable correlation-aware VM
consolidation solution, ScalCCon, in which:

• We extended the Envelop [15], a method that transforms
raw changeful resource usage time series to time series
alternating between only two values, to be applicable for
both time series with peaks and time series with valleys;

• We propose a novel two-phase clustering scheme to
address the scalability issue, which first clusters VMs
based on their utilization peaks, and then clusters VMs
based on the correlation among them;

• We propose an VM placement algorithm based on the
hierarchy of VM clusters obtained from the two-phase
clustering.

We tested ScalCCon using data from the publicly available
Google traces [17], and demonstrate that our proposed solu-
tion: 1) is scalable when the size of VM set increases; 2)
requires fewer PMs than other state-of-the-art solutions; and
3) generates fewer resource capacity violations. We also show
that the number of clusters in both of the two clustering phases
in ScalCCon has negligible impact on the consolidation results.

The remainder of this paper is organized as follows. Sec-
tion II presents some related work. The proposed solution,
ScalCCon, is introduced in Section III. Section IV presents and
discusses the evaluation, and Section V concludes the paper.

II. RELATED WORK

Considerable efforts have been made in the VM placement
problem in recent years, aiming at minimizing the amount
of servers required or energy consumption [15], [18]–[20].
In order to guarantee the promised SLA, the interference
among co-located VMs has also been studied, usually through
analyzing low-level hardware usage metrics and workload
characteristics [6]–[8], as well as consolidation approaches
built on top of the interference models [3], [9], [10]. However,
these approaches require pre-running each VMs to construct
interference models as mentioned in Section I.

Alternatively, several studies plans the co-location of VMs
by analyzing the correlation between each two VMs’ resource
utilization time series. Kuangyu et al. [11] made use of corre-
lation analysis to jointly minimize the power consumption of
both servers and data center networks. An algorithm that iden-
tifies VMs with complementary demand patterns by computing
a matrix of correlation among VMs was also proposed [12].
This algorithm places VMs by pair without considering the

correlation among the pair of VMs to be placed and the
VMs that are already placed on a particular PM. Halder et
al. [13] proposed a first fit decreasing (FFD) based correlation-
aware VM placement algorithm that iteratively updates the
correlation matrix for each placement decision, and places
the VM having the minimal correlation with the placed VMs
on a PM. A dynamic power management solution for scale-
out applications in data centers was proposed by Kim et
al. [14]. This solution employs both server consolidation and
voltage and frequency (v/f) scaling. It defines a new metric to
quantify the correlation between two VMs instead of using the
Pearson correlation coefficient, and the matrix of correlation
is computed using the new metric. One issue faced by such
approaches that consolidate based on a correlation matrix is
the scalability when the problem size becomes large.

The application of clustering in correlation-based VM con-
solidation improves the scalability to some extent. Verma et
al. [15] proposed a Peak Clustering based Placement (PCP)
algorithm, and a two-level Envelop scheme to transform VMs’
utilization time series, based on the observation that correlation
between peaks of VMs is more important than correlation
across the complete time series. PCP clusters workloads that
are strongly correlated in their transformed Envelops, and
selects a set of workloads from each cluster proportionally.
In contrast, pSciMapper [16] uses a distance measure, which
focuses on the interference among workflow tasks’ resource
demand, to group scientific workflow tasks having dissimilar
demand patterns together, and then map the clusters to a set of
PMs. However, even though clustering methods are employed,
the Pearson’s correlation or other defined metrics between each
two VMs still needs to be computed as the distance matrix in
clustering methods such as hierarchical clustering.

The approach proposed in this paper solves the scalability
issue by using a two-phase clustering scheme, which down-
sizes the scope of distance matrix computation, while also
reducing the number of PMs and resource violation. ScalCCon
considers the correlation not only among VMs to be placed,
but also with placed VMs. Unlike the existing work, ScalCCon
considers this by comparing the correlation between the aggre-
gated resource usage of existing VMs and the representative
utilization time series of a cluster, instead of individual VMs,
thus further improving the solution’s scalability.

III. SCALABLE CORRELATION-AWARE VM
CONSOLIDATION

An essential policy to guarantee VMs’ performance is to
limit the instances when the server’s resource utilization ap-
proaches 100%, which consequently cause performance degra-
dation. In order to use the resources of a server as efficient
as possible while minimizing the probability of violating the
server’s capacity limit, it is necessary to place VMs that are
least likely to have simultaneous utilization peaks on the same
PM, by analyzing the VMs’ resources utilization time series.
Given that the resource utilization is in the form of time series,



the possibility of two VMs having simultaneous utilization
peaks can be measured by the Pearson correlation coefficient:

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

n
∑

x2
i − (

∑
xi)2

√
n
∑

y2i − (
∑

yi)2
(1)

where xi and yi (i = 1, 2, ..., n) are n measurements (i.e.,
average resource utilization for a sample period) of VM x
and VM y respectively, over a period of time. However, it is
not practical or scalable to analyze the correlation between
each pair of VMs for the allocation of every single VM. Clus-
tering methods have been studied recently [15], [16] to guide
performance-aware VM placements. Even so, the correlation
matrix or the distance matrix used in clustering methods, such
as agglomerative hierarchical clustering, is computationally
expensive, especially for large amount of VMs.

Transform

2-phase Clustering

Place VMs

1st: Clustering based on peak

2nd: Clustering based on 

correlation

Figure 1. Overview of ScalCCon

Our paper proposes ScalCCon, a scalable correlation-aware
VM consolidation solution that uses a novel two-phase clus-
tering scheme to consolidate large numbers of VMs while
minimizing the servers’ resource capacity violation. Figure 1
presents a high-level overview of the ScalCCon’s main com-
ponents. Due to the frequent fluctuation in a VM’s resource
utilization over time, clustering based on the raw resource
utilization time series generates a large amount of clusters and
does not focus on reflecting the coinciding peaks. ScalCCon
adopted and extended the two-level Envelop proposed in
PCP [15] to first transform the raw time series into En-
velops, which is presented in Section III-A. Following the
transformation process is the two-phase clustering, which
clusters VMs based first on peak and then on correlation (see
Section III-B). Eventually, VMs are placed on the PMs based
on the obtained cluster hierarchy using the algorithm presented
in Section III-C.

A. Transformation

The purpose of transformation is to focus on the correlation
between the peaks of two time series, instead of every single
value. The prior two-level Envelop [15] is a time series that
alternates between two values: a high percentile value (e.g.,
90th) CB and the maximum value Cmax of the original
resource utilization time series. Any original utilization value
below CB is transformed to CB and any value above is
transformed to Cmax. This Envelop is applicable to time
series with peaks. We call it Peak Envelop in this paper.
Figure 2a is an example showing the raw and transformed
CPU utilization time series over 12 hours. The utilization time
series in Figure 2 are extracted from the Google cluster trace.

It is important to mention that in this type of environments
it is also common to find utilization valleys instead of peaks.
In such case, the existing Envelop will generate time series
with very small peaks or even constant lines that neglect the
valleys which can be complementary to other VMs’ resource
utilization peaks. Therefore, we extended the existing Envelop
to be also applicable to time series with valleys, which we
call the Valley Envelop. In this extended version, CB is set
to a low percentile value (e.g., 10th), and the transformation
rule remains. An example of time series with valleys and the
transformed Valley Envelop is shown in Figure 2b.

0

0.01

0.02

0.03

0.04

0.05

00:00 01:15 02:30 03:45 05:00 06:15 07:30 08:45 10:00 11:15

C
P

U
 U

sa
ge

Time (hour)
Original Time Series Transformed Time Series

(a) Peak Envelop

0

0.01

0.02

0.03

0.04

0.05

00:00 01:15 02:30 03:45 05:00 06:15 07:30 08:45 10:00 11:15

C
P

U
 U

sa
ge

Time (hour)
Original Time Series Transformed Time Series

(b) Valley Envelop

Figure 2. Transform Time Series to Envelops

B. Two-phase clustering

A novel two-phase clustering scheme is proposed in this pa-
per to address the scalability issue encountered in correlation-
based VM consolidation solutions. As shown in Figure 3,
VMs are first clustered based on their utilization peak (i.e.,
the difference between the maximum utilization and the high
percentile value), generating a set of Peak Clusters. VMs in
the same Peak Cluster have similar peak values. Following,
in the second phase, within each Peak Cluster, VMs are
clustered based on the correlation among their transformed
resource utilization time series, producing a group of sub-
clusters or CorClusters. VMs in the same CorCluster tend to
have peaks that occur at the same or very similar time, thus,
one of these time series is selected as the representative of
this CorCluster (e.g., medoid: the object having the minimal
average dissimilarity to all the objects in the cluster). In order
to further improve the scalability, the time series representa-
tives are used in the placement process to select CorClusters



having the minimal correlation with the aggregated utilization
on the considered PM, instead of selecting individual VMs
(see Section III-C).

CorCluster

1-1

CorCluster

1-2

CorCluster

1-3

CorCluster

1-4
CorCluster

2-1

CorCluster

2-2

CorCluster

3-1

CorCluster

3-2

CorCluster

3-3

1st Phase

2nd Phase

Peak Cluster 1

VM

VM

VM

VM

VM
VM

Peak Cluster 2 Peak Cluster 3

VM
VM

VM

VM

VM
VM

VM
VM

Figure 3. Two-phase Clustering Scheme

The reasons and advantages of using the proposed two-
phase clustering scheme are as follows:

• Using a hierarchical structure improves the scalability of
the solution, so does the policy of selecting CorClusters
instead of individual VMs as mentioned above.

• In the case of VMs that have utilization traces containing
peaks, the resource usage values are most of the time
much lower than its maximum peak. If a peak buffer as
big as the VM’s maximum peak has been reserved, plac-
ing other VMs with similar peaks occurring at different
times results in better utilization of the reserved buffer.
The first peak-based clustering phase differentiates VMs
with peaks in different ranges which the VM placement
process can make use of.

• Both the peak size and the time when a peak occurs
affect the correlation between two VMs. The peak-based
clustering phase removes the impact of the dissimilarity
between peak sizes by grouping VMs with similar peak
sizes together, so that the correlation analyzed in the
second phase is mainly determined by the time of the
peak occurrence.

Three major categories of clustering methods for static data,
namely, partitioning methods, hierarchical methods, and model
based methods, have been utilized directly or modified for
time series clustering [21]. Hierarchical clustering is one of
the most widely used approaches, and is a good fit for the
second phase of our proposed scheme, since the correlation
among VMs can be used as the distance matrix required by
hierarchical clustering. However, it lacks scalability due to its
quadratic computational complexity [22]. K-means, belonging
to the partitioning methods category, is the most commonly
used clustering method. It is faster than hierarchical cluster-
ing, referring to [22], since it does not require calculating
all the distances between each observation and every other
observation. Therefore, we utilize k-means in the first phase
to quickly cluster a large number of VMs, in order to reduce
the sizes of data sets analyzed separately in the second phase.

Studies show that the contention that degrades application
performance significantly lies in shared caches and memory
bandwidth [9]. Furthermore, the burstiness in memory demand
is much lower than the burstiness in CPU demand [23].

Therefore, ScalCCon focuses on the correlation among VMs’
CPU utilization. ScalCCon takes VMs’ utilization time series,
such as monitored historical usage traces or predicted usage
traces as input. Using accurately predicted usage time series as
input can reduce the probability of having unexpected resource
violation after the actual VM deployment. However, workload
estimation and forecasting is orthogonal to this paper’s scope.

C. VM Placement

We implemented two versions of ScalCCon:

• ScalCConcpu: considers only CPU in the VM placement.
The idea is to focus on evaluating the solution’s perfor-
mance without the constraint of other resources.

• ScalCConmulti: considers both, CPU and RAM, in the
VM placement by integrating RBP, which is our prior
VM placement algorithm using a fixed buffer to handle
utilization peaks [18]. The idea is to demonstrate 1)
the application of ScalCCon in multiple dimensional
scenarios; 2) through the comparison with RBP that the
size of the fixed reserved buffer can be reduced, so that
resources can be utilized more efficiently by leveraging
correlation analysis.

These two versions are only different in the way of sorting
VMs and selecting a VM to be placed from a sub-cluster.

The VM placement process is executed based on the
hierarchy of VM clusters. A Peak Cluster becomes the
selectedPCluster as long as at least one of its VM has
been placed on the considered PM. Afterwards, a CorCluster
from the selectedPCluster is selected, from which a VM
is selected to be placed. During this process, ScalCCon
analyzes both the correlation among VMs to be placed and
the correlation with existing workloads on a PM. To be
precise, the correlation between the representative time series
of each CorCluster inside the selectedPCluster and the
considered PM’s aggregated utilization is analyzed. Following
this analysis, the CorCluster with the weakest correlation is
selected, from which a VM is then selected to be placed,
using different polices in ScalCConcpu and ScalCConmulti. It
is noteworthy that the computation overhead is significantly
reduced, since our apporach only considers the correlation
between CorClusters and a PM’s existing workload, instead
of the correlation between each pair of VMs.

The main logic of this process is presented in Algorithm 1.
PMs and Peak Clusters are firstly sorted by available CPU
capacity and by the maximum peak of each Peak Clusters
respectively (line 1, 2). For each PM in the sorted list, the
algorithm firstly selects the first VM to be placed. The first
VM that can fit in the currently considered PM is selected from
the first Peak Cluster (i.e., the Peak Cluster with the largest
peak) (line 6). VMs in the studied Peak Cluster are sorted by
CPU in ScalCConcpu, or by cosine similarity as used in our
previously proposed VM placement algorithm RBP [18] (i.e.,
by how similar the VM’s shape is with that of the current



Algorithm 1 ScalCCon VM Placement Algorithm
1: pmList← sortPMs()//by CPU in descending order
2: peakClusterList ← sortPeakClusters() //by maxi-

mum peak of clusters in descending order
3: for all pm in pmList do
4: //Pick the first VM to be placed
5: sort VMs in the first Peak Cluster pCluster //by CPU

or cosine similarity in descending order
6: place the first vm that can fit in pm or the vm having

the most similar shape with pm
7: if pCluster has only one sub-cluster then
8: selectedPCluster ← pCluster + 1 //move to next

peak Cluster
9: peakBuffer ← vm′s peak

10: else
11: selectedPCluster ← pCluster
12: peakBuffer ← maximum peak of pCluster
13: end if
14: //Fill pm with VMs that are least correlated
15: while pm is not full and vmList.size() > 0 do
16: select the sub-cluster least correlated with pm
17: sort VMs in the selected sub-cluster
18: select the vm having the biggest CPU or the most

similar shape with pm
19: if selectedPCluster has only one sub-cluster then
20: selectedPCluster ← selectedPCluster + 1

//move to next Peak Cluster
21: end if
22: end while
23: if vmList == NULL then
24: break
25: end if
26: end for

PM’s residual capacity) in ScalCConmulti (line 5). The size of
a VM in terms of CPU is estimated as the 90th percentile
of the VM’s CPU usage over the time series. If the current
Peak Cluster, pCluster, has only one sub-cluster, then the
algorithm moves to the next Peak Cluster, since one VM from
this sub-cluster has been placed and the other VMs tend to
peak at the same or similar time. In addition, the placed VM’s
peak is set equal to the reserved buffer on the current PM.
Otherwise, pCluster is set equal to the selectedPCluster,
and the maximum peak of the pCluster is set as the reserved
buffer on the current PM (line 7-13). The second part of the
algorithm is to fill up the PM. Inside the selectedPCluster,
the algorithm first selects the sub-cluster whose representative
time series is least correlated with the aggregated utilization
of existing VMs on the PM, and then sorts the VMs in the
selected sub-cluster by CPU usage (ScalCConcpu) or cosine
similarity (ScalCConmulti) (line 16, 17). Finally, the algorithm
places the first VM that can fit from the sorted list (line 18).
Similarly, the algorithm moves to the next Peak Cluster if
the selectedPCluster has only one sub-cluster, otherwise it
continues the placement until the PM is full (line 19-21).

IV. EXPERIMENTAL EVALUATION

This section presents: 1) experiments comparing ScalCCon
with existing solutions and other baselines to show that Scal-
CCon is effective in consolidating VMs (requires fewer PMs),
while also minimizing capacity violations; 2) experiments
comparing the execution time of ScalCCon and PCP when
increasing the number of VMs, to test the scalability of
ScalCCon; 3) experiments varying the number of clusters in
each of ScalCCon’s two clustering phases, to investigate the
impact the number of clusters has on the consolidation results.

A. Experimental Setup

1) Dataset: We use the utilization trace of a Google
cluster [17], in particular the first 48 hours from which we
extracted 5,482 “tasks” (i.e., VMs for our study) that lasted
more than 12 hours. This allow us to have at least 144
utilization values for each VM to construct the time series. We
consider two resources for our study, CPU and RAM, since
it was only for these two resources that there was available
information for all machines and tasks. The attributes that
we considered for CPU and RAM are: the CPU rate, which
indicates the average CPU utilization for a sample period of
5 minutes, and the canonical RAM usage, which represents
the average RAM consumption for the same sampling period.
The utilization values have been normalized between 0 and
1, according to the maximum capacity of a resource from the
entire set of machines.

The entire trace is composed of 12,583 (heterogeneous)
servers grouped in seven server configurations (presented
as (CPU, RAM)): (0.25, 0.2498), (0.5, 0.9678), (0.5, 0.749),
(0.5, 0.4995), (0.5, 0.2493), (0.5, 0.1241), (1, 1). Since only
a small set of PMs is needed in our experiments, we use
200 PMs with these seven configurations evenly distributed.
Figure 2 demonstrates the CPU utilization of two VMs (tasks)
from the dataset. In addition to this set up, that we call
heterogeneous scenario in the following, we also define a
homogeneous scenario which uses only the biggest type of
PM’s configuration (i.e., (1, 1)).

2) Baselines, metrics and parameters: ScalCCon is com-
pared to the following solutions and baselines: 1) PCPH: the
approach uses a one phase clustering, and subsequently selects
a set of VMs from each cluster proportionally, which are to be
placed on a particular PM. As the clustering method employed
in the original PCP [15] is not revealed in the paper where
it was proposed, we implemented PCPH applying the same
hierarchical clustering method as used in the second phase
of ScalCCon. The goal is to perform a fair comparison, and
to focus mostly on the advantages of a two-phase clustering
over one phase clustering, in terms of scalability, instead of
the comparison between different types of clustering methods;
2) RBP: a multi-dimensional VM consolidation algorithm,
which balances a server’s resource usage among different
dimensions, and uses 25% of a server’s total capacity as a
buffer to handle utilization peaks and alleviate performance



degradation; 3) FFDBuffer: a baseline which reserves a server’s
25% capacity as buffer and applies FFD to place VMs; 4)
FFD: a baseline that does not reserve any buffer and places
VMs using FFD.

In order to evaluate ScalCCon’s effectiveness in consolidat-
ing VMs while minimizing the occurrence of resource capacity
violation and ScalCCon’s scalability, the following metrics are
considered in the experiments:

• Number of PMs required;
• Average buffer reserved on each PM (percentage of each

PM’s capacity).
• Average 90th percentile usage of each PM’s aggregated

CPU utilization after placement (in percentage).
• Resource capacity violation ratio computed as:

Vratio =
vI
N

(2)

where vI is the number of instances when a PM’s
aggregated utilization exceed the PM’s capacity, and N
is the total number of observations of a time series.

• Execution time.

The reserved buffer is averaged, as ScalCCon reserves differ-
ent sizes of buffer on each PM depending on the maximum
peak of the selectedPCluster.

For the k-means clustering method employed in the first
phase, we set its parameters as follows: the number of clusters
k = 10 and seed = 5. The seed is needed to guarantee that
the same clustering result is obtained in different runs. As the
number of VMs in each Peak Cluster (generated in the first
phase) varies, we set the number of CorClusters (in each Peak
Cluster) k′ as the quotient of the total number of VMs in a
Peak Cluster divided by a given number (e.g., 80), in order to
control the granularity of CorClusters.

B. Effectiveness Evaluation

Tables I shows that ScalCConcpu requires fewer PMs and
leads to much less violation in both scenarios. FFD reveals
that even though the 90th percentile resource usage is a good
estimate of VM’s resource demand, the chance of causing
resource contention without a buffer is very high. The 25%
buffer reduces the violation significantly as seen in FFDBuffer,
however, the violation ratio is still high in the heterogeneous
scenario. The violation ratio is much lower in the homoge-
neous scenario because the PMs in this scenario have the
biggest configuration, thereby the 25% buffer leaves larger
space for utilization peaks than on other smaller PMs in the
heterogeneous scenario. PCPH performs better in the homoge-
neous scenario than in the heterogeneous scenario, reducing
the number of PMs and buffer size, as well as the violation
ratio compared to FFDBuffer. However, as it selects a set of
VMs from each cluster, there are co-located VMs that may
be strongly correlated so that their peaks may coincide and
exceed the capacity. ScalCConcpu further reduces the violation
ratio and buffer size in both scenarios compared to PCPH. It is

interesting to see from the results that a lower average buffer
size results in a smaller number of PMs required.

TABLE I
COMPARISON OF SCALCCONCPU , PCPH AND BASELINES IN BOTH

HETEROGENEOUS AND HOMOGENEOUS SCENARIOS CONSIDERING CPU

Num
of PMs

Average
Buffer

Average
90th Percentile
CPU Usage

Violation

Heterogeneous
ScalCConcpu 115 13.69% 67.22% 6.25%

PCPH 143 31.09% 54.10% 26.29%
FFDBuffer 134 25% 60.76% 40.28%

FFD 93 0% 80.52% 110.42%

Homogeneous
ScalCConcpu 72 11.32% 65.90% 6.25%

PCPH 74 17.71% 63.51% 20.83%
FFDBuffer 81 25% 60.98% 16.67%

FFD 61 0% 80.31% 73.61%

Table II presents the evaluation of the algorithms in the
multi-dimensional scenarios. PCPH is not evaluated here as
it considers only CPU. Due to the constraint of RAM, every
solution requires more PMs, while FFDBuffer can not place all
the 5, 482 VMs on the 200 PMs. Interestingly, the number
of PMs required by ScalCConmulti is more than that of RBP:
the selection of VMs having similar shape with that of the
PM’s residual capacity is restricted inside a CorCluster, while
RBP can select from all VMs. Consequently, RBP can find
VMs that better balance the PMs’ resource usage among
different dimensions. ScalCConmulti sacrifices some flexibility
in selecting VM candidates for a smaller reserved buffer,
a lower violation ratio and more scalability in correlation
analysis (compared to PCP).

TABLE II
COMPARISON OF SCALCCONMULTI , RBP AND BASELINES IN BOTH

HETEROGENEOUS AND HOMOGENEOUS SCENARIOS CONSIDERING BOTH
CPU AND RAM

Num
of PMs

Average
Buffer

Average
90th Percentile
CPU Usage

Violation

Heterogeneous
ScalCConmulti 157 11.09% 50.82% 3.47%

RBP 135 25% 61.09% 25%

FFDBuffer
200
(5258) 25% 49.93% 34.03%

FFD 163 0% 58.71% 169.44%

Homogeneous
ScalCConmulti 98 9.49% 49.12% 3.47%

RBP 81 25% 60.02% 25%
FFDBuffer 113 25% 44.74% 18.06%

FFD 96 0% 52.22% 94.44%

C. Scalability Evaluation

We compare the scalability of ScalCCon and PCPH, which
uses one phase clustering, by measuring their execution time



when the size of the VM set is scaled up by duplicating the
original data set. As shown in Figure 4, using the proposed
two-phase clustering scheme makes ScalCCon more scalable.
Its execution time grows nearly linearly, while PCPH’s exe-
cution time increments dramatically after the number of VMs
reaches 14, 964.

0

50

100

150

200

250

300

350

400

450

5400 7400 9400 11400 13400 15400 17400 19400

Ex
ec

u
ti

o
n

lT
im

e
l(

Se
c)

NumberloflVMs

ScalCCon PCP H

Figure 4. Scalability of ScalCCon and PCPH

ScalCCon’s execution can be further accelerated by adjust-
ing the number of clusters (k) in the first phase as the number
of VMs becomes large. As the most computational expensive
part in ScalCCon is the correlation analysis and hierarchical
clustering in the second phase, a bigger k narrows down the
sizes of Peak Clusters which are analyzed disjointly in the
second phase, and makes the correlation analysis inside each
Peak Cluster faster. Figure 5 shows ScalCCon’s execution time
versus scaling-up VM set with four different k values. As k
increments, the execution time decreases, especially when k
increases from 10 to 20. This impact is more significant when
the number of VMs is large. As it is shown in the figure, when
k increments from 30 to 40, the execution times for two k
values are almost identical when the number of VMs is below
10, 964. Because the size of each individual Peak Cluster is
not that big to cause distinct difference in computation time.
However, the reduction in execution time becomes more and
more notable when the number of VMs continues increasing.

0

10

20

30

40

50

60

70

80

5400 7400 9400 11400 13400 15400 17400 19400

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

Number of VMs

k=10 k=20

k=30 k=40

Figure 5. Scalability of ScalCCon with different k values

D. Discussion

The two clustering algorithms we use in ScalCCon force
us to wonder what would be the best k (for the k-means) or

k′ value (for the cut of the hierarchical cluster tree). These
questions are challenging, as finding the best cluster count
depends not only on the distribution of the data points but
also the cluster granularity the user wants, and consequently
still remains an active research problem. A simple rule of
thumb [24] for k-means is often mentioned:

k ≈
√
n/2 (3)

where n is the number of data points. But there exist also a
number of clustering validity indices [2] [25] and a recent R
package NbClust(), which provides 30 indices for determining
the number of clusters, and can propose the number suggested
by most of the indices [26]. However, many indices are
computationally intensive, and the selection of indices is
affected by a range of factors such as the structure and type of
the dataset, and the clustering purpose. Since here clustering
is employed only as a pre-process before consolidation, the
general problem of finding the best number of clusters is not
relevant for us and we turned it into the problem of whether
the selection of cluster count has a significant impact on the
placement results.

105

110

115

120

125

130

135

140

145

150

PCP ScalCCon (k') ScalCCon (k)

N
um

be
r 

of
 P

M
s

H

Figure 6. Number of PMs required in experiments given different number
of clusters

0

5

10

15

20

25

30

35

PCP ScalCCon (k') ScalCCon (k)

V
io

la
tio

n 
R

at
io

 (
%

)

H

Figure 7. Violation ratio in experiments given different number of clusters

We performed the cluster count variation
experiments for PCPH and ScalCConcpu. The
numbers of clusters experimented for PCPH are
{5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200}.
The k for ScalCConcpu has a smaller range as there
are two phases (i.e., {5, 10, 20, 30, 40, 50, 60}). For k′

in the second phase, because the number of VMs in
each Peak Cluster varies, instead of setting a fixed



number for k′ directly, we set a number (d) to divide
the number of VMs (M ) in each Peak Cluster presented
as k′ = M

d . The list of divisors (d) experimented is as
follows: {200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10}. The
distributions of the number of PMs required and the violation
ratio in experiments given different number of clusters are
presented as box plots in Figure 6 and Figure 7 respectively.
We empirically show that the selection of the number of
clusters in our case does not affect the consolidation results
very much. ScalCCon is effective given different number of
clusters in both phases. However, the total number of VMs
to be placed is worth being considered when determining the
number of cluster in ScalCCon. When the number of VMs is
not very large, a smaller k can be chosen as the correlation
analysis is not very heavy. A bigger k can speed up the
execution when the number of VMs is huge.

V. CONCLUSION

This paper addresses the VM placement problem with
the following objectives: 1) minimizing the number of PMs
required; 2) alleviating the performance degradation (i.e.,
minimizing resource violations); 3) improving scalability (i.e.,
reducing execution time). We propose ScalCCon, a scalable
VM consolidation solution that alleviates performance degra-
dation via correlation analysis among co-located VMs on the
same PM. In order to tackle the scalability issue, ScalCCon
uses a novel two-phase clustering scheme, which first clusters
VMs by their peak values, and then clusters VMs in each
Peak Cluster obtained from the first phase, by their correlation
among each other. Not only the correlation among VMs to be
placed, but also the correlation with existing workloads on PM
are considered during placement.

Our experiments show that the two-phase clustering scheme
is effective in improving scalability, and that ScalCCon re-
duces the number of PMs required while also generating less
resource violations compared to the existing approaches. This
paper also discussed the impact that the number of clusters has
on the placement results. The experiments show that ScalCCon
is not vulnerable to the variation of the number of clusters in
either or both phases. However, the size of the VM set to be
placed is the main factor to be considered when determining
the number of clusters, and the k in the first phase is tunable
to accelerate the solution execution when the VM set is large.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 10/CE/I1855 to Lero - the Irish Software En-
gineering Research Centre (www.lero.ie) and by Enterprise
Ireland Innovation Partnership in cooperation with IBM and
University College Dublin under grant IP/2010/0061.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. SOSP, 2003, pp. 164–177.

[2] F. Xu, F. Liu, H. Jin, and A. Vasilakos, “Managing performance overhead
of virtual machines in cloud computing: A survey, state of the art, and
future directions,” Proceedings of the IEEE, vol. 102, no. 1, pp. 11–31,
Jan 2014.

[3] D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance inter-
ference in virtualized environments,” Tech. Rep., 2013.

[4] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar,
L. Uyeda, and U. Wieder, “Validating Heuristics for Virtual Machines
Consolidation,” Microsoft Research, Tech. Rep., 2011.

[5] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif, “Black-box
and gray-box strategies for virtual machine migration.” in Proc. NSDI,
vol. 7, 2007, pp. 17–17.

[6] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for consoli-
dated virtual machines,” in Proc. SOCC, 2011, pp. 22:1–22:14.

[7] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
Proc. ISPASS, 2007, pp. 200–209.

[8] Q. Zhu and T. Tung, “A performance interference model for managing
consolidated workloads in qos-aware clouds,” in Proc. CLOUD, 2012,
pp. 170–179.

[9] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath, “Pacman:
Performance aware virtual machine consolidation.” in Proc. ICAC, 2013,
pp. 83–94.

[10] I. Paul, S. Yalamanchili, and L. John, “Performance impact of virtual
machine placement in a datacenter,” in Proc. IPCCC, 2012, pp. 424–431.

[11] K. Zheng, X. Wang, L. Li, and X. Wang, “Joint power optimization
of data center network and servers with correlation analysis,” in Proc.
INFOCOM, 2014, pp. 2598–2606.

[12] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via vm multiplexing,”
in Proc. ICAC, 2010, pp. 11–20.

[13] K. Halder, U. Bellur, and P. Kulkarni, “Risk aware provisioning and
resource aggregation based consolidation of virtual machines,” in Proc.
CLOUD, 2012, pp. 598–605.

[14] J. Kim, M. Ruggiero, D. Atienza, and M. Lederberger, “Correlation-
aware virtual machine allocation for energy-efficient datacenters,” in
Proc. DATE, 2013, pp. 1345–1350.

[15] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in Proc.
USENIX ATC, 2009, pp. 28–28.

[16] Q. Zhu, J. Zhu, and G. Agrawal, “Power-aware consolidation of scientific
workflows in virtualized environments,” in Proc. SC, 2010, pp. 1–12.

[17] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2012.03.20. Posted at URL http://code.
google.com/p/googleclusterdata/wiki/TraceVersion2.

[18] X. Li, A. Ventresque, J. Murphy, and J. Thorburn, “A fair comparison of
vm placement heuristics and a more effective solution,” in Proc. ISPDC,
2014, pp. 35–42.

[19] N. Tziritas, C.-Z. Xu, T. Loukopoulos, S. Khan, and Z. Yu, “Application-
aware workload consolidation to minimize both energy consumption and
network load in cloud environments,” in Proc. ICPP, 2013, pp. 449–457.

[20] A. Sansottera, D. Zoni, P. Cremonesi, and W. Fornaciari, “Consolidation
of multi-tier workloads with performance and reliability constraints,” in
Proc. HPCS, 2012, pp. 74–83.

[21] T. W. Liao, “Clustering of time series data – a survey,” Pattern
Recognition, vol. 38, no. 11, pp. 1857–1874, 2005.

[22] X. Wang, K. Smith, and R. Hyndman, “Characteristic-based clustering
for time series data,” Data Mining and Knowledge Discovery, vol. 13,
no. 3, pp. 335–364, 2006.

[23] A. Verma, J. Bagrodia, and V. Jaiswal, “Virtual machine consolidation
in the wild,” in Proc. Middleware, 2014, pp. 313–324.

[24] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate analysis.
Academic press, 1979.

[25] J. Bezdek and N. Pal, “Some new indexes of cluster validity,” Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 28, no. 3, pp. 301–315, Jun 1998.

[26] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “NbClust: An R
package for determining the relevant number of clusters in a data set,”
Journal of Statistical Software, vol. 61, no. 6, pp. 1–36, 2014.

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

	Introduction
	Related Work
	Scalable Correlation-aware VM Consolidation
	Transformation
	Two-phase clustering
	VM Placement

	Experimental Evaluation
	Experimental Setup
	Dataset
	Baselines, metrics and parameters

	Effectiveness Evaluation
	Scalability Evaluation
	Discussion

	Conclusion
	References

